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Abstract: Mainstream methods treat head pose estimation as a supervised classification/regression
problem, whose performance heavily depends on the accuracy of ground-truth labels of training
data. However, it is rather difficult to obtain accurate head pose labels in practice, due to the lack of
effective equipment and reasonable approaches for head pose labeling. In this paper, we propose a
method which does not need to be trained with head pose labels, but matches the keypoints between
a reconstructed 3D face model and the 2D input image, for head pose estimation. The proposed
head pose estimation method consists of two components: the 3D face reconstruction and the 3D–2D
matching keypoints. At the 3D face reconstruction phase, a personalized 3D face model is recon-
structed from the input head image using convolutional neural networks, which are jointly optimized
by an asymmetric Euclidean loss and a keypoint loss. At the 3D–2D keypoints matching phase, an
iterative optimization algorithm is proposed to match the keypoints between the reconstructed 3D
face model and the 2D input image efficiently under the constraint of perspective transformation.
The proposed method is extensively evaluated on five widely used head pose estimation datasets,
including Pointing’04, BIWI, AFLW2000, Multi-PIE, and Pandora. The experimental results demon-
strate that the proposed method achieves excellent cross-dataset performance and surpasses most of
the existing state-of-the-art approaches, with average MAEs of 4.78◦ on Pointing’04, 6.83◦ on BIWI,
7.05◦ on AFLW2000, 5.47◦ on Multi-PIE, and 5.06◦ on Pandora, although the model of the proposed
method is not trained on any of these five datasets.

Keywords: computer vision; head pose estimation; 3D face reconstruction; facial keypoints matching

1. Introduction

Head pose plays a significant role in diverse applications such as human–computer
interaction [1], driver monitoring [2], and analysis of students’ learning state [3], since
it usually indicates the gaze direction and even the attention of a person. Moreover,
head pose provides an important cue for many other face-related computer vision tasks,
including facial feature points’ detection [4], multi-view face recognition [5], and facial
expression analysis [6,7]. As a consequence, head-pose estimation has become a hot topic
in the computer-vision community. Inaccurate estimations of head pose may indicate
wrong gaze direction or attention, and thus result in poor user experience for almost
all applications. For example, in the application of students’ learning-state analysis [3],
inaccurate head-pose estimations often lead to incorrect learning states. Hence, from the
classical AdaBoost-based [8] and random-forests-based [9,10] methods to the current
deep neural networks [11–14], hundreds of methods have been proposed to pursuit more
accurate head-pose estimations.

The most recent mainstream methods [9,10,14,15] treat head-pose estimation as a
supervised classification/regression problem, and need to train models on large-scale
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datasets with ground-truth head-pose labels. As it is often assumed that a person’s head is
a rigid object with three degrees of freedom, the label of head pose is characterized by the
pitch, yaw and roll angles with respect to the image plane [16]. From the machine learning
perspective, the task of head-pose estimation consists of learning a model that maps an
input head image to head-pose angles based on image and ground-truth label pairs. It is
well-known that the maximum achievable accuracy of a supervised model depends on
the quality of the training data [17]. Like the other supervised machine learning tasks,
the performance of supervised-learning-based head-pose estimation methods also heavily
depends on the accuracy of the ground-truth labels in the training dataset [14,15].

However, it is difficult to obtain accurate head-pose labels in practice[14,15]. Since
there is a lack of effective equipment and reasonable approaches for head-pose labeling,
approximate approaches are usually adopted to label head-pose angles in the training
dataset. Take the labeling approach of the widely used Pointing’04 head pose dataset [18]
as an example: First, put 93 markers around a half-sphere of a chair in a room. Each marker
corresponds to a head pose, characterized by a pitch angle and a yaw angle. Then, ask each
subject to sit on the chair in the center of the half-sphere, and then to stare successively at
each of the markers. Finally, take an image when the subject is staring at a certain marker,
and use the pose that the marker stands for as the head-pose label. This head-pose labeling
approach has at least two disadvantages: (1) Only a few coarse discrete head poses can
be labeled. (2) The head-pose labels are pretty inaccurate, because the subject tends to
squint at the markers. Multiple-camera array, automatic algorithms, or even subjective
consciousness of data annotators are adopted to annotate head-pose labels in other datasets.
Hence, besides the Pointing’04 dataset, inaccurate labels are common in other head-pose
estimation datasets. Although many works [10,14] have reported promising head-pose
estimation performance, it is worth noting that these methods are trained and evaluated on
datasets with inaccurate or even wrong labels. The methods trained and tested on the same
dataset with inaccurate labels tend to create an illusion that their models can accurately
estimate head pose. Unfortunately, a cross-dataset testing can easily break the illusion.
Therefore, head-pose estimation methods with robust cross-dataset performance still need
to be explored.

To avoid suffering from inaccurate labels in training datasets, a head-pose estimation
method that employs keypoint-matching between the input image and the corresponding
reconstructed 3D face model is proposed in this paper. The key insight of the proposed
method is that if a personalized 3D face model is reconstructed from the input head image,
then the keypoints between the 3D face model and input image can be matched under
the constraint of perspective transformation, and finally the head pose angles can be
estimated by the perspective transformation parameters. Because the proposed method
does not use any head-pose label during training, it avoids suffering from the inaccuracy
of head-pose labels and exhibits outstanding cross-dataset ability. Experimental results
show that the proposed method achieves excellent cross-dataset performance on a serial of
the widely used benchmark datasets including Pointing’04 [18], BIWI [19], AFLW2000 [20],
Multi-PIE [21], and Pandora [22], as illustrated in Figure 1.
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Figure 1. Head-pose estimation results produced by the propose method on the Pointing’04 (the 1st row), BIWI(the 2nd
row), AFLW2000 (the 3rd row), Multi-PIE (the 4th row), and Pandora (the 5th row) datasets. The proposed method is not
trained on any of these five datasets. The ground-truth labels and the estimated head pose angles are, respectively, marked
in blue and green under each image.

