
sensors

Review

Resource Management Techniques for Cloud/Fog and Edge
Computing: An Evaluation Framework and Classification

Adriana Mijuskovic 1,* , Alessandro Chiumento 1, Rob Bemthuis 1, Adina Aldea 2 and Paul Havinga 1

����������
�������

Citation: Mijuskovic, A.; Chiumento,

A.; Bemthuis, R.; Aldea, A.; Havinga,

P. Resource Management Techniques

for Cloud/Fog and Edge Computing:

An Evaluation Framework and

Classification. Sensors 2021, 21, 1832.

https://doi.org/10.3390/s21051832

Academic Editor: Taehong Kim

Received: 30 January 2021

Accepted: 24 February 2021

Published: 5 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Pervasive Systems, University of Twente, 7522 NB Enschede, The Netherlands;
a.chiumento@utwente.nl (A.C.); r.h.bemthuis@utwente.nl (R.B.); p.j.m.havinga@utwente.nl (P.H.)

2 Department of Industrial Engineering and Business Information Systems, University of Twente, 7522 NB
Enschede, The Netherlands; a.i.aldea@utwente.nl

* Correspondence: a.mijushkovikj@utwente.nl; Tel.: +315-3489-8227

Abstract: Processing IoT applications directly in the cloud may not be the most efficient solution
for each IoT scenario, especially for time-sensitive applications. A promising alternative is to use
fog and edge computing, which address the issue of managing the large data bandwidth needed by
end devices. These paradigms impose to process the large amounts of generated data close to the
data sources rather than in the cloud. One of the considerations of cloud-based IoT environments
is resource management, which typically revolves around resource allocation, workload balance,
resource provisioning, task scheduling, and QoS to achieve performance improvements. In this paper,
we review resource management techniques that can be applied for cloud, fog, and edge computing.
The goal of this review is to provide an evaluation framework of metrics for resource management
algorithms aiming at the cloud/fog and edge environments. To this end, we first address research
challenges on resource management techniques in that domain. Consequently, we classify current
research contributions to support in conducting an evaluation framework. One of the main contribu-
tions is an overview and analysis of research papers addressing resource management techniques.
Concluding, this review highlights opportunities of using resource management techniques within
the cloud/fog/edge paradigm. This practice is still at early development and barriers need to be
overcome.

Keywords: resource management; cloud computing; fog computing; edge computing; algorithm
classification; evaluation framework

1. Introduction

The Internet of Things (IoT) connects everyday devices with each other and with
the larger Internet to bring more meaningful interactions between objects and people.
The connection process typically brings together sensing, actuating, and control devices.
Additionally, these devices conform to the necessary standard compliant communication
protocols. IoT can realize the purpose of smart identifying, discovering, following, and
controlling things in many efficient and diverse ways [1].

Thus, IoT is becoming popular in domains such as smart healthcare, transport, logis-
tics, retail, industrial automation, and many others. For example, airports can operate in a
significantly smarter manner. IoT can monitor the volume and flow of people at the airport.
It can be applied in smart airfield lighting systems, to provide preventive maintenance
and reduction of fuel consumption [2]. Additionally, improvement of the airport luggage
delivery system can be completed by placing RFID tags and making use of smart sensors.
That can be done to detect whether the luggage is transported to the proper person at the
correct time and place [3]. These are a few instances that represent how the IoT technology
can make the operational structure at the airport more efficient.

Sensors 2021, 21, 1832. https://doi.org/10.3390/s21051832 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-2426-8787
https://doi.org/10.3390/s21051832
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21051832
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/5/1832?type=check_update&version=1


Sensors 2021, 21, 1832 2 of 23

There are many other domains such as road and bridge monitoring, supply chain,
healthcare, and water pipe monitoring, where IoT can be applied to improve the reliability
of the specific information management systems.

The number of ubiquitous devices deployed in a geo-distributed manner is increasing
at a rapid rate, and it is reaching up to billions. Smart devices produce an extensive amount
of data, which needs to go through network infrastructures. Frequently, this can emerge
as a problem. The generated data can be used to reinforce the working and evolution of
smart environments. In existing cloud infrastructures, the data are sent to cloud servers
for further processing and then returned to the devices. To this end, cloud computing has
emerged, yet this paradigm is still commonly perceived as being at an exploratory phase.
The National Institute of Standards and Technology (NIST) defines cloud computing as a
design that allows sharing of many computing assets in format of services to clients. With
this concept, users can efficiently modify their requirements at a low cost [4]. Another
definition in a wider perspective [4] declares that services are provided by applications and
systems’ software in a data center.

However, cloud computing has certain limitations: the need to transport data from
each single sensor to a data center over a network, process these data, and then send
instructions to actuators. This represents a large limitation because: (a) the communication
increases latency considerably; and (b) since sensors and actuators are often on the same
physical device, control information might be outdated as well.

Fog and edge computing may aid cloud computing in overcoming these limitations.
Fog computing and edge computing are no substitutes for cloud computing as they do
not completely replace it. Oppositely, the three technologies can work together to grant
improved latency, reliability, and faster response times. The geo-distributed nature of the
fog layer and the edge devices also enable location awareness (see the next paragraphs).
One of the key differences between fog and edge computing refers to where the intelligence
and the processing power reside.

Fog computing employs many nodes between the cloud and the end devices in which
intelligence can be located. These allocated smart nodes represent base stations or access
points [5]. By bringing intelligence away from the cloud, fog computing can process the IoT
data in close proximity to the data sources. Afterward, it can use resources from the cloud
(only if needed) in a more effective mode than through individual devices. For instance,
fog computing can move the intelligence to a Local Area Network (LAN) position in the
network architecture and thereby provide support of data processing in a fog node or an
IoT gateway [6].

Edge computing is about moving the intelligence, computing power, and intercom-
munication capabilities of an edge gateway straight to the devices. It typically does not
associate with any types of cloud-based services but concentrates more on the IoT device-
side [6]. An example includes mobile services, which need ultra-low latency and real-time
access to a radio network. Edge computing can be seen as an approach to forward the
computation and communication resources from the cloud towards the edge. That is done
to enable services by avoiding latency and thereby provide swift message delivery to users
[7].

In this paper, we focus on resource management techniques for cloud, fog, and edge
environments. A considerable amount of research has been done on different techniques for
resource management in cloud, fog, and edge computing. A proper resource management
is important because task offloading can cause more expenses in terms of downtime and
energy costs (e.g., due to required communication between sensing devices and servers).
Furthermore, processing excessive resources at the servers can impact the task performance
delay in a system that contains a vast number of users. Hence, efficient computational
offloading is relevant when dealing with IoT resource management.

Studies already provided a classification of resource management algorithms and
exploratory comparative analyses of applied algorithms in the cloud, fog, or edge scenarios.
However, to our knowledge, limited literature exists on analyzing resource management



Sensors 2021, 21, 1832 3 of 23

techniques for cloud, fog, and edge computing while taking into account resource manage-
ment metrics. Some of these metrics are: resource allocation, workload balancing, resource
provisioning, and task scheduling.

In this paper, we aim to present an evaluation framework for applied algorithms for
resource management focusing on cloud, fog, and edge computing. It can be useful to
provide researchers and practitioners insights into how resource management techniques
are used within the realm of cloud, fog, and edge computing. First, analyzing existing
approaches can shed some light on the current state-of-the-art and act as a source of
reference for future work. Second, presenting an overview of the studied algorithms
attributes and characteristics can make it possible to: (1) identify specialized solutions
tailored to specific user needs; and (2) generalize about the dispersed view on the cloud,
fog, and edge computing paradigm.

To provide an answer to this challenge, we first address current challenges in cloud,
fog, and edge computing with a focus on resource management. Consequently, we provide
an analysis of solutions to these challenges from the existing literature. To this end, we
identify and analyze 16 different resource management solutions and derive a taxonomy
to evaluate them effectively. One of our key contributions refers to the classification and
evaluation framework of resource management techniques. Another contribution is the
analysis and discussion about the suitability of algorithms concerning a particular solution
paradigm (i.e., cloud–fog, fog–edge, fog-only, and cloud-only solution). To make the
functionality of the reviewed resource management techniques more explicit and present it
in more detail, we provide a classification of the features given by the algorithms.

The remainder of this paper is organized as described below. Section 2 outlines the
methodology that we follow in this research. In Section 3, we present architectural overviews
on cloud, fog, and edge computing and address background information on resource manage-
ment techniques. Section 4 discusses challenges and limitations in the cloud, fog, and edge
computing related to resource management. Section 5 provides an evaluation framework
for applied algorithms in cloud, fog, and edge scenarios. Section 6 presents a classification
overview of the suitability of algorithms concerning a solution paradigm. Section 7 gives a
discussion and an outlook for the limitations of this study. Section 8 concludes the study.

2. Methodology

We use the Design Science Research (DSR) methodology as discussed by Hevner
[8] to structure the research in several steps (see Figure 1). The first phase is exploratory
and discusses literature and challenges in the cloud, fog, and edge architectures with a
focus on resource management. This represents the foundation for the development of the
evaluation framework for applied algorithms in cloud/fog and edge scenarios, which is
also completed in the first phase. The second phase includes the classification of resource
management techniques, and a discussion of the findings.

