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Abstract: The escalated growth of the Internet of Things (IoT) has started to reform and reshape our 
lives. The deployment of a large number of objects adhered to the internet has unlocked the vision 
of the smart world around us, thereby paving a road towards automation and humongous data 
generation and collection. This automation and continuous explosion of personal and professional 
information to the digital world provides a potent ground to the adversaries to perform numerous 
cyber-attacks, thus making security in IoT a sizeable concern. Hence, timely detection and preven-
tion of such threats are pre-requisites to prevent serious consequences. The survey conducted pro-
vides a brief insight into the technology with prime attention towards the various attacks and anom-
alies and their detection based on the intelligent intrusion detection system (IDS). The comprehen-
sive look-over presented in this paper provides an in-depth analysis and assessment of diverse ma-
chine learning and deep learning-based network intrusion detection system (NIDS). Additionally, 
a case study of healthcare in IoT is presented. The study depicts the architecture, security, and pri-
vacy issues and application of learning paradigms in this sector. The research assessment is finally 
concluded by listing the results derived from the literature. Additionally, the paper discusses nu-
merous research challenges to allow further rectifications in the approaches to deal with unusual 
complications. 

Keywords: internet of things (IoT); machine learning; deep learning; intrusion detection system; 
wireless sensor network; testbed 
 

1. Introduction 
The rapid escalation in numerous technological aspects of wireless sensor networks 

(WSN), mobile communication, radio-frequency identification (RFID), and various light-
weight protocols have endorsed the concept of the Internet of Things. The core conviction 
of IoT revolves around the dynamic interconnection of billions of different units or entities 
in an ecosystem driving either in a wired or a wireless fashion via the assistance of intel-
ligent sensors, actuators, and other components. These components mesh with each other 
to yield the state of things and thus, providing extensive benefits and comforts to humans. 
Numbers stipulate that the IoT market has reached a mark of approximately 200 billion 
in 2020, starting with just 2 billion in 2006 [1]. The result of this automation has manifested 
the presence of smarter and intelligent objects, thus paving a way in all spheres: smart 
cities, healthcare, finance, manufacturing, academia, etc. The application of IoT with per-
centage implementation in diverse fields is depicted in Figure 1 [1]. IoT is, therefore, an 
amalgamation of diverse technologies at various layers coming up together to bestow the 
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best of ubiquitous and pervasive computing to provide numerous benefits in different 
application areas. 

Smart services have become an integral part of today’s lifestyle. For example, disa-
bled people could manage things with IoT assistance, specially-abled children could in-
teract using the Autism Glass, and remote health tracking aids in curing. Moreover, IoT 
sensors working with warning system alerts about environmental disasters. Even the use-
fulness of IoT in managing natural resources could be realized from the number of use-
cases discussed in the literature [2]. With smart grids and smart meters, the daily power-
consumption could be optimized and the supply–demand ratio could be efficiently main-
tained to meet the growing demands. Likewise, intelligent transportation systems provide 
valuable insights into different services. For example, based on real-time traffic conditions 
traffic signals consequentially set their timer to avoid traffic congestion and thus, environ-
mental pollution [3]. With smart agriculture, the crop yield could be predicted, fertilizers 
needed, disease-prone crop areas could be identified and isolated. Alongside these ser-
vices, it brings deep-rooted security challenges as these IoT nodes are flooded to market 
with inherent vulnerabilities. 

 
Figure 1. Applications of Internet of Things (IoT) with practical Implementations [1]. 

The exponential growth and integration of IoT with other technologies have pro-
vided a bigger attack surface to play with [4,5]. Moreover, it is challenging to maintain the 
security requirements of an IoT system due to the very nature of IoT nodes in terms of 
scarce resources and unattended environments[6]. Employing existing security mecha-
nisms such as encryption, authentication, and access control is also not a feasible solution 
for systems with a large no. of connected devices entertaining inherent vulnerabilities. 
Additionally, the end-users and developers are ignorant about the security risks compli-
menting the extensive smart applications. These loopholes in IoT devices are exploited to 
launch cyber-attacks like Mirai [7]. Furthermore, this negligence in securing IoT devices 
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has been proven to be life-threatening. For example, the compromised sensors in self-
driving cars could cause human calamity and damage to public properties as well. Now, 
these cyber-attacks turned out to be another way of declining the economy of the devel-
oped countries. Thus, the security challenges being an integral part of these useful IoT 
services must not be overlooked and should be handled as a priority. 

The learning methods are the appropriate tools for differentiating the “usual” and 
“unusual” behavior of IoT components and the way they interact with each other to pro-
vide services. The input to different components of an IoT system is analyzed to find the 
regular patterns of interaction, to recognize the malicious behavior in a system in the early 
stages. With learning methods [8] (machine learning and deep learning) nascent zero-day 
attacks could also be predicted, as these are generally the mutations of foregoing attacks. 
Moreover, the unique features of deep learning such as automatic feature extraction, com-
pression competencies, etc., make it more feasible for resource-constrained IoT systems. 
The wide acceptance of deep learning is all due to its ability to self-learning, faster pro-
cessing, and accuracy. Consequently, IoT systems must have a transition from merely fa-
cilitating secure communication amongst devices to security-based intelligence enabled 
by DL/ML methods for effective and secure systems. 

1.1. Scope of the Survey 
IoT plays a significant role in our lives by enabling the digitization of the physical 

world around us. A large number of surveys were conducted to review and analyze the 
multiple IoT facets. Table 1 surmises the relative comparison of the proposed work with 
the considered state-of-the-art works. However, the study conducted in this paper pro-
vides a detailed, in-depth review of those facets/dimensions in an appropriate order. An 
exhaustive analysis of various research surveys is compiled together to convey an overall 
assessment, which has not taken place in the past. For example, Neshenko et al. [9] pro-
vide a unique taxonomy of numerous attacks and vulnerabilities occurring in IoT devices 
along with methodologies and security capabilities to counter those flaws. Additionally, 
architectural vulnerabilities occurring in each respective layer are represented diagram-
matically. Furthermore, an appropriate assessment is provided in multiple sections to de-
liver the essence of the problems occurring due to the coupled nature of IoT devices. Ad-
ditionally, Butun et al.[10] has shed light on the integration of WSN with IoT and laid 
stress on the possible attack avenues available generated. 