The main contribution of this paper is three-fold:
(1) A head-pose estimation method with excellent cross-dataset performance is pro-

posed. Unlike most supervised learning-based head-pose estimation methods that heavily
depend on the accuracy of ground-truth labels, our method does not use any head-pose
label during the training, and thus avoids suffering from the inaccuracy labels which are
common in most head-pose datasets;

(2) Convolutional neural networks which are jointly optimized by an asymmetric
Euclidean loss and keypoints loss is proposed to reconstruct the personalized 3D face
model from a single input head image. The 3D face models reconstructed by our networks
have accurately aligned 3D facial keypoints, which are beneficial for head-pose estimation;

(3) An iterative optimization algorithm, which consists of an R-step and a ST-step,
is proposed to match the keypoints between the reconstructed 3D face model and the
2D input image under the constraint of weak perspective transformation. This iterative
algorithm is not only efficient, but also effective in obtaining high-quality 3D-2D keypoint-
matching results.

The rest of the paper is arranged as follows: the related work is introduced in Section 2,
the details of the proposed head-pose estimation method are described in Section 3, the ex-
periments are presented in Section 4, and the conclusions are given in Section 5.
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2. Related Work
2.1. Supervised-Learning-Based Methods

Supervised-learning-based methods learn models that map input head images to
head-pose angles based on ground-truth labels. Fanelli et al. [9] formulated the problem of
head-pose estimation as a regression problem, and unutilized random regression forests
for estimating head pose from depth data. Experimental results show that this approach
can handle depth images with partial occlusions and facial expressions. Inspired by the
work of Fanelli et al. [9], Liu et al. [10] proposed Dirichlet-tree distribution enhanced
random forests to estimate head pose from RGB images captured in an unconstrained
environment. This approach treats head-pose estimation as a supervised classification
problem, and reaches an average accuracy rate of 76.2% with 25 head-pose classes on
Pointing’04. Although random forests have shown effectiveness and robustness [21,22] in
head-pose estimation, experimental results reported by these approaches illustrate that
their accuracies are too low to meet the requirements of practical applications.

Recently, deep neural networks have shown performance improvement in head-pose
estimation. Ahn et al. [13] proposed a multi-task network to detect multi-view faces and
jointly estimate head pose. Xu et al. [14] introduced a regularized convolutional neural net-
work architecture that is optimized by Kullback–Leibler divergence loss and Jeffreys diver-
gence loss. This method achieves an accuracy of 85.77% on Pointing’04. Bao et al. [23] used
a three-level network architecture for head-pose estimation. Change et al. [24] proposed the
use of a simple convolutional neural network for head-pose estimation, and showed that
simple convolutional neural networks can be trained to accurately and robustly regress
head pose. Kumar et al. [25] presented an architecture called H-CNN which captures
structured global and local features to jointly estimate head pose and facial keypoints.
Ruiz et al. [26] presented a method to estimate head pose by training a multi-loss convolu-
tional neural network on a large synthetically expanded dataset. Inspired by SSR-Net [27]
which can cast the regression problem as a classification problem, Yang et al. [28] pro-
posed a soft stage-wise regression scheme and applied it to estimate head pose. Recently,
Han et al. [29] developed a compact CNN-based approach for head-pose estimation. In or-
der to extract more representative features, an attention model that includes both the spatial
and channel attention structures is embedded into the compact CNN. In [22], a framework
called POSEidon is proposed to estimate head pose using multimodal data. The POSEidon
first utilizes a face-from-depth model to reconstruct gray-level face images from the depth
maps captured by a Kinect V2, and then fusing the feature output by three independent
convolutional nets, which, respectively, extract visual features from depth maps, RGB
images, and the reconstructed gray-level images, for regressing head poses. Although these
deep-learning-based methods have reported promising head-pose estimation results, some
of the authors [14,24] have noticed that the inaccuracy of head-pose labels in the training
and testing datasets may cause biased evaluations.

To avoid suffering from the inaccurate labels in training datasets, many researchers
proposed synthesizing head-pose images and ground-truth labels. Liu et al. [30] proposed
a method to generate a head-pose dataset by rendering images from 37 3D head models.
Sun et al. [31] buildt a large-scale head-pose dataset including more than 140,000 images
with diverse and accurate head poses. Although large-scale datasets with accurate labels
can be generated, the current synthesized images are not realistic enough to train robust
head-pose estimation models. Xu et al. [14] and Geng et al. [15] proposed generating soft
labels to improve the accuracy of ground-truth labels. However, they constructed soft
labels using a Gaussian distribution function. In practice, the error of the labels in the
training dataset does not usually obey the Gaussian distribution.

2.2. Model-Based Methods

Model-based methods utilize the geometric distortion of facial keypoints or 3D
morphable face models to infer head-pose angles from VIS (RGB or gray-level) images.
Feng et al. [32] proposed a method for joint 3D face reconstruction and dense alignment.
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In this method, a 2D representation called the UV position map is designed to record the 3D
shape of a face in UV space, and a convolutional neural network is developed to regress the
3D face from a single 2D image. Gecer et al. [33] utilized generative adversarial networks to
train a generator of facial texture in UV space, and then revisited the original 3D morphable
model’s fitting approaches to find the optimal latent parameters that best reconstruct the
3D face model from the input 0image. Yu et al. [34] presented a framework which combines
the strengths of a 3D morphable model fitted online with a prior-free reconstruction of a
3D full-head model, providing support for head-pose estimation. Although this method
achieves a head-pose estimation accuracy of 94.7% on the BIWI dataset, which consists
of RGB-D images captured by Kinect, its performance on RGB images is not evaluated.
Recently, Andrea et al. [35] proposed exploiting a quad-tree based representation of facial
features and estimate head pose by guiding the subdivision of the locations of a set of
landmarks detected over the face image into smaller and smaller quadrants. In [36], a web-
shaped model was proposed to associate each of them to a specific face sector over the
detected landmarks. Although this method does not need to train on datasets with head-
pose labels, it performs poorly under large poses. Zhu et al. [37] proposed an alignment
framework termed 3D Dense Face Alignment (3DDFA), in which a dense 3D morphable
model is fitted to the image via cascaded convolutional neural networks. This method
achieves excellent head-pose estimation performance on RGB-image-based datasets like
AFLW2000, but its cross-dataset performance still needs to be improved.