Step 1

Exploratory phase - 
Literature review

Step 1

Exploratory phase - 
Literature review

Step 4

Classification of resource 
management algorithms

Step 4

Classification of resource 
management algorithms

Research Phase 1Research Phase 1

Research Phase 2Research Phase 2

Step 2

Challenges in architectures 
and resource allocation

Step 2

Challenges in architectures 
and resource allocation

Step 3

Evaluation framework for 
applied algorithms in cloud/

fog and edge scenarios

Step 3

Evaluation framework for 
applied algorithms in cloud/

fog and edge scenarios

Step 5

Discussion of results

Step 5

Discussion of results

Figure 1. Research methodology followed throughout this paper.



Sensors 2021, 21, 1832 4 of 23

The DSR is used as follows:

1. Research phase 1—Exploratory phase. This phase includes the DSR activities, which
are necessary for the development of this research’s artifact (the evaluation overview),
including the literature, knowledge base, and research theory.

(a) Collect research studies regarding the architectural overview for cloud, fog, and
edge computing and research on existing resource management techniques.

(b) Gather knowledge about challenges in architectures for cloud, fog, and
edge computing.

(c) Collect literature on algorithms applied for cloud, fog, and edge scenarios.

2. Research phase 2—Classification and discussion. This phase includes the design
and development of the second artifact (classification of the resource management
techniques).

(a) Overview existing literature for attributes related to resource management.
(b) Classify and compare the literature.
(c) Examine which research challenges are addressed by the articles.

3. Background and Related Work

This section first introduces a high-level architectural study of cloud, fog, and edge
computing. The section proceeds with discussing the role of resource management tech-
niques for such architectures. Finally, we discuss some architectural overviews of cloud,
fog, and edge computing applied to particular application domains.

3.1. High-Level Architectural Overview

Figure 2 presents a high-level architectural design of a typical IoT infrastructure
including cloud, fog, and edge infrastructures, which can be applied in a smart pallet
logistics case study. The architecture consists of a cloud network as the top layer, a fog
network as the middle layer, and an edge layer as the bottom layer.

Figure 2. An example of cloud/fog/edge architecture for a smart pallet case study.

The concept of cloud computing is about enabling anything as a service such that
services can be merged, shared, and monitored with minimum involvement [9]. Users
can access services in a ubiquitous manner, through the network, and on request. There
is a certain amount of time that is needed to accomplish the communication between the
cloud and the existing IoT devices, which will be automatically added to the processing



Sensors 2021, 21, 1832 5 of 23

time. The accumulated time is captured by the cloud servers and it contributes towards the
increase of a system’s latency. Furthermore, this motivates the appearance of drastic effects
on power and energy consumption [10]. As a result of the caused high latency, there can
be indications of degradation in the Quality-of-Service (QoS) and Quality-of-Experience
(QoE). Additionally, this will influence the reliability level of the system and generate
delays in communication, capacity reduction, and excessive energy consumption. Some
of the desired features for IoT infrastructures include modest latency, low response time,
location awareness, low energy consumption, and portability support.

To accommodate some of these features, the computational paradigm fog computing
was proposed [11]. In fog computing, data processing tasks are offloaded onto numerous
middle-ware devices present in the network as a middle layer between the cloud and the
end IoT devices. Each fog device is capable of processing the data that are being captured.
This way, the overall latency is reduced, as the processing, happening locally, can lead to
faster utilization, also locally, of the knowledge gathered. Fog computing represents the
idea of broadening the cloud where the “things” are enhancing the application performance
by removing the information processing within the cloud, and also by diminishing the
bandwidth utilization in the network [12]. It has appeared as a promising technology that
transports cloud applications in closer proximity to physical IoT devices. A fog node can
also be seen as a mini-cloud, which is located near the edge layer of the network, and thus
near the IoT devices connected to it [13]. A fog server represents a virtualized equipment,
which contains on-board storage, computing, and communication capabilities. These
features are meaningful when supporting the IoT application execution. Fog computing
has been designed to deliver the following three core contributions: (1) diminish latency as
the data are analyzed close to its sources from where it is initially gathered; (2) stabilizing
network traffic, which is enabled by offloading gigabytes of network traffic from the core
network connecting to the cloud; and (3) privacy and security support, which is enabled
through proximity-by storing sensitive data in the nearby computer and network systems
[12].

In edge computing, data processing is offloaded onto the edge devices [14]. Edge
computing pushes the position of applications, services, and data to be close to the sources
where such services are requested. In particular, the edge devices can be ’exploited’ by fog
computing nodes to handle some of the calculations, storage, and transmissions locally.
Edge computing technologies are commonly deployed on single devices.

A limitation of using solely cloud computing is that a centralized cloud computing
concept may not be sufficient for data processing and analyzing the vast amount of data
gathered from IoT devices. One cause can be the (massive) data transfer which results in
limited network performance. Edge computing is typically about transferring computing
tasks from a centralized cloud to the edge layer (near the IoT devices). As a result, the
transferred data are typically already pre-processed and much more compact than raw
information [14].

The design of efficient allocation mechanisms for processing data among resources
spread within various layers can be challenging. Especially in (near) real-time scenarios, a
decision needs to be made quickly. Consider the example of having two data processing
types: batch and stream data processing. Processing (big) batch data may happen (mostly)
in the cloud, while most of the stream data processing may be more suitable for being
distributed to fog or edge nodes. Depending on the design, a small set of stream data may
also need further processing on the cloud. Likewise, some pre-processing might also be
necessary at an edge node before transferring data to higher layers. System designs are
vital for maximizing the potential of both computing paradigms effectively in real-time
environments.



Sensors 2021, 21, 1832 6 of 23

3.2. An Example of Resource Allocation in a Cloud/Fog System

Resource allocation strategies in cloud/fog/edge systems are responsible for assigning
accessible resources to the system users [15]. It can be a challenge to assign resources
efficiently to applications and their end users/consumers [16].

To give an example, consider the design model of [16]. This model administers the
resource allocation in a fog environment (see the representation in Figure 3). The cloud–fog
environment model is composed of three layers: a client layer, a fog layer, and a cloud
layer. First, a solution for resource management is realized in the client and fog layers to
accomplish the requirement of resources for clients. If there is no/limited availability of
resources in the fog layer, then the request is passed to the cloud layer. The main functional
components of this model are as follows:

• The fog server manager employs all the available processors to the client.
• Virtual machines (VMs) operate inquiries for the fog data server, process them, and

then deliver the results to the fog server manager.
• Fog servers contain one fog server manager and virtual machines to conduct requests

by using a ’server virtualization technique’.

Client Autonomus Mobile Sensor

Client
 Request

Fog Server Manager

VM
1

VM
2

VM
3

VM
n

Hypervisor

Hardware

Cloud Data
Center 1

Cloud Data
Center 2

Cloud Data
Center n

Communication 
Network

Hardware

Fog Server Manager

VM
1

VM
2

VM
3

VM
n

Hypervisor

HardwareHardware

Fog Server Manager

VM
1

VM
2

VM
3

VM
n

Hypervisor

Hardware

Request Request

Request Request

Fog Data Center 1

Response to Client

Figure 3. Three-layer architecture [16].

3.3. Some Application Domains
3.3.1. An Architecture Based on Cloud, Fog, and Edge Computing Paradigms in Real-Time
Internets-of-EveryThings

According to Seal and Mukherjee [17], there are definite tiers of a universal fog
computing architecture. Tier 1 depicts the ’Edge Tier’, which consists of multiple Terminal
Nodes (TNs). TNs represent mobile and smart nodes that are capable of detecting various
location parameters and then transmitting them to the upper layer. Tier 2 is known as the
middle layer or the ’Fog Layer’. This layer is composed of smart devices: routers, gateways,



Sensors 2021, 21, 1832 7 of 23

switches, and access points that can contribute to data computation, data storage, routing,
and packet delivery. Tier 3 is known as the cloud computing layer, which contains personal
computers and servers.

Virtual Clusters (VCs) are defined as location-based parameters, which are composed
of IoE devices often known as TNs. In this specific case, the role of TNs is to examine
their environment and then transfer the data to the fog layer. Each Fog Instance (FI)
monitors its own VC. The fog computing architecture can be further categorized into two
sub-components: (a) the fog abstraction layer; and (b) the fog orchestration layer [17].
The first one deals with the management of fog resources, virtualization support, and
configures tenant privacy, while the second layer contains the fog properties. Some of the
fog properties are: heterogeneity, edge location, geographical distribution, support for
mobility, real-time interactions, and interoperability. The fog orchestration layer consists of
a software agent known as foglet, dedicated to monitoring the condition of the terminal
devices. A decentralized database is used for scalability and fault tolerance, and the service
orchestration module’s role is to be responsible for the policy-based routing of application
requests. The orchestration module also needs to decide whether it will transmit to cloud
centers.

The fog devices’ utilization is for limited semi-permanent storage, which facilitates
provisional data storage and handles applications that are sensitive to latency. The cloud is
accountable for the storage of large data chunks within its data centers. Those data centers
typically contain massive computational abilities. The fog layer enables the cloud to be
accessed and applied in an efficient and controlled manner.

3.3.2. An Architecture for Smart Manufacturing Based on Cloud, Fog, and Edge Paradigm

Cloud computing reinforces ubiquitous and on-demand network access to a distribut-
ing pool of computing resources (e.g., processing and storage facilities, appliances, services,
etc.). By using virtualization technology, cloud computing shelters the diversification of ba-
sic devices and provides different services in a transparent way to the users, including IaaS
(Infrastructure-as-a-Service), PaaS (Platform-as-a-Service), and SaaS (Software-as-a-Service).
Because of the expansion of various access devices, cloud computing can encounter obsta-
cles in bandwidth, latency, network unavailability, privacy, and security. Fog computing
is viewed as an expansion of cloud computing to the edge network, conducting services
(e.g., computation, storage, and network) in close proximity to the end-user devices (e.g.,
network routers), instead of transferring data to the cloud [18]. In a fog computing concept,
data storage and processing largely depend on local devices, rather than on a cloud system.