Divyakmika et al. [11] analyzed the application of ML in IoT security by proposing 
two-tier NIDS. The approach is based on TCP/IP data packet features obtained from NSL-
KDD DATASET. It clustered the data into two (normal and new patterns). The 
classification was done using KNN, MLP, and reinforcement learning. A similar approach 
is presented by Pajouh et al. [12] to develop an intrusion detection model by collaborating 
Naïve Bayes and KNN. The challenge of upgrading the mechanism to extend the model 
to the higher layers is also highlighted. To overcome the problem of availability of the 
dataset Canedo et al. [13] constructed a testbed to monitor the application of artificial 
neural networks in attack detection in the IoT sites. However, to generate better analysis, 
an upgraded testbed with a large number of sensors and devices is required. To construct 
a real-world attack scenario, Anthi et al. [14] proposed a novel real-time IDS named pulse, 
which deploys supervised ML for the identification of maleficent activities like scanning, 
probing, and other elementary forms of DOS attacks with promising results using the 
Naïve Bayes technique. However, it was executed for the limited number of attacks only. 
Further, Hasan et al. [15] compared and contrasted the application of multiple ML 
algorithms in a real-time virtual IoT scenario to further substantiate the research. 

Contemporary improvisation includes the application of deep models in IoT. Rahul 
et al. [16] analyzed the application of various deep models to detect multiple network 
attacks. KDD cup 99 was used to train the network. However, a lack of real-time IoT da-
tasets and evaluation of deeper networks still posed a challenge. To overcome this, 
Roopak et al. [17] explored the capabilities of the deeper networks by training models like 
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1D-CNN, RNN, LSTM, and a hybrid model of CNN + LSTM on the CICIDS2017 dataset. 
Furthermore, from the considered start-of-the-art, we found that only a few works have 
explicitly focused on both machine learning and deep learning-based solutions for secur-
ing IoT in an elaborated manner. Thus, in this manuscript, we aimed the same. The inher-
ent vulnerabilities in IoT devices and IoT environments (communication protocols) have 
also been explored as being the root cause of these emerging attacks in smart applications. 

1.2. Contributions 
The key contributions of this paper are as follows: 

• A taxonomy that focuses on attacks, vulnerabilities, and anomalies in IoT is given. 
• The benefits of the growing usage of machine learning and deep learning techniques 

for securing IoT are highlighted. Critical analysis of different learning techniques has 
also been presented. 

• The case studies on the usage of IoT, learning methods, and security challenges in 
Smart Healthcare System, Smart Vehicular system, and Smart Manufacturing is pre-
sented. 

• Finally, research challenges and future recommendations for the end-users were 
given to ensure secure IoT infrastructure. 

1.3. Methods and Materials 
The methodical approach is adopted to conduct this study in a proper way to provide 

in-depth analysis of different learning methods used to secure the IoT system in one way 
or the other, as security in IoT questions its sustenance. The related research articles, blogs, 
use-cases, tutorial papers, reports, and white papers were discovered to conduct this re-
view. This work primarily focused on the state-of-the-art research on IoT attacks, threats, 
anomalies, vulnerabilities, and learning-based approaches to handle them in general and 
concerning smart healthcare specifically. Additionally, to emphasize the current research 
challenges, open issues, and future scope related to the same. The screening of the identi-
fied articles is done based on the relevance and other factors as depicted in Figure 2. The 
quality checks are applied to the extracted data to get reliable material for the proposed 
survey. The ones from the SCI journals and with a good number of citations are commonly 
chosen. The peer-reviewed and high-quality database journals and reputed conferences 
like IEEEXplore, Springer, MDPI, Wiley, ACM, Elsevier, and Google Scholar, are investi-
gated to get the relevant research articles. For searching, vital keywords like IoT, security, 
attacks, vulnerabilities, threats, machine learning, deep learning, smart healthcare, etc., 
were benefitted. 
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Figure 2. Prisma Diagram of the proposed survey. 

Table 1. A relative comparison of the proposed work with state-of-the-art works. 

Author(s) Year Discussion Challenge(s) 1 2 3 4 5 6 7 8 

Ahlmeyer et 
al. [18] 2016 

The different frameworks for 
securing IoT are discussed and have 
given their own IoT security 
framework.  

There is no 
standardization in terms of 
securing IoT. 

        

Nia et al. 
[19] 

2016 
The vulnerabilities in the edge layer 
of IoT are extensively discussed with 
mitigation approaches.  

The usage of data collected 
by IoT nodes in 
unexpected ways. 

        

Alaba et al. 
[20] 

2017 
Discussed multiple security 
scenarios, and possible 
countermeasures. 

To develop lightweight 
authentication schemes for 
IoT environments. 

        

Makhdoom 
et al. [21] 

2018 
Different malware attacks targeting 
IoT systems are discussed in an 
elaborated way.  

The challenges IoT will 
face with FoG computing. 

        

Rahul et al. 
[16] 2018 

Discussed the application of deep 
models as IDS to detect attacks of 
varying complexity. 

Lack of real-time IoT 
dataset, evaluation of 
deeper networks. 

        
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Samaila et 
al. [22] 2018 

IoT threat model is given with 
multiple threat mitigation 
approaches. 

Nano-electronic-based 
security mechanisms to be 
explored by IoT. 

        

Butun et al. 
[10] 2019 

Analyzed the application of WSN in 
IoT. Moreover, an in-depth review of 
various attacks constituting WSN in 
IoT. 

A better 
Approach/standard for the 
routing, trust 
management, and schemes 
for data collection for the 
multiple IoT layers. 

        

Neshenko et 
al. [9] 

2019 

Provides a detailed analysis of IoT 
along with its various facets. 
Additionally, a taxonomy 
constituting various attacks, 
vulnerabilities, and methodologies to 
monitor them are discussed. 

More detailed 
investigation to provide 
prompt remediation for 
detecting malicious IoT 
devices. 

        

Hasan et al. 
[15] 2019 

Provides a detailed framework for 
attack and anomaly detection in IoT 
using machine learning. 

More robust algorithms 
are required; more 
attention is required for 
real-time detection. 

        

Roopak et al. 
[17] 2019 

Focussed on the detection of DDoS 
attacks using deep models along with 
numerous other challenges in their 
application. 

Lack of Deep learning 
models that can work with 
highly unbalanced 
datasets. 

        

Hussain et 
al. [6] 2020 

IoT security with learning-based 
solutions is talked over. 

The IoT data-based 
challenges to be explored.  

        

Anand et al. 
[5] 2020 

IoT vulnerabilities and their 
assessment techniques, with a case 
study on Sustainable Smart 
Agriculture. 