With the development of consumer-level depth-image sensors, many studies have
tried to exploit 3D-face-model-based approaches on depth and 3D data. Martin et al. [38]
proposed a real-time head-pose estimation approach on consumer depth cameras. This
approach first creates a point-cloud-based 3D head model from the input depth image,
and then registers the 3D head model with the iterative closest point (ICP) algorithm for
head-pose estimation. Gregory et al. [39] proposed estimating head poses by registering a
3D morphable model (3DMM) to the input depth data through a combination of particle
swarm optimization (PSO) and the ICP algorithm. Instead of creating a 3D face model for
a subject at one stroke, this method dynamically adapts the weights of the 3DMM to fit
the subject’s face on the fly. Unlike the 3D model registration methods, Papazov et al. [40]
introduced a triangular surface patch (TSP) to represent the shape of the 3D face surface
within a triangular area, and utilized the matched triangular surface patches in the training
set to estimate the head pose. Although estimating the head poses on the depth image can
avoid suffering from the cluttered background and illumination changes that are common
in RGB images, depth image sensors are not available in most of the current applications.

3. Methodology
3.1. Overview

The proposed head pose estimation method, at its core, consists of two phases, i.e., 3D
face reconstruction and 3D–2D keypoints matching, as illustrated in Figure 2. In the
3D face reconstruction phase, a personalized 3D face model is reconstructed from the
input head image using convolutional neural networks which are jointly optimized by
an asymmetric Euclidean loss and a keypoint loss. In the 3D–2D keypoints matching
phase, an iterative optimization algorithm is proposed to match the keypoints between the
reconstructed 3D face model and the 2D input image efficiently under the constraint of
weak perspective transformation.
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Figure 2. Framework of the proposed head-pose estimation method.The proposed method consists of two phases, i.e., 3D
face reconstruction and 3D–2D keypoints matching. At the 3D face reconstruction phase, a personalized 3D face model is
reconstructed from the input head image using a convolutional neural network, which is jointly optimized by an asymmetric
Euclidean loss and a keypoint loss. At the 3D–2D keypoints matching phase, an iterative optimization algorithm is proposed
to match the keypoints between the 2D input image and the reconstructed 3D face model under the constraint of weak
perspective transformation.

3.2. 3D Face Model Reconstruction
3.2.1. Model Representation

In our method, a 3D face model is represented by a mesh with N vertices

P = [p1, p2, · · · , pN ]T (1)

where pn = (xn, yn, zn) denotes the 3D location of a vertex. In practice, a 3D face model usu-
ally consists of hundreds of thousands of vertices. That means that P is high-dimensional,
which makes direct reconstruction of a 3D face model an extremely difficult problem.
In order to reduce the difficulty of the problem, Principal Component Analysis (PCA) is
employed to encode the high-dimensional 3D face model on lower-dimensional subspaces

P = P̄ + Msαs (2)

where P̄=[p̄1, p̄2, · · · , p̄N ]T is the mean 3D face computed over a set of 3D face meshes, Ms
is the principal components matrix of the same set of 3D face meshes, αs is the coefficient
vector that characterizes the geometry of a specific 3D face. The dimensions of P̄ , M,
and α are respectively 3N × 1, 3N × ds and ds × 1, and ds << 3N. In the publicly available
Basel Face Model [41] , P̄ and Ms have been computed over a dataset of aligned facial 3D
face scans.

In practice, the facial keypoints of a subject can be changed drastically due to facial
expressions. Hence, we add an additional blend item to represent facial expressions

P = P̄ + Msαs + Meαe (3)

where Me is the principle matrix extracted from the offsets between the expression meshes
and the neutral meshes, and αe, which is de-dimensional, is the expression parameter of a
given face image. In our method , we use the FaceWarehouse [42] dataset for computing
Me. At this point, to reconstruct a 3D face model from a 2D RGB image, we only need to
estimate the low-dimensional geometric parameter αs and expression parameter αe.
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3.2.2. Network Structure

As illustrated in Figure 3, two convolutional neural networks are utilized to regress
the geometric parameter αs and the expression parameter αe, respectively, from the input
image. We adopt ResNet-101 and ResNet-18 [43] as the backbone networks, due to their
promising performance on many face-related computer-vision tasks. The input of the
networks is a 2D RGB head image whose size is 224× 224, and the outputs of the fully
connected layers of the two ResNets are, respectively, modified to ds-dimensional and
de-dimensional for regressing the geometric parameter αs and the expression parameter αe.
The regressed geometric parameter αs and expression parameters αe are then passed into a
PCA reconstruction module for reconstructing the 3D face model.

Figure 3. Structure of the deep neural networks employed for 3D face reconstruction.

The backbone ResNet-101 and ResNet-18 are first pre-trained on the CASIA-WebFace
dataset [44], and then fine-tuned on the 3DFaceNet dataset [45]. In the 3DFaceNet dataset,
the geometric parameters under neutral expression are extracted based on the BaselFace
model, and the offsets between the expression meshes and the neutral meshes are also
computed based on the FaceWarehouse model. Hence, the ResNet-101 and ResNet-18 can
be trained on 3DFaceNet for regressing the geometric parameter αs and the expression
parameter αe.

3.2.3. Loss Functions

Networks trained with direct MSE (Mean Square Error) loss or Euclidean loss on
the model parameter α tends to generate 3D faces that are similar to the mean face P̄ .
To counter this bias towards the mean face, the asymmetric Euclidean loss [46] is utilized
in our networks

LE(α̂, α) = λ1
∥∥α+ − αmax

∥∥2
+ λ2

∥∥α̂+ − αmax
∥∥2

2 (4)

where α ∈ {αs, αe}, α̂ ∈ {α̂s, α̂e} is the estimated model parameters output by the two
networks, α+ = sign(α) · α, α̂+ = sign(α̂) · α̂, and αmax = max(α̂+, α+). Since the
asymmetric Euclidean loss encourages the network to favor estimates further away from
the mean face, the networks trained with the asymmetric Euclidean loss can generate more
diverse 3D faces. However, we found that networks trained with the asymmetric Euclidean
loss still struggle to output 3D faces with accurate facial components. The performance
of our head-pose estimation method will be affected by the inaccurate estimated facial
components, since our method is based on facial keypoint-matching between a 2D face
image and the corresponding reconstructed 3D face model.