Complementary to fog computing, edge computing grants computation to be com-
pleted at the edge of the network and an approaching environment to the data
sources [18]. The crucial divergence between fog and edge computing is that fog depends
on the interconnection amid nodes, while edge computing operates in the segregated edge
nodes.

Edge computing administers services nearby the data sources to meet the critical
requirements on privacy, security, agile association, and real-time optimization [18]. In
pursuance of enlarging the application of smart manufacturing, by utilizing the cloud and
administering future aspects of smart solution applications, a reference architecture based
on cloud/fog/edge computing for smart manufacturing has been recommended.

3.4. Techniques for Handling Resource Management

There are many articles discussing mechanisms for handling resource management
(e.g., allocation, provisioning, workload balance, and task scheduling). Specific goals relate
to reduction of the overall energy consumption, the latency, or the overall communication
costs. This section presents a concise literature overview on different techniques for han-
dling resource management in cloud/fog and edge computing. The metrics under which
we evaluate the reviewed research are algorithm classification type, deployment scenario,
resource management criteria (resource allocation, resource provisioning, workload bal-



Sensors 2021, 21, 1832 8 of 23

ance, and task scheduling), QoS, energy management, and environment. In the appointed
evaluation, we focus on analyzing 16 state-of-the-art methods.

In [19], the authors focused on resource management which is done in the fog layer,
aiming to minimize latency and enhance reliability. There is a consumer layer where its
users can accomplish their specific current demands via fog and cloud. Requests per hour,
response time, and processing time parameters are considered by using the round-robin
algorithm, equally spread execution algorithm, and a proposed algorithm. Their focus is on
considering a fog and a cloud environment together for resource optimization. The authors
implemented the Fog-2-Cloud framework for the management of customers’ requirements
by utilizing six fog nodes and twelve MicroGrids in residential buildings. Fog servers
helped in storing consumers’ private data. Their used performance parameters were
response time, requests per hour, and computing time that can be improved by using
the Shortest Job First (SJF) algorithm. This algorithm is compared with other techniques,
Round Robin (RR) and Equally Spread Current Execution (ESCE), which outperformed the
other two algorithms.

According to da Silva and d. Fonseca [20], fog and cloud can cooperate to advance their
service distribution to the clients. This study is about a Gaussian Process Regression for
Fog–Cloud Allocation (GPRFCA). It describes a mechanism that chooses where to allocate
tasks based on the specific application requirements. The infrastructure is composed of a
fog and cloud layer. The GPRFCA technique [20] decides where to appoint an assignment
that needs to be computed while considering the availability of resources and latency costs.
To advance the utilization of fog resources, GPRFCA is employed to predict the arrival of
future requests based on the historical information. Such a prediction can support resource
provisioning to future requests. That stands especially for real-time application requests
which can only be processed within the fog. A simulation was performed, and its results
represent that the given solution stabilizes the assignments between fog and cloud and the
trade-off among latency, blocking, and energy consumption.

Fog-based computing and storage offloading for data synchronization in IoT cre-
ate a large amount of data, which is partly due to the increase in IoT devices that are
connected [21]. If, at a later stage, IoT devices transmit data to the cloud, then the data
privacy can become a challenge. To address this, Wang et al. [21] proposed an architecture
for data synchronization based on fog computing. It is achieved via offloading computing
parts and storage work towards the fog servers and then data privacy can be better guaran-
teed. Additionally, a differential coordination founded on fog computing is recommended.
The benefits of their composed architecture are: (a) data chunks can be stored in the fog
server for enabling security; (b) the fog server facilitates the computation offloading and
storage, which formerly belonged to the cloud and user’s devices; and (c) the transmission
overload is minimized.

In [22], a method named Dynamic Resource Allocation Method (DRAM) is presented.
This method relies upon static resource allocation and dynamic resource scheduling to
achieve dynamic load balancing. Agarwal et al. [16] presented the Efficient Resource Allo-
cation (ERA) method, which minimizes the response time and maximizes the throughput
of resources. In [23], the authors discussed a method in which the resources are allocated
according to a different priority. Taneja and Davy [24] proposed an iterative algorithm
to reduce latency and energy consumption. Section 5 provides more details about the
resource management techniques.

3.5. Related Work

Building further on the work discussed in [6], we provide an evaluation framework
for resource management techniques applied in cloud/fog and edge computing scenarios.
Naha et al. [6] provided a summary of research on resource allocation and scheduling only
in the fog. It can be concluded that many articles addressed mainly the role of resource
allocation in the fog environment. However, further investigation on QoS, load balancing,
and energy efficiency needs to be considered [6]. There are several identified limitations



Sensors 2021, 21, 1832 9 of 23

regarding the use of fog computing. One challenge refers to the synthetic work done
regarding the validation of methods [6]. Another challenge refers to the presentation of
only cloud-based simulations, which are not completely suitable for the fog computing
concept (which are typically dynamic environments).

Bendechache et al. [25] presented some research articles focused on resource alloca-
tion. Some of the explored resource management metrics were divided into two sections:
resource provisioning and resource scheduling. Their provisioning metrics are detection,
selection, and mapping, whereas the scheduling metrics are allocation, monitoring, and
load-balancing. Additionally, several variables or Key Performance Indicators (KPIs) were
investigated such as scalability, latency, VM placement, failure rates, accuracy, resource
utilization, energy consumption, cost, efficiency, Service Level Agreement (SLA), and QoS.
The contribution of this research survey is quite detailed, but it presents limited research
articles that are focused on cloud, fog, and edge computing. Therefore, this represents a
motivation to study resource management techniques for cloud, fog, and edge computing.

In [26], three types of taxonomies are demonstrated: (i) a classification of performance
metrics for evaluating cloud, fog, and edge computing; (ii) metrics based on cloud models;
and (iii) classification of identified metrics based on a concept known as MAPE-K. Based
on the collected literature, the authors identified that the common performance metrics for
cloud, fog, and edge computing include throughput, network congestion, fault-tolerance,
statistical analysis measurements, scalability, cost/profit, and SLA violation. The taxonomy
of metrics based on cloud models suggests the use of the following groups: private, public,
hybrid, single-provider, multi-provider, and federated. According to a MAPE-K loop,
there are four categories of parameters, including monitoring, analyzing, planning, and
executing. Their results represent a mapping between the proposed taxonomy and existing
literature on the cloud, fog, and edge computing paradigm. However, the study could
be further extended by providing a proper detailed list of proposed solutions from the
reviewed literature, and respectively their classification.

Ghobaei-Arani et al. [27] provided a taxonomy of resource management approaches
in fog computing. The taxonomy considers the following categories: resource provisioning,
application placement, resource scheduling, task offloading, load balancing, and resource
allocation. They focused on structuring the literature according to resource management
approaches. For each resource management approach, they provided details about the
case study, utilized technique, used performance metric, evaluation tool, advantages,
and weaknesses. Overall, this study provided knowledge about existing articles for each
resource management approach, but only considering fog computing, while it would
be also interesting to include edge computing. Additionally, the article only addresses
the solution approaches in an exploratory manner. In other words, the research work
represents an analytical examination and discussion on existing studies about resource
management.

Lastly, Salaht et al. [28] delivered a list of optimization metrics to address resource
management and service placement problems. The considered metrics are latency, resource
utilization, cost, energy consumption, quality of experience, congestion ratio, and blocking
probability. Based on the findings of Salaht et al. [28], further research work should be
done on challenges regarding service placement problems, optimization strategies, and
evaluation environments.

4. Challenges in Resource Allocation for Cloud, Fog, and Edge Computing

There exist several challenges regarding cloud, fog, and edge architectures, such as
the deployment of 5G, serverless computing, resource allocation, optimization, energy con-
sumption, data management, applying federation concepts to fog computing, trust models,
business and service models, mobility, and industrial IoT [29]. A challenge in 5G includes
realizing the concept of network shredding to backup a service collection with certain
performance requirements requests. Some of them are: resource management throughout,
fog nodes, wireless, optical packets, and cloud domains [29]. Recent developments in



Sensors 2021, 21, 1832 10 of 23

network virtualization grant guidelines for network shredding, but they do not provide a
unified and general collection of resources over various domains. Based on the reviewed
literature, we present the challenges in Table 1.

Table 1. Challenges in architecture for cloud, fog, and edge computing.

Challenges References

Serverless computing [29]
Energy consumption [29]

Data management and locality [29]
Orchestration in fog for IoT [29]
Business and service models [29]

Load balancing [30]
Security and efficiency issues [21]
Data integrity and availability [21]
Cloud-based synchronization [21]

Dynamic scalability [24]
Efficient network processing [24]

Latency sensitivity [24]

In terms of serverless computing [29], to achieve micro-services management through the
cloud/fog/edge hierarchy, there are challenges regarding the flow of services among cloud,
fog, and edge computing devices. The automatic administration of the micro-services must
audit the deployment location and context; in addition, the resource constraints that may
exist in the fog need to be taken into account. Additionally, the diversity of the system
across an IoT cloud–fog ecosystem can be challenging for the deployment of micro-services
and reconfiguration.

Furthermore, the network topology can be expected to change regularly due to devices
mobility and changing application requirements. The high levels of heterogeneity in
IoT devices and the variability of the environment call for active and dynamic system
management based upon multi-criteria resource allocation [29]. Resource management
systems and multi-criteria schedulers may instantly enhance resource allocation in terms of
handling dynamic behaviours. That can be challenging since the number of variables can
largely expand the search area and that can consequently lead to long scheduler execution
times.