Lack of intelligent 
vulnerability assessment 
technique. 

        

Yazdinejad 
et al. [23] 2020 

Applying blockchain in IoT for 
secure data transmission and access 
control. 

Comparative analysis with 
other such architectures. 

        

Rachit et al. 
[24] 2021 

IoT threats, security models, and 
standardization practices are 
discussed. 

Learning-based solutions 
will be explored further. 

        

Rasheed et 
al. [25]  2021 

A systematic survey of recent 
learning-based solutions for securing 
IoT. 

Growing vulnerabilities 
are not discussed. 

        

The 
Proposed 
one 

2021 
Machine learning and deep learning-
based IoT security mechanisms with 
comparative analysis. 

Hybrid learning-based 
techniques will be 
explored. 

        

Notes: 1: Architecture; 2: Dataset; 3: Attacks; 4: Vulnerabilities; 5: Machine learning-based IoT; 6: Deep learning-based IoT; 
7: Emerging Challenges; 8: Testbed. Notations: : considered; : not considered. 

1.4. Organization 
Figure 3 demonstrates the organization of the proposed article. In Section 1 we pre-

sent an introduction to IoT and its services, several security issues and attacks, and how 
ML/DL methods can be the conceivable solution. Section 2 provides a general perspective to 
the technology and its applications followed by background information, which prominently 
includes its prime driving technologies, architectural view, and protocol suite. Section 3 intro-
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duces security-related concepts by highlighting imminent attacks, anomalies, and vulner-
abilities in this area with a brief introduction to the IDS mechanism. The next section pre-
sents ML and DL-based IDS solutions to deal with the security intricacies mentioned in 
the previous section, followed by case studies to understand the practical implementation 
of IoT in the healthcare sector, vehicular systems, and manufacturing along with research 
challenges, open issues, and future scope. 

 
Figure 3. The workflow of the paper. 

2. Background and Preliminaries 
This section focuses on the background and importance of security in IoT. This sec-

tion is bifurcated into three subsections. Firstly, we cover IoT driving technologies which 
include RFID, sensors, wireless sensor networks, communication, cloud computing, and 
embedded systems. Secondly, we briefly discuss the IoT ecosystem, followed by the IoT 
architecture with protocol suite in the subsequent subsections. 

2.1. IoT Driving Technologies 
IoT systems consist of various technological/functional components to lubricate the 

task of sensing, identification, communication, analysis, and management. Colakovic et 
al. [4] detailed the vision towards IoT along with various technologies used at different 
levels. Moreover, the survey conducted in [1,5] also introduces these technologies. 
• RFID (radio-frequency identification) Technology: It is a technology used for the 

identification of a person or any other object by exercising the wireless radio fre-
quency technology in the network. It utilizes the labels/tags on the objects for identi-
fication. It is a combination of e-labels, an integrated circuit for processing infor-
mation by modulating and demodulating the signals along with a reader–writer sys-
tem [26]. Jia et al. [27] presented detailed interpretation and applications of RFID in 
IoT. 

• Sensor Technology: It is responsible for interacting with the physical environment 
and subsequently detecting, observing, storing, and providing the necessary 
information by converting it into a human-readable form. The primary purpose is to 
interpret the real-world conditions by monitoring the documentation collected in the 
form of sound, light, humidity, pressure, and many other values for analysis of 
various surrounding scenarios [28]. These, therefore, bridge the gap between the 
physical and the digital world. 

• Wireless Sensor Network Technology: It is an integration of numerous self- 
configurable devices with embedded sensors for scanning and documenting the 
conditions of the physical environment and subsequently forwarding them to the 
appropriate sink node for analysis [29]. Actuators can also be a part of WSN in certain 
conditions; hence they are often referred to as wireless sensor and actuator networks. 
The various applications of WSN include weather monitoring systems in which 
nodes collect temperature, humidity, and other data, soil moisture monitoring 
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system, health monitoring system, etc. For the communication between various 
sensor technologies, numerous short-distance communication strategies are 
available like Bluetooth, RFID, Zigbee, Wifi. These are termed network 
communication technologies. Each one has its pros and cons, and further subsequent 
selection depends on the application scenario. 

• Embedded System Technology: This is a blend of numerous peripheral hardware 
(Sensors, Actuators) combined with software running or embedded OS (Real-time 
operating system) to accomplish some specific tasks. Principal components include 
microcontrollers, memory, network units, ic running on an embedded operating 
system such as (RTOS) with critical features like real-time computing, low 
maintenance, and low power consumption [30]. 

• Cloud Computing: It is an essential IoT component provisioning the users with 
processing and storage capabilities on demand. It is used as a powerful tool in IoT to 
handle the big-data and, in turn, rendering intelligent monitoring and decision 
making in various applications, thus turning them smart. The prime benefits are 
elasticity, agility with less deployment time [31]. 

2.2. IoT Ecosystem 
The technologies mentioned above provide a hazy overview of the IoT. To get a crisp 

and unclouded perspective, understanding IoT architecture is extremely vital before pro-
ceeding into the intricate details of the various facets of it. It is hugely challenging to stand-
ardize one architecture for IoT due to its inability to capture a particular image character-
izing it due to vast expansion and variation in this sector. There are miscellaneous three, 
four, five, and seven-layer architecture, which are accepted by various professionals to 
have a visual sculpture of this technology. Table 2 describes some of the prominent IoT 
architectures. Figure 4 depicts the general three-layer architecture [12,13] with its exten-
sion into five layers [14,15]. 

Table 2. Prominent IoT architectures. 

Author Description  
Bauer et al. [32]  IoT-A. An amalgamation of different IoT perspectives. 

Atzori et al. [33] The author has presented a SocialIoT-architecture based on the integration of IoT with 
the social networking concept. 

Qin et al. [34] The author presents SDN-based architecture for provisioning IoT with better quality-
of-service, deployment, scalability, and context awareness. 

Li et al. [35] 
Mobility first (future internet architecture) mainly addresses the challenges concerning 
the usage of mobile phones as gateways and dealing with the security aspect of sensor 
data. 

Singh et al. [36] JDL (joint director of labs) based model for IoT architecture with the combination of 
semantic layer. 

Cecchinel et al. [37] Software architecture for collection of sensor-based data with cloud-based storage 
(sensor, sensor board, bridges, middleware) 

Kraijak et al. [38] 5-layer architecture (perception, network, middleware, application, business) 

Ray et al. [39] It describes major IoT functional elements with multiple IoT architectures in different 
application areas. 