In order to make our networks generate 3D face models with accurate facial compo-
nents, we propose adding additional Facial Feature Points (FFP) loss to align the facial
components between the estimated 3D face and the corresponding ground-truth. The ad-
ditional FFP loss is based on the facial feature points (i.e., the 3D vertices around facial
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components such as the eyes, mouth, and nose). For the sake of representation convenience,
we rewrite Equation (3) as

p1
p2
...

pN

 =


p̄1
p̄2
...

p̄N

+


M1

s
M2

s
...

MN
s

αs+


M1

e
M2

e
...

MN
e

αe (5)

then, the nth vertex of a 3D face mesh can be denoted as

pn = p̄n + Mn
s αs + Mn

e αe (6)

Denote all the facial keypoints selected for computing the FFP loss as P̃ = {p̃k}.
The FFP loss computed by a single facial feature point p̃k is defined by the distance
between its estimation and ground-truth

L p̃k (α̂, α) = ‖p̃k − p̂k‖2
2

=
∥∥∥Mk

s (α̂s − αs) + Mk
e (α̂e − αe)

∥∥∥2

2

(7)

Then, the FFP loss computed by all the selected facial keypoints is

LP̃ (α̂, α) =
1
|P̃ | ∑

pn∈P̃
‖Mn

s (α̂s −αs) + Mn
e (α̂e − αe)‖2

2 (8)

The final loss function is a weighted sum of the asymmetric Euclidean loss and the
FFP loss

L(α̂, α) = ωLE(α̂, α)) + (1−ω)LP̃ (α̂, α) (9)

where ω is the weight parameter.

3.3. Head-Pose Estimation through 3D-2D Keypoints Matching
3.3.1. Weak Perspective Transformation

Given a reconstructed 3D face model, the weak perspective transformation is em-
ployed to project vertices (3D points) on the 3D face model onto the 2D image plane

q = sΠR(θ)p + t (10)

where p = (px, py, pz)T and q = (qx, qy)T are, respectively, the locations of a 3D point on the

reconstructed face model and the projected 2D point on the image plane, Π =

(
1 0 0
0 1 0

)
is the perspective matrix, s is the scale factor, t = [tx, ty]T is the translation parameter,
and R(θ) is the rotation matrix characterized by the underlying head pose θ. As it is often
assumed that a person’s head is a rigid object with three degrees of freedom, a head pose (θ)
is usually denoted by a pitch angle (θp), a yaw angle (θy) and, a roll angle (θr), with respect
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to the image plane, i.e., θ = [θp, θy, θr]T . Under the weak perspective transformation, R(θ)
can be decomposed as R(θ) = Rx(θr)Ry(θp)Rz(θy), where

Rx(θr) =

 1 0 0
0 cos(θr) sin(θr)
0 −sin(θr) cos(θr)


Ry(θp) =

 cos
(
θp
)

0 −sin
(
θp
)

0 1 0
sin
(
θp
)

0 cos
(
θp
)


Rz(θy) =

 cos
(
θy
)

sin
(
θy
)

0
−sin

(
θy
)

cos
(
θy
)

0
0 0 1


(11)

3.3.2. 3D–2D Keypoints Matching

After projecting the 3D keypoints on the reconstructed face model onto the image
plane, the projected keypoints and the corresponding keypoints detected from the input
image are matched to infer the underlying head pose (s shown in Figure 4a). The total
Euclidean distance of all pairs of keypoints are adopted to evaluate the matching result.
To this end, 3D–2D keypoint-matching is formulated as an optimization problem that
minimizes the following energy

E(s, t, θ) =
K

∑
i=1
‖qi − q̃i‖2

2 =
K

∑
i=1
‖sΠR(θ)pi + t− q̃i‖2

2 (12)

where K is the number of selected keypoints, qi is the projected 2D keypoint, and q̃i is
the corresponding keypoint detected by a certain facial keypoint detector. Hence, in our
method, head-pose estimation is transformed to solve the following optimization problem

arg min
s,t,θ

E(s, t, θ) (13)

Obviously, this is an unconstrained nonlinear optimization problem with six parame-
ters: {s, (tx, ty), (θp, θy, θr)}.

θp

s

(a) θr

θy

(b) result

initiation

ST-step R-step

37593
38039 

38264 38389

38509 38985

3910439226
39471
39844

8160
8174
8183
8189

6757 9640

5521
6153 10520

10920
6547 8234 9916

42364
43506

44658

1829 6085 10452 14580

Figure 4. Overview of the proposed iterative optimization algorithm for 3D–2D keypoints matching. (a) The underlying
head pose is inferred by 3D–2D keypoints matching. (b) A ST-step and a R-step are employed to alternatively optimize the
3D–2D keypoints matching.
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To simplify the above optimization problem, the six parameters are divided into two
groups (i.e., {s, tx, ty} and {θp, θy, θr}) and optimized in an iterative manner. As illustrated
in Figure 4b, we propose an ST-step and a R-step to alternatively optimize the two groups
of parameters until the energy is lower than a given threshold (ε):

E(s̃, t̃, θ̃) < ε (14)

where s̃ and t̃ = [t̃x, t̃y]T are, respectively, the optimal s and t output by the ST-step,
and θ̃ = [θ̃p, θ̃y, θ̃r]T are the optimal θp, θy, and θr output by the R-step.

ST-step. In this step, we fix {θp, θy, θr} to {θ̃p, θ̃y, θ̃r} and optimize {s, tx, ty}. The opti-
mization problem of ST-step is formulated as

arg min
s,t

EST(s, t|θ̃) (15)

and the energy function is

EST(s, t|θ̃) =
K

∑
i=1

∥∥sΓi(θ̃) + t− q̃i
∥∥2

2 (16)

where Γi(θ̃) = ΠR(θ̃)pi. Obviously, this is a linear least-squares problem. We set
∂EST(s,t|θ̃)

∂s = 0, ∂EST(s,t|θ̃)
∂tx

= 0, and ∂EST(s,t|θ̃)
∂ty

= 0 which give the following equations



K
∑

i=1
sΓT

i Γi=
K
∑

i=1
ΓT

i (q̃i − t)

K
∑

i=1
s
(
ΛT

0 Γi+ ΓT
i Λ0

)
=

K
∑

i=1

(
ΛT

0 (q̃i −t) + (q̃i − t)TΛ0

)
K
∑

i=1
s
(
ΛT

1 Γi+ ΓT
i Λ1

)
=

K
∑

i=1

(
ΛT

1 (q̃i −t) + (q̃i − t)TΛ1

) (17)

where Λ0 = [1, 0]T , and Λ1 = [0, 1]T . After solving the above linear ternary equations,
the optimal {s̃, t̃x, t̃y} are obtained.