A substantial demanding route for prospect research is in diminishing energy consump-
tion [29] where the target should be researching the aspect and significance of data in the
cloud/fog/edge ecosystem, onward with the definition of ‘economical data management’.
The objective behind this is monitoring in detail the implication of various data types and
whether the data are required most of the time.

In recent years, there is an expansion in production and use of data, and that ac-
complished a few remarkable rates. Concerning data management and locality [29] in IoT
cloud–fog computing systems, accessibility problems have to be considered. Computing
systems consist of several networking technologies, such as mobile, wireless, or wired.
When the resources are centralized within the cloud, certain networking challenges, such
as availability, scalability, and interoperability, might be partially addressed. However,
some of the innovative problems (e.g., network bottlenecks and latency) can be addressed
by using fog and edge computing. A particular challenge is how to quantify the trade-off
among data distribution and services at the fog or cloud layers. One way towards ap-
proaching this issue is via smart service placement. More specifically, this can be done by
data locality, which is achieved by placing the needed services closer to the data that they
administer. Suitable candidates, according to Bittencourt et al. [29], are applications that do
not need high computation power and are capable of analyzing large data volume.

In terms of orchestration in fog for IoT [29], privacy requires to be tackled according
to the European Union General Data Protection Regulation (GDPR) and other similar



Sensors 2021, 21, 1832 11 of 23

regulations imposed all around the world. Privacy regulations are important because,
when fog nodes are placed close to the end-users, one may attempt to gather, process, and
store data, and that can violate users’ privacy. The performance of fog orchestration for the
IoT deals with several challenges, related to 5G networks such as an increase in density
of devices combined with latency and reliability requirements of demanding applications
along with the mobility of nodes, which boost important problems concerning the system
monitoring, and that is significant for proper resource management. Other fundamental
aspects that directly impact the performance of (dynamic) fog orchestration are component
selection and placement, which need to be additionally investigated in the future, as well
as research on efficient techniques to prevent (minimize or stop) the overloading and avoid
delays.

Another challenge is business and service models. The fog can be deployed as a hybrid
cloud, where specific local resources can be extended with resources from the cloud.
Additionally, when different stakeholders are incorporated in a specific hierarchy from IoT
to the cloud, this can create a scenario in which different elements of the overall systems are
owned or managed by completely unrelated entities or stakeholders, e.g., IoT devices can
be owned by the state, while fog nodes are owned by a cloud company. It is challenging to
determine how IoT services can be combined with services from fog and cloud computing,
and then how they can be monitored and administered when many players at different
levels are participating.

In [30], the challenges with IoT appliances in cloud, fog, and edge computing are
related to replying to resource requirements and load balancing. In this article, load balancing
is considered as one of the meaningful strategies to accomplish efficient usage of resources
and reduce or avoid congestion. Therefore, it is a distinguishing challenge to obtain load
balance for the processing nodes in a fog environment all along with an IoT application
execution. According to [20], the determined challenge was regarding minimizing latency
as well as balancing the workload to reduce energy consumption.

The limitations considered in [21] are related to cloud computing and cloud-based
synchronization, which is a particular core service in the cloud computing area. The IoT
devices synchronize most of the data to the cloud. There are two challenges in this specific
scheme referring to security and efficiency issues. The security issues regarding cloud storage
revolve around the following aspects: integrity, privacy, and availability of data. The selected
established security threats are data exposure, data deficiency, malicious user handling,
wrong use of cloud computing and its services, and possibly session stealing during data
accessing. Problems such as connection cost and latency between the cloud system and
edge layer devices are not tolerable in detention-sensitive applications. While there are,
for example, some synchronization tools such as MicrosoftActiveSync and Botkinds All-
waySync, the drawback is that they regularly transmit an entire system file even when there
is a small change occurrence. This coordination type may cause redundant communication
and latency issues, where users frequently modify the data. It can be concluded that
traditional coordination among cloud and IoT devices has certain disadvantages such as
when the IoT devices fail to secure confidential data, and/or when common data changes
cause high data and communication redundancy.

In [22], limitations of resource requirements and load balancing for IoT appliances
in cloud, fog, and edge computing are presented. Load balancing is an important factor
that is valuable to increase resource efficiency by avoiding bottlenecks, overload, and
low load situations. Accordingly, it is an obstacle to accomplish load balance for the
computing nodes in a fog environment at the same time as the IoT application execution
occurs. According to Taneja and Davy [24], cloud computing offers many assets, but with
expansion in more ubiquitous mobile sensing devices coupled with technological upgrades,
the imminent IoT ecosystem demands the computing network architecture of the cloud.
A few of the requirements that need to be met are dynamic scalability, efficient-in-network
processing, and latency-sensitive communication; these are the requirements for IoT application
which drove the evolution of fog computing.



Sensors 2021, 21, 1832 12 of 23

5. Evaluation Framework for Resource Management Algorithms in Cloud/Fog and
Edge Scenarios

Table 2 shows an overview of selected techniques used in the reviewed literature about
resource management in cloud/fog and edge-based scenarios. The resource management
algorithms are summarised in the table and evaluated according to several metrics that are
discussed below. Resource management is about achieving coordination of resources that
is highlighted by supervision (management) actions and performed by service providers
and users [31]. It considers the resource allocation process from resource providers to the
users. The algorithms discussed in the following subsections employ different resource
management metrics which are examined as well and can be used for further evaluation.

5.1. Resource Allocation

Resource allocation represents a technique that is used to optimize the utilization of
resources and reduce the required costs for processing [32]. Fulfillment time of a task is an
important aspect that should be considered since it can impact the completion of resource
allocation [33]. As indicated in Table 2, RR, ESCE, SJF, GPRFCA, ERA, Priority-based
Resource Allocation algorithm (PBSA), and Feedback-Based Optimized Fuzzy Scheduling
algorithm (FOFSA) use resource allocation techniques.

5.2. Workload Balance

Workload balancing is an important factor used to manage energy effectiveness and
also avoid congestion, low-load resource management, and overload. Currently, this
represents a challenge for the processing nodes, which are placed in the fog environment.
For instance, in [34], a workload balancing algorithm is proposed for fog computing, aiming
to reduce the data flow latency in the transmission procedures by connecting IoT devices
to the appropriate base stations (BSs). The article discusses several workload balancing
algorithms from the literature: RR, SJF, ESCE, GPRFCA, DRAM, ERA, PBSA, FOFSA, Hill
Climbing algorithm (HCLB), Efficient Load Balancing algorithm (ELBA min-min), and
Tabu Search algorithm.

5.3. Resource Provisioning

Resource provisioning represents an approach (solution) that shows how to administer
requests for tasks and data among fog nodes [35]. Resource provisioning is a further step
in resource allocation. As discussed above, resource allocation deals with just assigning
a set of resources to a task, while resource provisioning deals with the activation of the
allocated resources. Remote Sync Differential Algorithm (RSYNC), Fog Sync Differential
Algorithm (FSYNC), Reed–Solomon Fog Sync (RS-FSYNC), ERA, and Energy-aware Cloud
Offloading (ECFO) are the algorithms that deal with resource provisioning.

5.4. Task Scheduling

To manage a large set of tasks that are working together and are dependent on a certain
set of resources, task scheduling algorithms have been proposed to define a schedule to
service tasks to avoid conditions such as deadlocks [36]. Table 2 shows a few algorithms
that manage resources based on task scheduling: RR, SJF, ESCE, GPRFCA, DRAM, PBSA,
FOFSA, ELBA, Tabu, and ECFO.



Sensors 2021, 21, 1832 13 of 23

Table 2. Evaluation framework for applied algorithms in fog–cloud and edge scenarios.

Resource Management Techniques in Fog/Cloud Edge Scenarios

Author & Year Algorithm Deployment Classification Resource Management Additional Classification Environment

Resource
Allocation

Workload
Balance

Resource
Provisioning

Task
Scheduling QoS Energy

Management

Javaid, S. et al. (2018) [19] RR Simulation (Cloud Analyst) Discovery X X X X Cloud–Fog

Javaid, S. et al. (2018) [19] ESCE Simulation (Cloud Analyst) Discovery X X X X Cloud–Fog

Javaid, S. et al. (2018) [19] SJF Simulation (Cloud Analyst) Discovery X X X X Cloud–Fog

Da Silva, R.A.C. et al. (2018) [20] GPRFCA Simulation iFogSim [12] Discovery &
Load-balancing

X X X X Cloud–Fog

Wang, T. et al. (2019) [21] RSYNC Experiments in different condi-
tions, two situations of synchro-
nization

Discovery & Off-
loading

X Fog

Wang, T. et al. (2019) [21] FSYNC Experiments in different condi-
tions, two situations of synchro-
nization

Off-loading X Fog

Wang, T. et al. (2019) [21] RS - FSYNC Experiments in different condi-
tions, two situations of synchro-
nization

Off-loading X Fog

Xu et al. (2018) [22] DRAM Evaluation done with three dif-
ferent types of computing nodes

Load-balancing X X Fog

Agarwal et al. (2016) [16] ERA Simulation (Cloud Analyst) Load-balancing X X X Cloud–Fog

Savani et al. (2014) [23] PBSA Simulation (CloudSim 3.0.3) Load-balancing X X Cloud

Taneja et al. (2017) [24] Iterative Al-
gorithm

Evaluation done in three dif-
ferent topologies with different
workloads

Placement X X Cloud–Fog

Arunkumar et al. (2020) [37] FOFSA Simulation iFogSim Load-balancing X X X X X Fog

Chandak et al. (2018) [38] HCLB Simulation CloudAnalyst tool Load-balancing X Cloud–Fog

Manju et al. (2019) [39] ELBA (min-
min)

Simulation CloudAnalyst tool Load-balancing X X X Cloud–Fog

Téllez et al. (2018) [40] Tabu Search Simulation Cloudlet Tool Load-balancing X X Cloud–Fog

Jiang et al. (2019) [41] ECFO Cloud server and three Rasp-
berry Pi3 devices

Off-loading X X X X Fog–Edge



Sensors 2021, 21, 1832 14 of 23

6. Classification of Resource Management Algorithms Applied in Cloud/Fog and Edge
Scenarios

To compare the various state-of-the-art algorithms presented in several papers, in-
spired by Hong and Varghese [42], we classify the selected algorithms into six categories.
Classification helps in terms of the identification of existing solutions and understanding
their diversity as well. It can support researchers and practitioners in the process of learning
about different algorithmic solutions to understand their features, differences, and similari-
ties. The reviewed solutions consider how resources are handled among cloud, fog, and
edge devices. In this paper, we briefly overview these 16 algorithms. They represent the
basis for building the evaluation framework (Table 2), which is the foundation of this paper,
and the emerging classification of the algorithms are presented in Figure 4. We created this
classification to address the key contributions in the area of resource management.