2.3. The Prominent IoT Layers 
The two most prevalent architectures IoT-A (internet of things-Architecture) and 

IIRA (industrial internet reference architecture) synchronized with the IoT community 
and incorporating multiple views are given in [40]. In concern to IoT, many different 
wired and wireless protocols are introduced despite the similarity towards the general 
TCP/IP stack, primarily because of the differences in the characteristics of IoT devices 
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concerning memory and computational power. Priyadarshi et al. [41] and Sahrawi et al. 
[42] provides a detailed analysis of various IoT protocols. The prominent IoT layers with 
working protocols are briefly described subsequently. 

Perception Layer: It is also referred to as the physical layer in IoT. It is an 
amalgamation of a wide variety of sensors, actuators, and devices mainly for data 
accumulation from the surroundings [43]. The primary objective is to acquire all the 
essential insights for more in-depth analysis in the succeeding. The connected objects 
should not only establish communication with their respective gateways but also must be 
able to recognize and talk to each other to merge in real-time to leverage the benefits of 
the technology. Lightweight M2M (machine to machine) has become a standard for low 
memory, lightweight devices that typically find an application in IoT [44]. However, such 
a dynamic approach is disrupted by some of the significant threats by the intruder [3,9,21]. 
• Node Capture and Cloning: It is one of the most detrimental attacks faced by this 

layer. In this attack, the intruder gains full control over the IoT nodes. Such IoT nodes 
can be cloned to launch new attacks. 

• Eavesdropping: In this attack, the intruder intercepts the personnel user data. The 
attacker takes advantage of the insecure communication mode to gain access to such 
sensitive information. 

• Jamming attack: This includes scrambling a particular communication channel by the 
emission of the radio signals. This attack disrupts the node signals by efficiently 
bypassing the physical layer protocols. 

• Resource depletion attack: This includes multiple retransmissions and collisions of 
the nodes to deplete it completely. 

• Relay attack: This involves the relocation of the IoT nodes with the relay node. The 
transmitted information passes through the relay node and thus can be exploited by 
the intruder.  
Network Layer: The main goal of the network layer is to establish communication 

amongst smart devices via the assistance of appropriate IoT protocols. The prime purpose 
is to transfer data to proper edge infrastructures or cloud-based platforms through 
intermediaries like gateways or any other data collection systems. Another important 
aspect here is security. Appropriate security tools like NIDS or any other form of 
encryption can be applied to reduce the risks of threats and attacks. However, such 
transmission can be exploited to launch various attacks like a man-in-the-middle attack, 
routing attack, DDoS attack, Sybil attack.  

Support Layer: It consists of cloud-based applications with prime tasks of storing, 
processing, and analyzing the data. It is mainly referred to as the brain in the IoT body. 
The main challenges faced here are restricted access and slow data transfer rate, which 
ultimately leads to late response. These challenges necessitate the need for appropriate 
edge analytics for quicker replies [44]. DoS and malicious insider attacks are some of the 
common attacks performed in this layer. 

Application Layer: The last layer is the application layer, which ensures data 
integrity, confidentiality, and authenticity by enabling process-to-process communication 
via the use of suitable ports. It is responsible for the dispatching of the required services 
to the end-users via the assistance of appropriate audio and video interfaces. However, 
several security disputes prevent its proper functioning. 
• DoS attack: In this attack, the intruder pretends to be an authenticated user to disrupt 

the normal functioning of the network. It is accomplished by flooding the authenti-
cated user to trigger a crash [5]. 

• Phishing attack: It is a sensitive social engineering attack to gain access to the user 
credentials like passwords, credit card details by masquerading oneself as a trusted 
body [8]. 

• Malicious code injection: In this attack, the intruder injects a malicious code to ma-
nipulate the authentic data of the authorized user [21,45]. 
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• Session hijacking attack: This attack consists of exploiting the web session by the in-
truder to gain access to the sensitive data of the user [9].  

 
Figure 4. IoT Architecture. 

3. IoT Security Landscape 
Security is a crucial zone of this technology, as recent trends and surveys have 

captured numerous changes in this sector, which in turn, indicates the evolution of the 
attacking mechanism leading to the generation of several zero-day attacks [46]. This 
behavior is mainly because most vendors are only concerned about dealing with some 
aspects of the IoT ecosystem. Those involve mostly providing new functionality to get 
their products into the market and thereby ignoring the privacy and security risks 
associated, thus making them easy targets of the hackers. The past few years have already 
recorded some damaging effects of lack of security in IoT in the form of attacks like Mirai 
botnet attack, Bashlite attack, and many more. Attackers are not only inaugurating 
numerous scanning, probing, and flooding attacks but are also escalating malware in the 
form of worms, viruses, and spams to exploit the weaknesses of the existing software, 
thereby causing severe damage to the sensitive information of the users. Therefore proper 
detection and prevention of such threats are very vital. IDS provides a platform to deal 
with such issues. Tables 3 and 4 provide a brief insight into various such attacks and 
anomalies at different IoT levels and layers [30–32]. Adversaries primarily try to detour 
the security framework with subsequent launching of zero-day attacks, which in turn 
reduce the network throughput and produce huge discomforts to the legitimate users[47]. 
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Table 3. Attacks in IoT. 

Nature of Attack Description Classification 

Active attacks 

These are performed mainly to carry out 
malicious acts against the system, thus affecting 
or disrupting the services for legitimate users. 
They hamper both the confidentiality and 
integrity of the system. 

Dos (denial-of-service), DDOS (distributed 
denial of service), 
MITH (man-in-the-middle), Interruption, 
Alteration [48]. 

Passive attacks 
These are performed mainly for gathering useful 
information without getting sensed, i.e., they do 
not disturb the communication. 

Monitoring, Traffic Analysis, Eavesdropping, 
Node destruction/malfunction [49]. 

Physical layer attacks 
These attacks try to tamper and exploit the 
devices making them the most vulnerable 
terminal of IoT. 

Node tampering, Jamming, Replication [10]. 

Datalink layer attacks These undertake the advantage of mac schemes 
to launch different attacks. 

Collision, Dos, ARP spoofing, unfairness. 

Network layer attacks 
These attacks try to disrupt the communication 
between the source and the destination by 
playing with the packets. 

Dos, Routing Attack, Sybil Attack, blackhole, 
spoofing, alteration. 