R-step. In this step, we fix {s, tx, ty} to {s̃, t̃x, t̃y} and optimize {θp, θy, θr}. The opti-
mization problem of R-step is formulated as

arg min
θ

ER(θ|s̃, t̃) (18)

and the energy function is

ER(θ|s̃, t̃) =
K

∑
i=1
‖s̃Γi(θ) + t̃− q̃i‖

2
2 (19)

where Γi(θ) = ΠR(θ)pi. This is a non-linear least-squares problem because of R(θ).
To solve it, we first compute the Jacobian matrix

∂Γ1(θ)
∂θp

· · · ∂Γi(θ)
∂θp

· · · ∂ΓK(θ)
∂θp

∂Γ1(θ)
∂θy

· · · ∂Γi(θ)
∂θy

· · · ∂ΓK(θ)
∂θy

∂Γ1(θ)
∂θr · · · ∂Γi(θ)

∂θr
· · · ∂ΓK(θ)

∂θr

 (20)
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where 

∂Γi(θ)
∂θp

=

(
−spcy −spsr −cp
cpcysr cpsysr −spsr

)
pi

∂Γi(θ)
∂θy

=

(
−cpsy 0 0

−cycr − spsysr −sycr + spcysr 0

)
pi

∂Γi(θ)
∂θy

=

(
0 cpcr 0

sysr + spcycr −cysr + spsycr cpcr

)
pi

(21)

in which cp = cos(θp), cy = cos(θy), cr = cos(θr), sp = sin(θp), sy = sin(θy), and sr =
sin(θr). With the Jacobian matrix, the optimal {θ̃p, θ̃y, θ̃r} are then calculated using the
Levenberg–Marquardt algorithm [47].

4. Experimental Results
4.1. Implementation Details

At the 3D face-reconstruction phase, the backbone networks employed in our method
are first pre-trained on the CASIA-WebFace dataset [44], and then fine-tuned on the
3DFaceNet dataset [45]. The number of vertices on a 3D face mesh is 46,990, and the
dimensions of the model parameters, i.e., the αs and αe, are, respectively, set as 99 and 29.
The batch size is fixed to 128 in the whole training phase. The initial learning rate is set
to 0.05, and the iteration is set to 60 for each epoch. After 40 epochs, the learning rate is
decayed to 0.005. Stochastic Gradient Descent (SGD) is adopted as the optimizer, and its
initial momentum and weight-decay parameter are, respectively, set as to 0.9 and 0.0005.
The backbone ResNet-101 is first trained independently for 200 epochs, and then the back-
bone ResNet-18 and ResNet-101 are jointly trained for another 100 epochs. At the 3D–2D
keypoint-matching phase, the FAN [48], a CNN-based facial keypoints detector, is adopted
to jointly detect faces and the 2D facial keypoints from the input images. The information
of each 3D keypoint is obtained from the reconstructed 3D face model data according to
the index of the keypoint.

4.2. Datasets and Performance Metric

The proposed head-pose estimation method is extensively evaluated on four public
datasets, including Pointing’04 [18], BIWI [19], AFLW2000 [20], Multi-PIE [21], and Pan-
dora [22]. The Pointing’04 dataset [18] contains 2790 face images of 15 subjects. In the
original Pointing’04, only discrete yaw (0◦, ±15◦, ±30◦, ±45◦, ±60◦, ±75◦, +90◦) and pitch
(0◦, ±15◦, ±30◦, ±60◦, ±90◦) angles are annotated as head-pose labels. As mentioned
before, the head-pose labels in this dataset are annotated by asking subjects to stare suc-
cessively at 93 markers, and therefore the precision of the original labels is low. The BIWI
head-pose dataset [19] contains over 15,000 images of 20 subjects captured by a Kinect.
Although an RGB image and a corresponding depth are provided for each frame, only
the RGB images are used in our experiments. In this dataset, the head-pose range covers
about ±75 degrees yaw and ±60 degrees pitch. The head-pose labels of the RGB images
are automatically annotated by a head-pose estimation algorithm, [49], which works on
depth images. The AFLW2000 dataset [20] contains the first 2000 identities of the AFLW
dataset [50], which provides the large-scale collection of face images. As gathered from
Flickr, the faces in AFLW have large pose variations, with various illumination conditions
and expressions. The head-pose labels in AFLW2000 are labeled using a 3D-model-fitting
approach [20]. The multi-PIE dataset [21] contains 755,370 images of 337 subjects, which
are divided into four recording sessions. In our experiments, the 32,682 multi-view images
in session0 are used for testing. Since the images in Multi-PIE are captured by 13 cameras,
located at head height and spaced at 15◦ intervals, 13 discrete yaw angles (0◦, ±15◦, ±30◦,
±45◦, ±60◦, ±75◦, ±90◦) are annotated as head-pose labels. The Pandora [22] is a dataset
specifically created for head-center localization, head-pose and shoulder-pose estimation
in a simulated automotive context. The Pandora contains 110 annotated sequences of more
than 250,000 full-resolution RGB (1920 × 1080 pixels), and the corresponding depth images
(512 × 424) captured by a Kinect V2. Although most of the existing methods fuse both the
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RGB and depth images to boost the performance of head-pose estimation on this dataset,
we only employ the RGB images to evaluate our method in all experiments. In order to
evaluate cross-dataset performance, our method is not trained on any of these five datasets.