Figure 4. Classification of resource management techniques.

6.1. Discovery

Discovery is used to find available resources from the cloud, fog, or edge layers, based
on workload requirements, to identify where they can be deployed efficiently. Fog servers
have to use as many resources as desirable through accepting a high volume of tasks as
possible. A manner of doing this is by using a manager or master entity that has an overall
view of the resources. Afterward, based on the workload’s requirements, it can allocate
resources properly among fog and cloud layers. According to Hong and Varghese [42], in
the edge/fog computing concept, the discovery algorithms stand for determining resources
in the edge network that can be employed for further distributed processing.

For example, according to Javaid et al. [19], the algorithms RR, ESCE, and SJF belong
in this category. GPRFCA and RSYNC belong in this group as well.

• RR—Round Robin Algorithm: According to the authors of [19], the RR algorithm
for cloud computing has been adopted on the basis of defining time schedules. The
scheduler creates certain specifics of VMs in an assignment table. Then, it assigns jobs
that are received for data centers (DCs) to a set of VMs. Initially, a VM is initialized
with an ID of a current VM variable and then the demanded job is mapped with the
current VM variable.

• ESCE—Equally Spread Current Execution: The ESCE algorithm enforces the spread
spectrum approach and collaborates with a large number of active duties on VMs at
any specific time segment [19]. By using ESCE, the scheduler can register the VMs’
assignment table, and then keep up a list of VMs’ IDs and their operating tasks on
any VM. Once the task is performed, at any specific time interval, the VM table can be
changed. In the beginning, the active task count is 0; on the occurrence of a new job,
the scheduler determines the VM having the minimum task count. If many tasks are



Sensors 2021, 21, 1832 15 of 23

assigned to many VMs that are with the minimum count, then the first VM will be
selected for the task processing.

• SJF—Shortest Job First: The SJF algorithm executes tasks by labeling the task size as
a priority, and the priority is further controlled by the size of consumers’ requests
[19]. SJF can allocate tasks to VMs based on their fogs, the priority of distances, and
size. The scheduler can be used to distribute the job on VMs based on the spread
spectrum approach. SJF schedules the jobs by enabling minimum completion time,
higher efficiency, and minimum turn-around time.

• GPRFCA—Gaussian Process Regression for Fog–Cloud Allocation: The GPRFCA
mechanism is used to discover predictions to govern work activities on fog nodes
while reducing latency [20]; as such, it belongs to the discovery group. Generally, it
investigates the history of formerly sent requests for future arrivals’ predictions of
VMs, which are by rigorous latency demands [20]. By adopting these predictions, this
technique can store the required resources within the fog nodes for future requests.
Consequently, they should be completed within the fog layer itself, and then tasks
that are not vulnerable to delays are assigned in the cloud. This leads towards an
increase in fog nodes’ utilization [20].
CPU and RAM are important assignable resources for this mechanism [20]. The algo-
rithm starts with the calculation of the number of VMs which can be still executed by
the fog node (this is done by taking into consideration CPU and RAM). Furthermore,
the Gaussian Process regression is then called (Line 4) to predict the VMs number,
future VMs, which should be incorporated also in the fog, but at the next interval.

• RSYNC—Remote Sync Differential Algorithm: RSYNC is one of the first algorithms
to face the problem of complete synchronization whenever an update (change in
file) is performed [21]. As the name implies, this differential algorithm is used to
transmit only that particular part of the data that experiences an update. Since every
instance of synchronization sends a small piece of information, the communication
cost and latency decreases when compared with previous algorithms. Nevertheless,
RSYNC is more suitable for establishing a communication path between IoT devices
and the cloud layer. Although it sends only the updated data, it still needs to send a
synchronization request every time that IoT device does an update.

6.2. Off-Loading

Off-loading is accountable for the resource provisioning tasks. It concentrates on
storage provisioning instead of computation. It determines where data should be stored
to lower transmission expense and the delay between the cloud computing layer and
IoT (edge) devices [41]. Following Wang et al. [21], we identify two main differential
synchronization algorithms, RSYNC and FSYNC, since they are focused on where the
storage is provisioned properly. FSYNC decreases the latency and the communication costs
considerably due to the use of the fog layer and a specific defined threshold. The threshold
refers to the number of trivial changes that can be saved in the fog.

• RSYNC: This algorithm is explained in the previous subsection.
• FSYNC—Fog Sync Differential Algorithm: The FSYNC algorithm deals with the

RSYNC issue [21]. The issue refers to the case that there are many requests when the
edge device is modified. During each request, new data are generated, which lead
to the creation of additional load on the cloud server. It differentiates by adding two
elements, a fog computing layer, and a threshold. It establishes a threshold, and then,
when the IoT device updates, the algorithm will send only the part of the data that has
changed to the fog layer. The difference is that there are no requests and data being
sent to the cloud. Additionally, only when the threshold is reached the fog servers
will send a complete synchronization of the data. Otherwise, the following updates
will be done between fog servers and IoT devices.

• RS-FSYNC Differential Algorithm: RS-FSYNC is a (Reed–Solomon Fog Sync) differ-
ential algorithm [21]. By applying the Reed–Solomon code, the security of the user’s



Sensors 2021, 21, 1832 16 of 23

data can be enhanced. The Reed–Solomon code is included in the FSYNC algorithm.
Additionally, it uses an advantage from the storage capacity of the fog server to handle
an encryption problem. Furthermore, it represents a variant of erasure code that was
used within the distributed storage field. The objective is to revise errors created by
the redundant data, which is generated by the original data.

• ECFO—Energy-aware cloud offloading: The energy expenditure of a local device
can be accordingly diminished by offloading computational tasks to a remote device.
Although supplementary transmission energy and communication latency may hap-
pen due to the appearance of data transmission between the remote device and local
system [41], the specific challenge addressed by ECFO is how to distribute multiple
tasks to and from multiple fog devices taking into account each device computational
ability and the overall communication constraints [41]. To solve this problem, the
ECFO algorithm tracks the bandwidth and schedules queues between devices to
detect the energy consumption and provide an offloading decision. The process is
dedicated to scheduling offloading activities into a two-phase deadline in order to
dynamically adapt to changes in run-time network bandwidth. In the end, it also
plans setbacks, which are caused by devices with multiple tasks.

6.3. Load-Balancing

Load-balancing distributes the workload to resources to make the operations more
efficient by avoiding congestion, low load, and overload [22]. The considered algorithms
based on load-balancing are DRAM [22], ERA [16], PBSA [23], GPRFCA, FOFSA, HCLB,
ELBA, and Tabu Search algorithm.

• DRAM—Dynamic Resource Allocation Method: DRAM [22] is a dynamic resource
allocation method that consists of the following steps:

– Fog service partition: This is pre-processing in which the fog services can be
categorized according to the resource requirement of each node type [22].

– Spare space detection: To decide whether a node is portable to accommodate a
fog service, identifying the extra space of all processing nodes is needed [22].

– Static resource allocation for the fog service subset: For services within the fog
that belong to the same subset of services, the appropriate processing nodes are
selected to accommodate them [22]. When allocation starts, the node with the
lowest extra space is selected.

– Load-balance global resource allocation: The dynamic resource allocation strategy
is executed to achieve load balance [22].

• ERA—Efficient Resource Allocation Algorithm: The ERA algorithm in [16] was de-
signed to achieve effective resource allocation in the fog layer. The client makes a
request and this request can be accepted only by the fog layer. If the fog does not pro-
cess the request within a given time frame, then the process is transmitted towards the
cloud [16]. With this method, the response period is diminished and the throughput
is increased.

• PBSA—Priority based Resource Allocation Algorithm: In PBSA [23], batches of user’s
requirements are created according to the type of the task, the processing amount,
and the time that the clients need [23]. If the specific resources that the user needs are
not there, then the client needs to wait until they become available. If two identical
requirements have a particular request with the same priority, then the method of
’first comes, first served’ is used.