Privacy threats The capabilities of IoT allow it to launch acute 
attacks targetting the privacy of users.  

Identification, profiling, tracking, linkage, 
inventory [50]. 

Software-based 
attacks 

These attacks make use of third-party software 
to gain access to the system and cause 
destruction. 

Virus, Trojan horse, Worms. 

Side-channel attacks 
These are hardware-based attack that uncovers 
the secret information like cryptographic keys to 
exploit the device. 

Timing Analysis, Power Analysis. 

Botnet attacks 

These are a collection of infected devices 
(zombies) like printers, cameras, sensors, and 
similar smart devices, which launch large-scale 
DDOS attacks to compromise other intelligent 
devices. The principal components are 
command and control servers, along with the 
bots. 

Mirai, Hydra, Bashlite, lua-bot, Aidra [51].  

Protocol-based 
attacks 

The attacks work against the connectivity 
protocols of IoT. 

RFID-based (replay, tracking, killing tag) 
Bluetooth based (bluesnarfing, bluejacking, 
Dos), 
Zigbee Based (sniffing, replay, ZED sabotage 
attack) [52]. 

Table 4. Anomalies in IoT. 

Type Description 

Point Anomaly 
It is the most basic type of anomaly. One data point is abnormal in comparison to the rest of the 
data points. 

Contextual 
Anomaly 

It is a sophisticated type anomaly type where a data point is considered unusual in a specific 
context. For example, if any system accesses services at a particular time and if there is a sudden 
change in the background, i.e., time changes, it is considered abnormal. 

Collective anomaly 
Data points are anomalous w.r.t to the whole dataset or the entire services but not by themselves 
individually. 
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3.1. IoT Security Analysis 
The listing of various attacks and anomalies prescribes the difficulties in the 

construction of a secure smart network. The prime goal is to safeguard the security 
requirements (integrity, confidentiality, availability) of legitimate users. Various 
researchers have carried out a rigorous survey to list down all possible attacks, their 
nature, challenges, and countermeasures to deal with them. 

Sadique et al. [53] highlighted the critical future security challenges in IoT and open 
issues w.r.t the various IoT layers. Additionally, Riahi et al. [54] presented a roadmap to 
IoT security by representing a systemic approach to it by discussing its every aspect, 
beginning from persons/nodes to the ecosystem to managing privacy, trust, responsibility 
in the technology via the assistance of a smart manufacturing case study. Mardiana Binti 
et al. [55] discussed all recent trends in IoT security from 2016 to 2018. Additionally, a 
layer-wise security approach in IoT with all possible attacks, tools, and simulators is 
discussed. 

Gudymenko et al. [56] present a list of various critical challenges in IoT, required to 
be addressed to maintain security in this area. Whitter et al. [57] presented a research 
paper that primarily focuses on the various historical attacks and malevolent activities 
that happened against the IoT networks. Additionally, the solutions to deal with them and 
possible areas for future developments are mentioned. 

Benzarti et al. [58] presented a taxonomy of attacks against IoT by categorizing them 
into six classes based on architecture, attributes of security (integrity, authentication, 
confidentiality), communication disturbance, faulty or corrupted packets, channel, device 
functionalities. Additionally, the solutions to various existing attacks in different IoT 
applications like smart grid, smart home, VANET (vehicular ad-hoc networks) are 
discussed. Additionally, the survey conducted in [44–46] provides different IoT attack 
taxonomies and countermeasures to deal with it. 

3.2. IoT Vulnerabilities 
Vulnerabilities, in general, refer to the weaknesses of a system that can be 

overburdened by the adversaries to perform unintended activities. In IoT, hackers can 
exploit the integrity, confidentiality, availability of services to legitimate users by taking 
advantage of such teething problems[59]. Therefore an understanding of such delicacy in 
the system becomes mandatory before the development of appropriate defense 
mechanisms. The authors presented a multidimensional view of the IoT vulnerabilities 
with a detailed explanation of their effects on the diverse security paradigms [9]. OWASP 
(Open web application security project) has also listed the top ten IoT vulnerabilities [60]. 
Figure 5 explains the prime categorization of various IoT vulnerabilities. 
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Figure 5. Vulnerabilities in IoT. 

a. Device Security: This aspect of security surface primarily includes physical damage 
to the IoT devices mainly caused by unauthorized access to them. The foremost rea-
son is that these devices are in open territory, thus wholly left at the disposal of nature 
and adversaries. Therefore, they are easily getting damaged, or hackers can clone the 
firmware to produce their malicious counterpart and can also manipulate the data. 
Typical examples include the cloning of radio frequency signals in electric cars to 
unlock them or gaining access to the controller area network bus of the vehicle to 
execute any damaging activity.  

b. Insecure Booting: Lack of proper verification before the implementation of the de-
vice refers to insecure booting. This aspect is an essential requirement in terms of 
maintaining security because it provides a comfortable surface for attackers to launch 
their malicious activities by injecting the devices before their launch [61]. The exper-
iment conducted by researchers in [62] against the nest thermostat and Nike + Fuel 
band, a wearable device to depicts the detrimental effects of the booting process. 

c. Network-Based Vulnerabilities: These typically target the connectivity of IoT 
devices, thus making them susceptible to a large number of attacks. These typically 
include the insecure services within the devices themselves, lack of proper authenti-
cation and encryption, i.e., using default or weak passwords, and deploying encryp-
tion techniques that do not match the standards of lightweight cryptography in IoT, 
thereby hampering the security. The intruder can perform attacks like DDoS, Sybil 
attack or could also steal valuable data via the network vulnerabilities. Further due 
to limited memory and resources in the IoT devices it lacks appropriate encryption 
to protect the data. In the medical field, attackers can gain control over external de-
vices like insulin pumps or cardiovascular objects to play with the health of people 
[63]. 
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Therefore, a deficit of a robust crypto-algorithm makes the devices further vulnera-
ble. Research work related to authentication and encryption is provided in [64,65] , re-
spectively. The situation is further worsened via the presence of open ports. These are a 
significant threat to the IoT devices because they can expose the existence of smart devices 
in the surroundings, thus providing a platform to adversaries to conduct mischievous 
activities like modification of the firmware, injecting malicious code. The well-known 
Mirai botnet attack took the advantage of the open telnet ports to create an army of 
multiple compromised devices on the internet. To further fulfill its intentions Mirai used 
a brute force approach by attempting default factory credentials or the dictionary of 
attacks to generate the username and the password. Sivanathan et al. [66] explained the 
use of SYN and TCP scans to discover IoT devices at the disposal of open ports. Further, 
Markowsky et al. [67] described the usage of dark web SHODAN [68], Masscan, and 
NMAP to find and connect to vulnerable devices in the network.  
d. Software-Based Vulnerabilities: These typically include the usage of readily 

available, guessable, and default passwords, also in addition to this, not performing 
suitable software updates/patch updates or using deprecated or outdated software 
libraries or components. All these factors together increase the vulnerability of the 
entire system [69] explains the attacks launched due to firmware modification. 
Further, deliberately following weak programming practices, i.e., launching 
firmware with well-known vulnerabilities, aids hackers to perform their dark 
activities. 