Ground-Truth Label Relabeling. For fair and unprejudiced performance evaluation,
the head-pose labels in the testing datasets are relabeled independently by three data anno-
tators using a semi-automatic head-pose labeling tool provided by us. The pipeline of data
relabeling is illustrated in Figure 5. First, for each input image, a 3D face model is recon-
structed automatically by the method described in Section 3.2. Meanwhile, the 68 keypoints
on the reconstructed 3D face model are highlighted. Then, the 68 corresponding keypoints
in the input image are also marked using FAN [48]. If the keypoints marked by FAN are
not accurate, the data annotator can edit them manually. Finally, the data annotator manip-
ulates a keyboard to translate, scale, and rotate the 3D face model until the corresponding
keypoints on the 3D face model and the input image are almost overlapped. As the labeling
tool records the rotation angles of the 3D face model, the head-pose angles of the input
image can be labeled as long as the data annotator stops his/her manipulation. The rela-
beled and original head-pose labels of some images which are randomly selected form the
Pointing’04 dataset are shown in Figure 6. As can be seen, the head-pose angles relabeled
using our labeling tool are much more accurate than the original ones. This tool is also suit-
able for labeling off-the-shelf head images. The relabeled head-pose labels are shared with
the head-pose estimation community at https://github.com/Autccnu/headPoseLabels
(accessed on 5 March 2021).

Performance Metric. The Mean Absolute Error (MAE) is adopted as the metric for
evaluating the head-pose estimation performance achieved by different methods. The
MAE for one head-pose angle (yaw, pitch, or roll) is defined as follows

MAE =
1
N

N

∑
i=1

(∣∣θ̂ik − θik
∣∣) (22)

and the average MAE for two or three head-pose angles is defined as

MAE =
1

KN

K

∑
k=1

N

∑
i=1

(∣∣θ̂ik − θik
∣∣) (23)

where N is the number of samples in the testing dataset, K denotes the number of head-pose
angles adopted for performance evaluation, θik and θ̂ik are, respectively, the ground-truth
head-pose angles and the estimations.

3D face model with keypoints

input

3D face model reconstruction

keypoints 
detection 

(FAN)

input image with keypoints

Pitch : 34.5

Yaw : 11.8

labeling result

……

manually labeling 

open save

Shortcuts:
Pitch+(W)   Pitch-(Q)
Yaw+(R)      Yaw-(E)
Roll+(Y)       Roll-(T)
Tx+(A)       Tx-(S)
Ty+(F)       Yy-(D)
Scale+(G)    Scale-(H)

Head Pose Labeling Tool

0.10Rotate Stride

1.00Translate Stride

1.00Scale Stride

open save

Shortcuts:
Pitch+(W)   Pitch-(Q)
Yaw+(R)      Yaw-(E)
Roll+(Y)       Roll-(T)
Tx+(A)       Tx-(S)
Ty+(F)       Yy-(D)
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Head Pose Labeling Tool
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1.00Scale Stride

Figure 5. Pipeline of the ground-truth labels’ relabeling.

https://github.com/Autccnu/headPoseLabels
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Figure 6. Original and relabeled head-pose angles of images randomly selected from Pointing’04. The original and relabeled
angles are, respectively, marked in red and blue.

4.3. Performance Analysis of the Proposed Method

As described in Section 3, the proposed method consists of two components, i.e., 3D
face reconstruction and 3D-2D keypoints matching. To evaluate their respective effec-
tiveness, we conducted two experiments in this subsection. In the first experiment,the
head-pose estimation performance of the proposed method with different loss functions
in the 3D face-reconstruction component is evaluated. In the second experiment, the
performance of the proposed method using different facial keypoints detection methods
is tested.

Performance with Different Loss Functions. In the experiment setup, the FFP loss
described in Section 3.2.3 is first added to, and then removed from, the 3D face reconstruc-
tion component, and FAN [48] with 30 keypoints is fixed for detecting facial keypoints
from the input image. Table 1 shows the performance of the proposed method with dif-
ferent loss functions for 3D face reconstruction. Obviously, on all four testing datasets,
the proposed method with the FFP loss performs better than the method without the FFP
loss. For better understanding of the results, some reconstructed 3D faces, as well as the
estimated head-pose angles, are illustrated in Figure 7. It can bee seen that some of the
facial components are distorted when the 3D faces are reconstructed without the FFP loss,
which consequently reduces the accurate of head-pose estimation.

Performance with Different Keypoints Detectors. In the experiment setup, three
methods, including Dlib [51], Openface [52], and FAN [48], are adopted for detecting
facial keypoints from the input image, and the loss functions in Equation(9) are fixed
for 3D face reconstruction. Figure 8 illustrates the performance of the proposed method
with different facial-keypoint-detection methods under different keypoint configurations
on the super-datasets, which consist of all four testing datasets. Overall, the proposed
method with FAN outperforms the proposed method with the other two keypoint detectors.
No matter which of the three keypoint detectors is used, the proposed method achieves
the lowest average MAEs under the 30-keypoints configuration. Using the 30-keypoints
configuration, the average MAEs produced by the proposed method with different facial
keypoint detectors range from 5.98 to 7.59, which indicates that the proposed method is
not very sensitive to different facial keypoint detection methods under this configuration.
The best performance is achieved by the proposed method with the FAN detector under the
30-keypoints configuration. Hence, an FAN with 30 keypoints is fixed for facial keypoints’
detection in the following experiments.
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Table 1. MAEs of the proposed method with/without FFP loss for 3D face reconstruction.

Testing
Dataset

Without FFP Loss With FFP Loss

Pitch Yaw Pitch + Yaw Pitch Yaw Pitch + Yaw

Pointing’04 [18] 7.42 6.59 7.01 5.27 4.30 4.78
BIWI [19] 9.65 6.79 8.22 7.94 5.81 6.88

AFLW2000 [20] 10.46 6.86 8.66 8.49 5.60 7.05
Multi-PIE [21] 7.12 7.87 7.50 5.77 5.17 5.47

Pitch: +8.64    Yaw: -32.87Pitch: +10.05    Yaw: -31.87Pitch: +4.63       Yaw: -35.36

Pitch: +4.16    Yaw: -25.16Pitch: +0.03       Yaw: +22.55

Pitch: -14.50    Yaw: +23.01

Pitch: +2.20    Yaw: -12.40Pitch: +6.67    Yaw: -19.99Pitch: +0.00       Yaw: -15.00
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Figure 7. 3D face models and estimated head-pose angles produced by the proposed method
with/without FFP loss.