• GPRFCA: The GPRFCA algorithm belongs to this category as well.
• FOFSA—Feedback-Based Optimized Fuzzy Scheduling Algorithm: The Feedback-

Based Optimized Fuzzy Scheduling Algorithm (FOFSA) is proposed in [37]. FOFSA
works with two procedures: multilevel queue scheduling and multilevel feedback
queues. The job activities are enrolled in different levels of queues. The queues are
managed based on the concept of ’first come, first served’. The job activities can be
appointed to resources per specific priority. If the job activity is not assigned to a



Sensors 2021, 21, 1832 17 of 23

particular resource, then the job is simply removed from the waiting sequence. A
task’s priority can be decided by the fuzzy inference system procedure presented in
[37]. Additionally, an architecture of the fuzzy-based scheduling is introduced in [37].
The proposed methodology was tested with iFogSim and analyzed with different
existing dynamic algorithms. It was justified by the fact that it contains an effective
scheduling strategy and upgrades the QoS parameters. The suggested methodology
achieved a reduction in power utilization and enforcement time.

• HCLB—Hill Climbing Algorithm: HCLB algorithm is defined as a mathematical
optimization technique that is used for searching and monitoring the loads among
VMs [38]. This technique is established on a random solution to discover accessible
VMs. The goal of the algorithm is to find a solution to the problem of discovering
accessible VMs, and the searching loop executes only when the appropriate solution
is found [38]. When the nearest VM is detected, the loop is increased in HCLB [38].
Then, the best VM is selected, and a request is assigned to it for further processing.

• ELBA—Efficient Load Balancing Algorithm: The min-min algorithm is implemented
in the fog where fog nodes are divided in clusters and the algorithm determines
the task which has minimum enforcement time and appoints it a particular node.
That node is able to process it in a faster manner [39]. When a cluster is busy, the
controller node inspects neighborhood clusters that contain ’inactive’ fog nodes and
sends activity to the node which presents lowest latency. Afterwards, the cluster
shall send the activity with the favorable latency. If the cluster with ’inactive’ fog
node is located far away, then the particular task should be instantly sent to a cloud
system for further processing. It could be effective to process the activity in the
cloud or, instead, leave it to have a delay due to pre-processing at the fog nodes. In
another situation, where two or more neighboring ’inactive’ nodes are accessible,
the node with the smallest latency can transmit the job activity [39]. Two factors
need to be deliberated to calculate latency: one refers to the number of stand-by
requests that need to be supplied in the clusters and the other refers to the inactive
node’s distance from the task originator. Calculation of the lowest distance between
the source node and a fog node or a cloud data center can be determined by using
Equation (1) [39]. N represents minimum latency, S is the source from where a
particular activity is re-transmitted, C is the nearest cloud data center, and n depicts
the number of fog nodes.

N = min

[
[d(s, c)], min

n

∑
i=1

[d(s, ni)]

]
(1)

• Tabu Search Algorithm: Tabu search is used to determine an optimal solution regard-
ing the distribution of tasks between nodes that belong in the cloud and fog layers. It is
done by utilizing search which frequently moves towards an improved solution every
time [40]. The searching process will be terminated the moment a stopping condition
is detected. Optimal load balancing is one of the biggest concerns in fog computing.
To accomplish optimal load balancing, [40] used Tabu search in fog computing for
load balancing. In this study, a bi-objective cost function was considered to achieve
online computations, where the initial one implies the computation cost of computing
tasks in the fog nodes, and the second one supports it in the cloud.

6.4. Placement

Placement is used to determine the suitable resources to satisfy the required workload.
The main purpose is to distribute the incoming computation tasks to the appropriate
fog/edge resources.

• Iterative Algorithm based on resource placement: [24] proposed an iterative method
that is based on resource deployment of IoT applications in a cloud–fog computing
setting. This method is composed of three algorithms. The first algorithm sorts the



Sensors 2021, 21, 1832 18 of 23

network nodes and application modules according to their requirements and capacity
(CPU, RAM, and network bandwidth). The second algorithm looks for an eligible
network mode that meets the module’s requirement. The last algorithm is responsible
for ensuring the requirement check, which is done by using the COMPARE function
[24].

6.4.1. QoS

We distinguish QoS as one of the classification categories of resource management
techniques. Additionally, it can be used as a feature that may be used for further evaluation
of the reviewed algorithms. When taking into consideration the use of cloud computing,
as a solution concept, we should be aware that the data transfer between cloud and clients
will contribute towards the increase in feedback latency [43]. This will lead to restrain the
cloud service to provide quality of service to clients [43]. The QoS concept is defined in the
ITU-T Recommendation E.800 and refers to the following [44]:

“The collective effect of service performance, which determines the degree of user’s
satisfaction of the service.”

The QoS consists of a set of parameters that pertain to the traffic performance of the
network, but, in addition to this, the QoS also includes additional concepts. Therefore, they
can be summarised as:

• Service support performance
• Service operability performance
• Serviceability performance
• Service security performance

The following group of reviewed algorithms belong in this category: Iterative Algo-
rithm based on resource placement, FOFSA, and ECFO.

6.4.2. Energy Management

Enormous amount of energy savings can be obtained by taking into consideration
energy consumption and energy management, which are associated with IoT and the cloud,
fog, and edge paradigms [29]. Various methods can be used to address these concerns
such as: (1) algorithms for energy-aware data transfer; (2) algorithms that limit the amount
of data which is transferred within the network by utilizing certain criteria (thresholds);
and (3) algorithms which exchange processing with communication, by using concrete
objectives to achieve a balanced trade-off [29]. Based on the reviewed literature, energy
management is selected as one of the classification categories for resource management
techniques, to which we consider that the following algorithms belong: RR, SJF, ESCE,
GPRFCA, Iterative algorithm based on resource placement, FOFSA, ELBA(min-min), and
ECFO.

7. Discussion and Limitations

One of the key contributions of this paper is to provide an evaluation and classification
overview of applied algorithms for resource management that address cloud/fog and edge
environments. To support researchers in the further evaluation analysis process, they
may initially need to understand the cloud/fog/edge architecture concept, and then learn
about the potential challenges. In the end, researchers can finally explore in detail the
existing resource management techniques that can address some of the potential challenges.
Conforming to the conducted literature review, we identify a few solutions out of the 16
algorithms that can respond to some of the challenges, as shown in Table 3.



Sensors 2021, 21, 1832 19 of 23

Table 3. Addressed challenges.

Algorithm References

Load Balancing [30]

GPRFCA [20]
ERA [16]

DRAM [22]
PBRA [23]
HCLB [38]

ELBA(min-min) [39]
Tabu Search [40]

FOFSA [37]

Energy Consumption (Management) [29]

RR [19]
SJF [19]

ESCE [19]
Iterative algorithm [24]

FOFSA [37]
ELBA(min-min) [39]

ECFO [41]
GPRFCA [20]

There exist certain challenges regarding resource allocation on a cloud/fog/edge
network. When data are processed and then saved in a cloud system and if data centers are
positioned far away from the devices, the complete process of data storage and processing
may take a long time. Then, tasks need to be distributed in a manner that the entire network
of devices inside a fog computing infrastructure can be completely utilized. If they are
concentrated only in one particular area of the network, it will replicate a traditional cloud
computing model which is not a desired factor. The distributed task allocation is focused
on diminishing the average latency of service while lowering the overall quality loss.

The analyzed algorithms are grouped per type of solution paradigm, as represented
in Figure 5. It clearly illustrates which algorithms belong to a specific type of solution
paradigm: cloud–fog, fog–edge, fog-based, or cloud-based. The majority of analyzed
techniques (nine of them) belong to the cloud/fog paradigm, while five are only fog-based
solutions, one is fog/edge type, and one technique is only a cloud-based solution. Addition-
ally, this indicates that researchers and experts in IoT could focus on developing an algo-
rithm that will address resource management challenges in the complete cloud/fog/edge
paradigm.

D
R

A
M

EC
FO

EL
BA

ER
A

ES
C

E

FO
FS

A

FS
Y

N
C

G
PR

FC
A

H
C

LB

IT
ER

A
T

IV
E

PB
SA R

R

R
R

-F
SY

N
C

R
SY

N
C

SJ
F

TA
BU

Se
ar

ch

Cloud

Fog

Fog–Edge

Cloud–Fog

Algorithm

Te
ch

no
lo

gy

Figure 5. Reviewed algorithms per type of solution paradigm.



Sensors 2021, 21, 1832 20 of 23

Furthermore, this review proposes that algorithms can be classified according to their
characteristics in six classes: discovery, load-balancing, off-loading, placement, QoS, and
energy management. The discovery group finds available resources from either the cloud
or fog layers based on specific workloads requirements, to identify where they can be
deployed efficiently. The following algorithms belong to the discovery group: RR, ESCE,
SJF, GPRFCA, and RSYNC algorithm. The offloading group is responsible for resource
provisioning tasks, with the corresponding algorithms: RSYNC, FSYNC, RS-FSYNC, and
ECFO algorithm. The load-balancing group handles the distribution of workload to
resources. The algorithms which are considered in this group are DRAM, ERA, PBSA,
GPRFCA, FOFSA, HCLB, ELBA (min-min), and Tabu Search Algorithm.

The placement group refers to finding the suitable resources to deploy the workload.
Placing the incoming computation tasks to appropriate fog/edge resources is important.
The only found algorithm that belongs to this group is the Iterative Algorithm based on
resource placement.

Most of the algorithms were evaluated by using CloudAnalyst, SimCloud, Cloudlet
tool, OMNET++, or iFogsim tools. Some studies in resource scheduling have experienced
low scalability and proposed centralized topology in several case studies. One of the most
important factors is scalability in resource management of fog computing, which should be
improved in the scheduling scenarios. In addition, self-adaptive resource scheduling is one
of the key issues in resource management of fog computing that few research studies have
considered.