e. Insufficient Privacy: This means compromising user's personnel information 
without seeking their permission because of current default settings that often restrict 
users from altering the configurations. This can be life-threatening in the case of e-
health services. A pacemaker with wireless capabilities was found vulnerable 
thereby exploiting the health of the user [70]. 

f. Insufficient Audit Mechanism: Lack of sufficient logging mechanism lead to such 
vulnerabilities. The research survey in [60,61] provides some insights towards audit 
mechanisms in IoT. Figure 6 depicts the most vulnerable IoT devices by 2020. The 
devices, mainly security cameras, virtual assistants, smart TVs, and smart lights, have 
proved to be the most vulnerable towards adversaries [71]. These devices can be eas-
ily hijacked to perform both active and passive attacks. In the case of security cam-
eras, mainly, the fault lies at the purchase corner of these. Buying cheap models can 
open doors for hackers. Similarly, in the case of home assistants, eavesdropping may 
be a carrier of your activities to the adversary. Additionally, remote access to various 
devices can be undertaken to perform all kinds of mischief [72]. 

3.3. Intrusion Detection System 
Several countermeasures are proposed to deal with the wide variety of attack 

scenarios in IoT. These vary from better authentication, device identification to 
introducing lightweight encryption to several others like adding risk assessment models, 
and intrusion detection at higher layers of IoT. In this survey, we particularly narrowed 
our research to IDS-based attack and anomaly detection. It is defined as an appropriate 
ensemble of various tools, techniques, and methods required to detect unintentional 
activities of the hackers. 

Figure 6 provides a view of the multiple properties of IDS like its occurrence, 
placement, recognition strategy, and usage frequency, the knowledge of which is essential 
for its proper implementation to achieve the desired results. The properties are described 
in terms of whether they are host-based or network-based, i.e., deals with attacks and 
anomalies launched against the entire network by analyzing all the incoming packets in 
the system. Snort, Suricata, Zeek are some of the examples of NIDS, or they can be hybrid, 
i.e., composed of both HIDS and NIDS. It is referred to as the network monitoring stage 
of IDS, which is followed by analysis. Finally, the detection stage, which is again 
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categorized into misuse-based, anomaly-based, or can be policy-based [63,64]. There are 
several IDS techniques based on data mining, ML, statistical model, payload model, rule-
based, but due to the massive data generation in IoT, ML can be thought of as a suitable 
paradigm to provide intelligence in this area. It can leverage the vast data generated by 
IoT devices for training to create patterns and behavior to make appropriate predictions 
and assessments. Thus IDS based on ML-based learning approaches can prove to be an 
excellent tool for attack detection in a smart IoT environment. 

 
Figure 6. Intrusion Detection System. 

4. Learning-Based Solutions for Securing IoT 
The vulnerabilities, attacks, and anomalies mentioned in the previous section focused 

on the broad range of concerns brought in our lives due to the expansion of IoT. Addi-
tionally, the advances in big data and computing power have further surfaced the plat-
form for carrying out unintentional activities by the adversaries. However, ML-based spe-
cialists identify learning approaches as a productive tool to deal with IoT-based security 
issues, thereby leading to the amalgamation of ML and DL approaches with IDS technol-
ogy. Figure 7 depicts a classification of existing learning techniques. In this section, we 
will mainly focus on various learning approaches, their types, and multiple solutions for 
IoT security based on these approaches. Existing methods can be classified based on the 
mode and the approach used. Figure 8 provides a visual sculpture of these. 
• Based on the mode: There are two modes: offline and online. In offline mode, the 

input is processed in batches and is known as lambda learning, whereas in online 
mode, the data are processed piece by piece serially and is known as kappa learning. 

• Based on the approach: There are three approaches: supervised, unsupervised, and 
reinforcement. 
Supervised Learning: It is a procedure of learning the functionality from the training 

dataset. The prime goal is the estimation of the mapping function to predict the correct 
output labels for the prescribed new data. Based on the essence of target labels, it can be 
classified into classification and regression [73]. The technique is enormously useful in 
fault detection and misuse-based intrusion detection, quality of service, event detection, 
etc. The prime prerequisite in implementing supervised ML algorithms in IoT is the 
availability of the dataset with signatures for known attacks for learning purposes. There 
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are various supervised learning approaches like Knn [74], Decision tree [75], SVM [76], 
Naïve Bayes [77], ANN [78] utilized for attack detection in IoT. Despite high detection 
statistics, lack of detection of different attack footprints, more resource consumption limits 
their usage in the era of numerous Zero-Day attacks. 

 
Figure 7. Various Learning approaches. 

Unsupervised Learning: It is very useful in modeling the elementary or the 
concealed structure of the data due to the non-availability of the labeled dataset. The 
unavailability of the labeled dataset differentiates it from the supervised approach, thus 
promotes a comprehensive evaluation of the data. It is majorly bifurcated into three 
sections, namely clustering [79], dimensionality reduction [80], and density estimation. 
Hence, these approaches are instrumental in detecting outliers and novel anomalies. 
Additionally, Dimensionality reduction techniques like PCA helps in eliminating the 
features which have no contribution to class separability. 

Reinforcement Learning: The technique is concerned with the application of 
appropriate actions taken by the software agents in an environment to maximize the 
cumulative reward. More generally, it can be a catchphrase as learning from the 
environment. Two principal methods of reinforcement learning include policy search and 
value function approximation. The primary classification includes Q-learning, TD-
learning, and R-learning. The mentioned ML classification techniques with their pros and 
cons indicate that there is no particular algorithm that is applicable in all the situations. 
Additionally, the increase in the number of IoT devices and the continuous evolution of 
zero-day attacks have urged the researchers to come up with Ensemble, hybrid, and other 
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fused models to overcome the pros and cons of individual classifiers. Figure 8 depicts 
various learning models of machine learning. 