Error Analysis. The MAE distribution of different head-pose angles is illustrated in
Figure 9. It can be seen that large errors occur when the input heads are placed under large
yaw angles. Figure 10 shows the reconstructed 3D face models and the facial keypoints
detected by three detectors under various head-pose angles. Obviously, the reconstructed
3D face model is robust under variations in head-pose angle, while the keypoint detection
methods perform poorly under large head-pose angles. It can be speculated that the large
head-pose estimation errors produced by the proposed method are mainly caused by the
inaccuracy of facial keypoint detection. Hence, we predict that the performance of our
head-pose estimation method can be further improved with progress in facial keypoint
detection methods.

Results on Occluded Images. In order to evaluate the performance of the proposed
methods on occluded images, we add an artificial occluded block with a random position
on each of the testing images in the five testing datasets. The size of the occluded block on
each image ranges from 1/8 to 1/4 of the face region. Some results on the occluded testing
images produced by the proposed head-pose estimation method are shown in Figure 11.
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The quantitative results are also shown in Table 2. The MAEs only increase by 1.31◦ on
Pointing’04, 2.02◦ on BIWI, 1.99◦ on AFLW2000, 2.01◦ on Multi-PIE, and 1.13◦ on Pandora.
These results confirm the reliability of our method in the occlusion case.
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Figure 8. Performance of the proposed method with different facial keypoint detection methods under different key-
point configurations.
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(a)

(b)

(d)

(c)

Figure 10. Reconstructed 3D face models and facial keypoints detected by three detectors under various head-pose angles.
(a) The original images and the corresponding reconstructed 3D face models. (b) Keypoints detected by Dlib. (c) Keypoints
detected by Openface. (d) Keypoints detected by FAN.
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Figure 11. Example results produced by the proposed method on the occluded testing images. The ground-truth labels and
the estimations are illustrated in blue and green, respectively.

Table 2. MAEs of the proposed method on testing images with/without occluded block (OB).

Testing
Dataset

MAE(◦) without OB MAE(◦) with OB

Pitch Yaw Avg Pitch Yaw Avg

Pointing’04 [18] 5.27 4.30 4.78 6.32 5.85 6.09
BIWI [19] 7.94 5.81 6.88 11.91 5.88 8.90

AFLW2000 [20] 8.49 5.60 7.05 12.17 7.91 9.04
Multi-PIE [21] 5.77 5.17 5.47 5.12 9.83 7.48
Pandora [22] 4.99 6.33 5.66 6.98 6.60 6.79
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Computational Load. The proposed head-pose estimation method is evaluated on a
computer with an NVIDIA GeForce 1080Ti GPU and a Core i5 CPU. The computational
load for the modules and the whole system are illustrated in Table 3. Obviously, the 3D
face reconstruction module consumes almost 95% of the computing resources. However,
for the applications that use video as an input, the 3D face reconstruction module only
needs to be executed once for each subject. In such a scenario, our method can process at
more than 10 FPS, even on low-cost computers.

Table 3. Computational load of the modules in our method.

Module Frames per Second

3D face reconstruction(3DFR) 0.55
2D keypoints detection 14.49

3D-2D keypoints matching 46.31
Whole system 0.52

Whole sysem(wo 3DFR) 11.11

4.4. Comparisons with Other Methods

Comparisons on the Pointing’04 Dataset. The proposed head-pose estimation method
is compared with MGD [53], kCovGa [54], CovGA [54], CNN [55], fuzzy [56], MSHF [57],
SAE-XGB [58], Hopenet [26], FSA-Net [27], hGLLiM [59], 3DDFA [37] and 4C_4S_var4 [36].
Among them, MGD, kCovGa, CovGA, CNN, fuzzy, MSHF, hGLLiM, and SAE-XGB have
been trained on the Pointing’04 dataset following a five-fold cross-validation protocol;
Hopenet and FSA-Net have been trained on another dataset called 300W-LP, while 3DDFA,
4C_4S_var4 and our method have not been trained with any head-pose label. Table 4 shows
the performance of different methods. Obviously, the methods that were trained on the
testing dataset achieved much better results than the methods that were not trained on the
dataset, excepting 3DDFA and our method. Since Hopenet and FSA-Net are supervised-
learning-based methods that are sensitive to the label biases of different datasets, these two
methods perform poorly with MAEs of 23.10 and 21.96. Our method achieves MAEs of 4.30
and 5.27 on yaw angle and pitch angle, and outperforms all the other compared methods.

Table 4. Performance comparison of different head-pose estimation methods on the Point-
ing’04 dataset.

MAE(◦)

Yaw Pitch Avg

MGD [53] 6.90 8.00 7.46
kCovGa [54] 6.34 7.14 6.74
CovGA [54] 7.27 8.69 7.98
CNN [55] 5.17 5.36 5.27
fuzzy [56] 6.98 6.04 6.51
MSHF [57] - - 6.60

SAE-XGB [58] 6.16 7.17 6.67
hGLLiM [59] 7.93 8.47 8.20

Hopenet [26] 26.61 19.59 23.10
FSA-Net(FAN) [27] 25.90 18.01 21.96

3DDFA [37] 6.18 7.38 6.77
4C_4S_var4 [36] 10.63 6.34 8.49

ours(FAN-30) 4.30 5.27 4.78

Comparisons on the BIWI Dataset. The proposed method is also compared with
state-of-the-art methods, including CNN-syn [30], DNN [60], regression [61], Two-Stage [62],
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KEPLER [25], QuatNet [63], Dlib [51], FAN [48], 3DDFA [37], QT_PYR [35], 4C_4S_var4 [36],
Haar-Like(LBP) [64] and HAFA [65] on the BIWI dataset. We divided these 14 methods
into two groups. The first group included the supervised-learning-based methods, which
were trained on the BIWI dataset following a five-fold cross-validation protocol, and the
second group included the model-based methods, which were not trained on the BIWI
dataset. Table 5 shows the performance of different methods. It can be seen that our method
achieved the best average MAE of 6.83 on the BIWI dataset, except for the recent advanced
method proposed in [36]. Although FAN [48] and our method employ the same 2D facial
keypoint detector, our method achieves a much lower MAE of 5.81 on yaw angle. Despite
3DDFA reporting an outstanding performance on Pointing’04 (See Table 4), it performed
poorly on BIWI, with an average MAE of 24.20, while our methods achieved an excellent
performance on both Pointing’04 and BIWI.

Table 5. Performance comparison of different head-pose estimation methods on the BIWI dataset.