The provided evaluation of resource management techniques is limited to the features
provided in Table 2. From a particular group/category of resource management techniques,
we assume that ’the most appropriate’ responsive algorithm provides all the features.
For instance, all discovery algorithms can be ’appropriate’ (except for RSYNC), since all
these algorithms support the same metrics: resource allocation, workload balance, and
task scheduling (refer to Table 2). From the reviewed load-balancing algorithms, the
’most’ responding algorithms to our criteria are FOFSA and ERA. FOFSA pillars resource
allocation, workload balance, and task scheduling, while ERA supports resource allocation,
workload balance, and resource provisioning. An offloading algorithm that meets most of
the specified criteria is ECFO, which performs resource provisioning and task scheduling.

This evaluation framework can be extended by applying a multi-criteria decision-
making method, which could help the readers in the decision process to select a resource
management algorithm. One of the limitations of this paper is that it does not provide
any experiment to test the application of the researched algorithms to verify their usability
and competitiveness. Another limitation in this research is that we propose an evaluation
framework for resource management techniques that can be applied in cloud/fog and edge
environments, but there is not a proper comparison analysis of the indicated approaches.

8. Conclusions

The goal of this paper is to provide an evaluation framework and classification of
different resource management techniques that can be applied in cloud/fog and edge
scenarios. It is useful for cloud/fog/edge architects to have a concise representation of the
various challenges in resource management.

Cloud, fog, and edge computing govern a paradigm that can offer a solution for IoT
applications that are sensitive to delay. Besides, fog nodes usually have higher repository
capacity and data processing, which can be used for improving performance and reducing
cost communication and latency. To be able to evaluate the state-of-the-art algorithms used
in multiple research articles, in this paper, we analyze algorithms that can be classified into
six categories. Thereafter, we consider how resources can be handled among cloud, fog,
and edge devices.

In future work, the focus can be on making an analysis and comparison (e.g., through
simulations) between them rather than an evaluation overview. Furthermore, some of
the reviewed algorithms can be used in the simulation of a cloud/fog/edge architecture



Sensors 2021, 21, 1832 21 of 23

suitable for a particular application domain (e.g., smart logistics). We suggest research on
case studies, preferably from a variety of domains.

Additional research work can also be done in terms of investigating (new) algo-
rithms that not only deal with resource management but also address other challenges
in cloud/fog/edge computing environments. We also recommend further research on
validating and extending the evaluation framework and classification method, for example
by conducting a systematic literature search.

Author Contributions: Conceptualization, A.M., R.B., A.C., A.A. and P.H.; Formal analysis A.M.;
Methodology A.M. and A.A.; Supervision A.C., A.A., and P.H.; Visualization A.M. and R.B.; Writing-
review and editing, A.M. and R.B. All authors have read and agreed to the published version of the
manuscript.

Funding: This work is supported by OP Oost, project CountDown. The authors are thankful
regarding the collaboration to all project partners.

Acknowledgments: We would like to thank Yanqui Huang and Henk Soppe for their discussions
and effective comments on different sections of the review. Additionally, we would like to thank
Maja Piponska for her suggestions regarding the visualization of Figure 2.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chen, S.; Xu, H.; Liu, D.; Hu, B.; Wang, H. A Vision of IoT: Applications, Challenges, and Opportunities With China Perspective.

IEEE Internet Things J. 2014, 1, 349–359, doi:10.1109/JIOT.2014.2337336.
2. Mijuskovic, A.; Bemthuis, R.; Aldea, A.; Havinga, P. An Enterprise Architecture based on Cloud, Fog and Edge Computing for

an Airfield Lighting Management System. In Proceedings of the 2020 IEEE 24th International Enterprise Distributed Object
Computing Workshop (EDOCW), Eindhoven, The Netherlands, 5 October 2020; pp. 63–73, doi:10.1109/EDOCW49879.2020.00021.

3. Muhammad, S.; Muhammad, S. The Internet of Things Architecture, Feasible Applications and Fundamental challenges. Int. J.
Comput. Appl. 2018, 179, 975–8887, doi:10.5120/ijca2018916842.

4. Gai, K.; Li, S. Towards Cloud Computing: A Literature Review on Cloud Computing and Its Development Trends. In Proceedings
of the 2012 Fourth International Conference on Multimedia Information Networking and Security, Uttar Pradesh, India, 3–5
November 2012; pp. 142–146, doi:10.1109/MINES.2012.240.

5. Karagiannis, V.; Schulte, S. Comparison of Alternative Architectures in Fog Computing. In Proceedings of the 2020 IEEE
4th International Conference on Fog and Edge Computing (ICFEC), Melbourne, Australia, 11–14 May 2020; pp. 19–28.
doi:10.1109/ICFEC50348.2020.00010.

6. Naha, R.K.; Garg, S.; Georgakopoulos, D.; Jayaraman, P.P.; Gao, L.; Xiang, Y.; Ranjan, R. Fog Computing: Survey of Trends,
Architectures, Requirements, and Research Directions. IEEE Access 2018, 6, 47980–48009, doi:10.1109/ACCESS.2018.2866491.

7. Deng, S.; Zhao, H.; Fang, W.; Yin, J.; Dustdar, S.; Zomaya, A.Y. Edge Intelligence: The Confluence of Edge Computing and
Artificial Intelligence. IEEE Internet Things J. 2020, 7, 7457–7469, doi:10.1109/JIOT.2020.2984887.

8. Hevner, A.R.; March, S.; Park, J.; Ram, S. Design Science in Information Systems Research. Manag. Inf. Syst. Q. 2004, 28, 75–105,
doi:10.2307/25148625.

9. Elazhary, H. Internet of Things (IoT), mobile cloud, cloudlet, mobile IoT, IoT cloud, fog, mobile edge, and edge emerging comput-
ing paradigms: Disambiguation and research directions. J. Netw. Comput. Appl. 2019, 128, 105–140, doi:10.1016/j.jnca.2018.10.021.

10. Tedeschi, P.; Sciancalepore, S. Edge and Fog Computing in Critical Infrastructures: Analysis, Security Threats, and Research
Challenges. In Proceedings of the 2019 IEEE European Symposium on Security and Privacy Workshops (EuroS & PW), Stockholm,
Sweden, 17–19 June 2019, doi:10.1109/EuroSPW.2019.00007.

11. Bar-Magen, J. Fog computing: introduction to a new cloud evolution. In Escrituras Silenciadas: Paisaje Como Historiografía; Servicio
de Publicaciones, Proceedings from the CIES III Congress, January 2012; Spain, 2013; pp. 111–126.

12. Masip-Bruin, X.; Marin-Tordera, E.; Jukan, A.; Ren, G.J. Managing resources continuity from the edge to the cloud: Architecture
and performance. Future Gener. Comput. Syst. 2018, 79, 777–785, doi:10.1016/j.future.2017.09.036.

13. Tordera, E.M.; Xavi, M.B.; Alminana, J.; Jukan, A.; Ren, G.J.; Zhu, J.; Farré, J. What is a fog node a tutorial on current concepts
towards a common definition. arXiv 2016, arXiv:1611.09193.

14. Li, H.; Ota, K.; Dong, M. Learning IoT in Edge: Deep Learning for the Internet of Things with Edge Computing. IEEE Netw. 2018,
32, 96–101, doi:10.1109/MNET.2018.1700202.

15. Premsankar, G.; Francesco, M.; Taleb, T. Edge computing for the Internet of Things: A case study. IEEE Internet Things J. 2018, 5,
1275–1284, doi:10.1109/JIOT.2018.2805263.

16. Agarwal, S.; Yadav, S.; Yadav, A.K. An efficient architecture and algorithm for resource provisioning in fog computing.
International Journal of Information Engineering and Electronic Business (IJIEEB) 2016, 8, pp.48–61, doi:10.5815/IJIEEB.2016.01.06.

https://doi.org/10.1109/JIOT.2014.2337336
https://doi.org/10.1109/EDOCW49879.2020.00021
https://doi.org/10.5120/ijca2018916842
https://doi.org/10.1109/MINES.2012.240
https://doi.org/10.1109/ICFEC50348.2020.00010
https://doi.org/10.1109/ACCESS.2018.2866491
https://doi.org/10.1109/JIOT.2020.2984887
https://doi.org/10.2307/25148625
https://doi.org/https://doi.org/10.1016/j.jnca.2018.10.021
https://doi.org/https://doi.org/10.1109/EuroSPW.2019.00007
https://doi.org/https://doi.org/10.1016/j.future.2017.09.036
https://doi.org/10.1109/MNET.2018.1700202
https://doi.org/10.1109/JIOT.2018.2805263
https://doi.org/10.5815/IJIEEB.2016.01.06


Sensors 2021, 21, 1832 22 of 23

17. Seal, A.; Mukherjee, A. On the Emerging Coexistence of Edge, Fog and Cloud Computing paradigms in Real-Time Internets-of-
EveryThings which operate in the Big-Squared Data space. In Proceedings of the SoutheastCon 2018, Huntsville, AL, USA, 19
April 2018; pp. 1–9, doi:10.1109/SECON.2018.8478948.

18. Qi, Q.; Tao, F. A Smart Manufacturing Service System Based on Edge Computing, Fog Computing, and Cloud Computing. IEEE
Access 2019, 7, 86769–86777, doi:10.1109/ACCESS.2019.2923610.

19. Javaid, S.; Javaid, N.; Saba, T.; Wadud, Z.; Rehman, A.; Haseeb, A. Intelligent resource allocation in residential buildings using
consumer to fog to cloud based framework. Energies 2019, 12, 815, doi:10.3390/en12050815.