Federated learning (FL): Another thriving machine learning paradigm that is capa-
ble of sorting the issues of security in IoT devices is federated learning (FL). This advanced 
machine learning technique is capable of training the machine learning models in a dis-
tributed manner. Traditionally, there was a significant communication overhead during 
the transmission of updates between the centrally managed server and the connected de-
vices in the network. The network overhead leads to compromise the data rates, reliabil-
ity, privacy, and resource management [81]. However, with the advent of FL methods, 
there is a significant improvement in the security aspect of smart systems. The learning 
models under FL takes the advantage of the distributed nature of learning and ensure the 
transmission of only learnable parameters instead of whole datasets. FL has been of im-
mense use in intelligent transport systems thereby ensuring the security and privacy of 
data. 

 
Figure 8. (A) Classification. (B) Regression. (C) Clustering. (D) Dimensionality reduction. (E) Reinforcement. 

4.1. ML-Based Solutions for IoT Security 
Arthur Samuel coined the term “Machine Learning“ in 1959 and defined it as a field 

of study that gives computers the ability to learn without being explicitly programmed 
[67]. It is used to comprehend a model defining the particular behavior or characteristic 
and then subsequently utilizing it to predict the traits in seen or unseen instances. The 
flexibility, adaptability, and low CPU load of ML algorithms can help us build numerous 
analytical models with better accuracy and reduced false alarm rates for attack and 
anomaly detection. Further, understanding various ML approaches is a prerequisite to 
understanding their suitability towards various attacks and anomalies. Table 5 
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summarizes the different machine learning-based solutions to secure IoT systems against 
the growing attacks. 

Anthi et al. [14] proposed novel real-time IDS named pulse, which deploys 
supervised ML for the identification of maleficent activities like scanning, probing, and 
other elementary forms of DOS attacks. In this work, the authors developed a smart home 
testbed and with cross-validation concluded the better results by using the Naïve Bayes 
technique. In a similar work [11], a two-tier machine learning-based NIDS is proposed 
with preprocessing using wekas and the construction of an autonomous model based on 
hierarchical agglomerative clustering. Additionally, Pajouh et al. [12] introduced a state-
of-the-art technique for subsequent detection and classification of malignant activities like 
the user to root and remote to local attacks by acquainting the readers with TDTC (two-
layer dimension reduction and two-tier classification module) model. Both PCA and LDA 
are employed to reduce the computational complexity, then succeeding forward by the 
application of Naïve Bayes and CF-KNN along with the KD tree to present a more efficient 
classification. 

Shahid et al. [82] presented a smart home monitoring system to generate legitimate 
traffic data with the malicious traffic created offline by deliberately attacking the device 
or by using IoT honey-pots. Six machine learning algorithms were deployed, followed by 
a comparison of their accuracies in which Random Forest outperformed. In another work, 
Srinivasan et al. [83] leveraged the power of machine learning techniques like random 
forest, support vector machine, MLP (multilayer perceptron) to ease the recognition and 
localization of link faults in the highly sophisticated network like IoT using a mininet 
platform. 

Moustafa et al. [84] proposed an Adaboost ensemble model (Decision tree, Naïve 
Bayes, ANN) to detect malevolent activities, particularly attacks in the network by using 
features of DNS, HTTP protocols in TCP/IP models. It is a three-step framework initialized 
by feature extraction by using Tcpdump, Bro-ids, and other extractor modules followed 
by generation of data-sources from UNSW-NB15 and NIFS dataset and simulated IoT 
traffic. In [13], the authors conducted suitable experimentation to generate their own 
synthetic data to inspect and carefully scrutinize the usage of ANN (Artificial Neural 
Networks) in IoT gateway devices present in the transport layer to work at the security 
aspects of the technique. Further, Ioannou et al. [85] presented an ML approach known as 
a support vector machine for the detection of malicious activities within the IoT network 
exploiting actual IoT traffic with specific network layer attacks such as blackhole, selective 
forward, etc. 

On similar lines, Zhao et al. [86] proposed a novel framework for real-time intrusion 
detection for numerous attacks and other suspicious activities occurring at the network 
layer using online machine learning with better time complexity using softmax regression. 
In [87] the authors presented an online sequential extreme learning machine model for 
intelligent detection of attacks at the fog nodes to provide a faster, scalable, and flexible 
interpretation of benign and adversarial traffic coming from the IoT application. In 
another notable work, Hasan et al. [15] compared the anomaly detection mechanism of 
various ML techniques (LR, SVM, DT, RF ANN) in a virtual environment producing 
synthetic data in which random forest outperformed with 99.4% accuracy. 

Lee et al. [88] come up with profiling of abnormal activities of IoT devices via the 
support of a variety of machine learning algorithms. The approach considers signal 
injection as a threat to IoT and hence finds it as a principal attack in his research. In [89] 
the authors proposed a unique human in the cycle intrusion detection via ML to reduce 
the dependency on a large amount of labeled data for anomaly detection exploiting the 
query selection mechanism for unlabelled data. Further, Shafi et al. [90] presented a fog-
aided SDN (software-defined networking) structure for anomaly detection and 
prevention for IoT networks, mainly to overcome the pitfalls of screening at the cloud and 
at the devices, evaluated by simulating an IoT network using the cooja simulation tool. 
However, due to certain limitations like processing power, scalability, manual feature 
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selection, and heterogeneous data handling pushes us to come with better learning 
approaches. To deal with some aspects of limitations in ML, DL was implemented and 
analyzed in the security region of IoT [91]. 

4.2. Deep Learning-Based Solutions in IoT Security 
Deep learning technology is considered to be a successor of ML with the capability 

of mimicking the human brain, thus falling under the categorization of AI. Deep networks 
have the potential of achieving better accuracy in terms of predictions and classifications 
because of the multilayered composition. This composition, when combined with IDS, can 
achieve performance at a superhuman level for the detection of new attacks and anomalies 
[16]. The principle benefit of the technology is the omission of manual feature selection 
and the capability to model non-linear relationships, thereby achieving an edge over ML. 
Moreover, the ability to handle Big Data, automatic feature extraction further backs the 
usage of technology in IoT. The essence of the technology revolves around cascading 
multiple layers for predicting the output. To accomplish the non-linearity activation 
function plays an important role. Table 6 lists the activation function for deeper networks 
[92]. Furthermore, Table 7 summarizes the different deep learning-based solutions used 
to secure IoT systems. Deep learning can be classified into three classes, known as 
discriminative, generative, and hybrid models.  