MAE(◦)

Yaw Pitch Roll Avg

CNN-syn [30] 11.35 9.65 10.42 10.47
DNN [60] 11.89 7.12 12.78 10.60

regression [61] 8.85 8.70 - 8.78
Two-Stage [62] 9.49 11.34 6.00 10.41
KEPLER [25] 8.08 17.28 16.20 13.05
QuatNet [63] 4.01 5.49 2.94 4.15

Dlib [51] 16.76 13.80 6.19 12.25
FAN [48] 8.53 7.48 7.63 7.88

3DDFA [37] 36.18 12.25 8.78 19.07
QT_PYR [35] 5.41 12.80 6.33 8.18

QT_PY+R [35] 6.28 14.95 4.12 8.45
4C_4S_var4 [36] 6.21 3.95 4.16 4.77

Haar-Like(LBP) [64] 9.70 11.30 7.0 9.33
HAFA [65] 8.95 6.80 - 7.88

Ours(FAN-30) 5.81 7.94 6.74 6.83

Comparisons with the Pandora Dataset. The proposed method is compared with
the SingleCNN [22], DoubleCNN [22], POSEidon [22], Hopenet [26], FSA-Net [27], and
3DDFA [37] on the Pandora dataset. Since Pandora is a multi-modal dataset, the Dou-
bleCNN and POSEidon employ multiple modals including the depth map, motion RGB
images, and FfD gray-level image, for head-pose estimation on this dataset. As illustrated
in Table 6, multi-modal data help to improve the performance of head-pose estimation.
However, our method outperformed the multi-modal-based methods, although it only
uses a single RGB image as input.

Table 6. Performance comparison of different head-pose estimation methods on the Pandora dataset.

Methods Input Cropping Fusion
MAE (◦)

Pitch Roll Yaw Avg

SingleCNN [22]

depth X - 8.1 6.2 11.7 8.67

depth X - 6.5 5.4 10.4 7.43

FfD X - 6.8 5.7 10.5 7.67

gray-level X - 7.1 5.6 9.0 7.23

MI X - 7.7 5.3 10.0 7.67

DoubleCNN [22]
depth + FfD X concat 5.6 4.9 9.8 6.77

depth + MI X concat 6.0 4.5 9.2 6.57
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Table 6. Cont.

Methods Input Cropping Fusion
MAE (◦)

Pitch Roll Yaw Avg

POSEidon [22]

depth + FfD + MI X concat 6.3 5.0 10.6 7.30

depth + FfD + MI X mul + concat 5.6 4.9 9.1 6.53

depth + FfD + MI X conv + concat 5.7 4.9 9.0 6.53

Hopenet [26] single RGB X - 5.62 6.69 8.49 6.94

FSA-Net [27] single RGB X - 6.93 5.06 10.32 7.44

3DDFA [37] single RGB X - 6.62 4.65 7.58 6.28

Ours(FAN-20) single RGB X - 4.99 3.87 6.33 5.06
Ours(FAN-30) single RGB X - 5.21 3.88 6.27 5.12
Ours(FAN-68) single RGB X - 5.83 3.97 6.80 5.53

FfD:Face-from-Depth (gray-level image reconstructed from depth map), MI:Motion Images.

4.5. Cross-Dataset Experiments

In this subsection, we present cross-dataset experiments conducted on five datasets
including Pointing’04, BIWI, AFLW2000, Multi-PIE, and Pandora. Three state-of-the-art
methods with released training and testing codes, including Hopenet [26], FSA-Net [27],
and 3DDFA [37], were chosen for comparison. In the cross-dataset experiment setup,
the FAS-Net and Hopenet were trained on another dataset with head-pose labels called
300W-LP [20]; the 3DDFA and our method were trained on a 300W-LP and CASIA WebFace
dataset, respectively [44] and did not use head pose labels during training. In other words,
none of these four methods were trained on any of the textcolorredfive testing datasets.

The cross-dataset experimental results are illustrated in Figure 12. The average MAEs
of yaw and pitch angles achieved by each method are marked on the top of the bars.
The mean values and standard deviations of MAEs on the super-dataset, which consists of
all four testing datasets, are also calculated and shown in Figure 12. Although the FSA-Net
outperformed our method by MAEs of 2.26 and 0.18 on BIWI and AFLW2000, respectively,
it performed rather poorly on Pointing’04 and Multi-PIE. The Hopenet surpassed our
method by a narrow margin on BIWI and AFLW, but its MAE on Pointing’04 is as high
as 23.10. The 3DDFA only exceeded our method by an MAE of 1.45 on AFLW2000, while
it reported a bad performance on BIWI and MultiPIE, with MAES of 24.20 and 10.81. It
is obvious that our method performs steadily on all five testing datasets and achieved
the smallest mean and standard variance of MAEs. The experimental results indicate
that our method achieves a more robust cross-dataset performance than the other three
competitive methods.
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Figure 12. Cross-dataset experimental results. The average MAEs achieved by each method on each
dataset are marked on the top of each result bar, and the MAEs and standard deviation reported by
each method on all the datasets are marked across the result bars.

5. Conclusions

In this paper, a head-pose estimation method that uses keypoint-matching between the
reconstructed 3D face model and 2D input image has been proposed. First, a personalized
3D face model is reconstructed from the input image using convolutional neural networks,
which are jointly optimized by an asymmetric Euclidean loss and a keypoint loss. Then,
keypoints between the 3D face model and input image are matched under the constraint of
the weak perspective transformation by a effective iterative optimization algorithm. Finally,
the head pose is estimated by the perspective transformation parameters. To evaluate
the performance of the proposed and other current state-of-the-art methods, extensive
experiments have been conducted on five widely used datasets, including Pointing’04,
BIWI, AFLW2000, Multi-PIE, and Pandora. The experimental results illustrate that the
proposed method achieves excellent cross-dataset performance on a set of the widely
used benchmark datasets, while the other compared methods, on average, show bias
on different datasets.Because the proposed method does not use any ground-truth head-
pose label during training, it does not suffer from the inaccuracy of head-pose labels
which exist in most publicly available training datasets. Hence, we suggest exploiting
model-based methods for head-pose estimation if the labels in the training dataset are not
accurate. We also suggest that cross-dataset experiments should be conducted to evaluate
the performance of head-pose estimation methods.
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