20. da Silva, R.A.C.; d. Fonseca, N.L.S. Resource Allocation Mechanism for a Fog-Cloud Infrastructure. In Proceedings
of the 2018 IEEE International Conference on Communications (ICC), Kansas City, MO, USA, 20–24 May 2018; pp. 1–6,
doi:10.1109/ICC.2018.8422237.

21. Wang, T.; Zhou, J.; Liu, A.; Bhuiyan, M.Z.A.; Wang, G.; Jia, W. Fog-Based Computing and Storage Offloading for Data
Synchronization in IoT. IEEE Internet Things J. 2019, 6, 4272–4282, doi:10.1109/JIOT.2018.2875915.

22. Xu, X.; Fu, S.; Cai, Q.; Tian, W.; Liu, W.; Dou, W.; Sun, X.; Liu, A.X. Dynamic resource allocation for load balancing in fog
environment. Wirel. Commun. Mob. Comput. 2018, 2018, doi:10.1155/2018/6421607.

23. Buchade, A.; Nirav, M.S. Priority Based Allocation in Cloud Computing. Int. J. Eng. Res. Technol. 2014, 3, 855–857.
24. Taneja, M.; Davy, A. Resource aware placement of IoT application modules in Fog-Cloud Computing Paradigm. In Proceedings

of the 2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM), Lisbon, Portugal, 8–12 May 2017; pp.
1222–1228, doi:10.23919/INM.2017.7987464.

25. Bendechache, M.; Svorobej, S.; Takako Endo, P.; Lynn, T. Simulating Resource Management across the Cloud-to-Thing Continuum:
A Survey and Future Directions. Future Internet 2020, 12, 95, doi:10.3390/fi12060095.

26. Aslanpour, M.S.; Gill, S.S.; Toosi, A.N. Performance evaluation metrics for cloud, fog, and edge computing: A review, taxonomy,
benchmarks and standards for future research. Internet Things 2020, 12, 100273, doi:10.1016/j.iot.2020.100273.

27. Ghobaei-Arani, M.; Souri, A.; Rahmanian, A.A. Resource management approaches in fog computing: a comprehensive review. J.
Grid Comput. 2019, 18, 1–42, doi:10.1007/s10723-019-09491-1.

28. Salaht, F.A.; Desprez, F.; Lebre, A. An Overview of Service Placement Problem in Fog and Edge Computing. ACM Comput. Surv.
2020, 53, 1–35, doi:10.1145/3391196.

29. Bittencourt, L.; Immich, R.; Sakellariou, R.; Fonseca, N.; Madeira, E.; Curado, M.; Villas, L.; DaSilva, L.; Lee, C.; Rana,
O. The Internet of Things, Fog and Cloud continuum: Integration and challenges’. Internet Things 2018, 3-4, 134–155,
doi:10.1016/j.iot.2018.09.005.

30. Agarwal, S.; Yadav, S.; Yadav, A.K. An architecture for elastic resource allocation in Fog Computing. Int. J. Comput. Sci. Commun.
2015, 6, 201–207, doi:10.090592/IJCSC.2015.615 .

31. Madni, S.H.H.; Latiff, M.S.A.; Coulibaly, Y.; Abdulhamid, S.M. Recent advancements in resource allocation techniques for cloud
computing environment: a systematic review. Clust. Comput. 2017, 20, 2489–2533, doi:10.1007/s10586-016-0684-4.

32. Rafique, H.; Shah, M.A.; Islam, S.U.; Maqsood, T.; Khan, S.; Maple, C. A Novel Bio-Inspired Hybrid Algorithm (NBIHA) for
Efficient Resource Management in Fog Computing. IEEE Access 2019, 7, 115760–115773, doi:10.1109/ACCESS.2019.2924958.

33. Ni, L.; Zhang, J.; Jiang, C.; Yan, C.; Yu, K. Resource Allocation Strategy in Fog Computing Based on Priced Timed Petri Nets.
IEEE Internet Things J. 2017, 4, 1216–1228, doi:10.1109/jiot.2017.2709814.

34. Fan, Q.; Ansari, N. Towards Workload Balancing in Fog Computing Empowered IoT. IEEE Trans. Netw. Sci. Eng. 2020, 7, 253–262,
doi:10.1109/tnse.2018.2852762.

35. Skarlat, O.; Schulte, S.; Borkowski, M.; Leitner, P. Resource Provisioning for IoT Services in the Fog. In Proceedings of the
2016 IEEE 9th Conference on Service-Oriented Computing and Applications (SOCA), Macau, China, 4–6 November 2016; IEEE
Computer Society: Los Alamitos, CA, USA, 2016; pp. 32–39, doi:10.1109/SOCA.2016.10.

36. Yin, L.; Luo, J.; Luo, H. Tasks Scheduling and Resource Allocation in Fog Computing Based on Containers for Smart Manufactur-
ing. IEEE Trans. Ind. Inform. 2018, 14, 4712–4721, doi:10.1109/TII.2018.2851241.

37. Doddi, A.; Krishna, P.; Mallikarjuna, B. Feedback-based fuzzy resource management in IoT using fog computing. Evol. Intell.
2020, 3, doi:10.1007/s12065-020-00377-w.

38. Maheen, Z.; N.Javaid.; Ansar, K.; K.Hassan.; K. Khan, M.W. Hill Climbing Load Balancing Algorithm on Fog Computing. In
Proceedings of the International Conference on P2P, Parallel, Grid, Cloud and Internet Computing, 2018, doi:10.1007/978-3-030-
02607-3_22.

39. Manju, A.B.; Sumathy, S. Efficient Load Balancing Algorithm for Task Preprocessing in Fog Computing Environment. In
Smart Intelligent Computing and Applications; Satapathy, S.C., Bhateja, V., Das, S., Eds.; Springer: Singapore, 2019; pp. 291–298,
doi:10.1007/978-981-13-1927-3_31.

40. Téllez, N.; Miguel, J.; Salazar, A.; Nino-Ruiz, E. A Tabu Search Method for Load Balancing in Fog Computing. Int. J. Artif. Intell.
2018, 16, 78–105.

41. Jiang, Y.; Chen, Y.; Yang, S.; Wu, C. Energy-Efficient Task Offloading for Time-Sensitive Applications in Fog Computing. IEEE
Syst. J. 2019, 13, 2930–2941, doi:10.1109/JSYST.2018.2877850.

42. Hong, C.H.; Varghese, B. Resource Management in Fog/Edge Computing: A Survey. arXiv 2018, arXiv:1810.00305.
43. Lai, C.; Song, D.; Hwang, R.; Lai, Y. A QoS-aware streaming service over fog computing infrastructures. In Proceedings of the 2016

Digital Media Industry Academic Forum (DMIAF), Santorini, Greece, 4–6 July 2016; pp. 94–98, doi:10.1109/DMIAF.2016.7574909.

https://doi.org/10.1109/SECON.2018.8478948
https://doi.org/10.1109/ACCESS.2019.2923610
https://doi.org/10.3390/en12050815
https://doi.org/10.1109/ICC.2018.8422237
https://doi.org/10.1109/JIOT.2018.2875915
https://doi.org/10.1155/2018/6421607
https://doi.org/10.23919/INM.2017.7987464
https://doi.org/10.3390/fi12060095
https://doi.org/10.1016/j.iot.2020.100273
https://doi.org/10.1007/s10723-019-09491-1
https://doi.org/10.1145/3391196
https://doi.org/https://doi.org/10.1016/j.iot.2018.09.005
https://doi.org/https://doi.org/10.090592/IJCSC.2015.615
https://doi.org/10.1007/s10586-016-0684-4
https://doi.org/10.1109/ACCESS.2019.2924958
https://doi.org/10.1109/jiot.2017.2709814
https://doi.org/10.1109/tnse.2018.2852762
https://doi.org/10.1109/SOCA.2016.10
https://doi.org/10.1109/TII.2018.2851241
https://doi.org/10.1007/s12065-020-00377-w
https://doi.org/10.1007/978-3-030-02607-3_22
https://doi.org/10.1007/978-3-030-02607-3_22
https://doi.org/10.1007/978-981-13-1927-3_31
https://doi.org/10.1109/JSYST.2018.2877850
https://doi.org/10.1109/DMIAF.2016.7574909


Sensors 2021, 21, 1832 23 of 23

44. “E.800: Terms and definitions related to quality of service and network performance including dependability”. ITU-T Recommen-
dation. Available online: https://www.itu.int/rec/T-REC-E.800-199408-S/en. August 1994, (accessed on 03.03.2021).


	Introduction
	Methodology
	Background and Related Work
	High-Level Architectural Overview
	An Example of Resource Allocation in a Cloud/Fog System
	Some Application Domains
	An Architecture Based on Cloud, Fog, and Edge Computing Paradigms in Real-Time Internets-of-EveryThings
	An Architecture for Smart Manufacturing Based on Cloud, Fog, and Edge Paradigm

	Techniques for Handling Resource Management
	Related Work

	Challenges in Resource Allocation for Cloud, Fog, and Edge Computing
	Evaluation Framework for Resource Management Algorithms in Cloud/Fog and Edge Scenarios
	Resource Allocation
	Workload Balance
	Resource Provisioning
	Task Scheduling

	Classification of Resource Management Algorithms Applied in Cloud/Fog and Edge Scenarios
	Discovery
	Off-Loading
	Load-Balancing
	Placement
	QoS
	Energy Management


	Discussion and Limitations
	Conclusions
	References