Discriminative Models: These models belong to the class of supervised learning and 
thus are used for treating problems of classification and regression. If the input label is X 
and the corresponding output label is Y, then discriminative models require to learn the 
conditional probability of target label y, i.e., p(y|x) [93]. 

Convolutional Neural Network (CNN): It is a feed-forward deep artificial neural 
network that leverages the concept of convolution for predictions. The notion is to allocate 
importance to different parts of the image by connecting only a smaller region of a 
particular layer to the layer, succeeding it. The primary concept is to reduce the size of 
weights and the neurons. The functionality of CNN revolves around the four layers, 
namely the convolution layer, to reduce the size of weights followed by the Relu layer to 
introduce non-linearity into the network [94]. Then come the pooling and the fully 
connected layer, which subsequently perform the task of shrinking the stack size obtained 
from the previous layer and performing the actual classification, respectively. Nowadays, 
the technique is finding usage in the sector of anomaly detection [93,94], the approach is 
fused with other methods for anomaly detection, thus providing a profitable proposal in 
this sector.  

Recurrent Neural Network (RNN): This type of feed-forward artificial neural 
network posses internal memory. The associations between the various units form a 
digraph, thereby allowing the structure to copy the output and propagating it back to 
RNN at every timestamp. These associations permit the composition to evince temporal 
dynamic behavior. The characteristics mentioned above make it appropriate for 
applications like speech recognition, time series prediction, and anomaly detection [95]. 
There are many variants to the basic RNN, namely hope field network, fully recurrent, 
Elman and Jordan networks, etc. 

Long Short Term Memory (LSTM): It is a type of RNN with an ability to remember 
long-time dependencies, thus overcoming the limitations of RNN. The composition of 
LSTM includes memory cells for keeping back the information along with three gates, 
namely forget, input, and output for memory orchestration [96,97]. 

Generative Models: These models belong to the class of unsupervised learning. They 
are used when there is no presence of labeled data. The model requires calculating the 
joint probability p(x,y) where x and y are input and output variables, respectively. 
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Table 5. Tabular Representation of Machine Learning Approaches. 

Author 
Algorithm with 
Implementation 
Platform 

Threats Challenges Performance 
Evaluation 

Anthi et al. [14] Naïve-Bayes 
Platform: Weka 

Network probing, 
scanning, Dos attacks-
SYN, UDP flood attacks. 

No clustering of 
similar devices, 
limited attacks 
covered. 

scan attack: precision-
97.7, recall-97.7, f-
measure-97.7 
SYN: precision-80.8, 
recall-68.8, f-measure-
65.8 

Divyatmika et al. 
[11] 

Clustering+ KNN(data 
classification) + MLP 
(misuse detection) + 
reinforcement(anomaly 
detetion) 
Platform: Weka 

Dos, probe, Remote-to-
local(R2L), User-To-
Root(U2R). 

- Accuracy: 99.95%(with 
reduced false alarms). 

Pajouh et al. [12] 
PCA + LDA (Feature 
selection),naïve bayes + 
CF-KNN (classification) 

Dos, probe, Remote-to-
local(R2L), User-To-
Root(U2R) 

Anomaly and 
intrusion detection at 
the application and 
support layer, 
considering different 
protocols of the 
network layer. 

Accuracy: 
Probe Attack: 87.32, 
Dos Attack: 88.20, 
U2R-70.15, 
R2L-42 
Detection rate: 84.86, 
False alarm rate-4.86 

Shahid et al. [82] 
Random forest, Decision 
tree, ANN, KNN, GNB 
(Gaussian Naïve Bayes) 

- 

Integration of 
anomaly detection 
models with a 
software-defined 
networking 
environment. 

Accuracy: 
RF-99.9%, DT-99.5%, 
SVM-99.3%, 
KNN-98.9%, ANN-
98.6%, GNB-91.6% 

Srinivasan et al. [83] 
Random forest, MLP, 
SVM 
Platform: mininet  

Link fault identification. 
Testing different ML 
algorithms. Accuracy: 97% 

[97] 

Ensemble model 
(Decision tree + Naïve 
Bayes + ANN) 
Platforms and tools: 
NodeRed middleware, 
tcpdump, Bro-IDS, 

Analysis, backdoor, dos, 
exploit, fuzzers, generic, 
Reconnaissance, worms. 

Considering other IoT 
protocols, 
concentrating on ore 
zero-day attacks. 

Accuracy with DNS 
data source: 99.54%, 
Accuracy with HTTP 
data source: 98.97% 

Canedo et al. [13] 
ANN 
Platform: R(neural-net 
package). 

Invalid data entries. 

Generating data 
entries by creating a 
testbed with more 
devices and sensors. 

N/A 

Ioannou et al. [85] 
c-SVM 
platform: RMT tool(Run 
time monitoring tool). 

Routing layer attacks 
(sinkhole, blackhole, 
selective forward). 

Placement of IDS in 
high-energy gateway 
nodes. 

Accuracy: 100% (with 
the same topology) 
Accuracy = 81%(when 
the topology is changed) 

Zhao et al. [86] 
PCA (to reduce 
dimensions) + KNN 
(classification + Softmax 

Dos, probe, Remote-to-
local (R2L), User-To-
Root (U2R) 

 
Accuracy: 85.24% with 3 
dimensions, 85.19% 
with 6 dimensions 
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regression 
(classification). 

84.406% with 10 
dimensions. 

Prabavathy et al. [87] 

OS-ELM (online 
sequential extreme 
machine learning) 
Platform: MATLAB 
(R2013a). 

Dos, probe, Remote-to-
local (R2L), User-To-
Root (U2R). 

More depth analysis 
of zero-day attacks is 
required. 

Accuracy: 97.16% 
(forbinary classification) 
TPR (true positive rate): 
normal-98.63%, 
probe-84.2%, 
Dos-96.61%, 
U2R-53.81,R2L-71.87% 
(for multi class 
classification). 

Hasan et al. [15] 

LR, SVM, ANN, RF, DT 
Platform: python with 
Numpy, pandas, sci-kit 
learn.  

Dos, data type probing, 
malicious control, 
malicious control, 
malicious operation, 
scan, spying, wrong 
setup. 

More robust 
algorithms are 
required, more 
attention is required 
for real-time detection. 

Accuracy: 
LR-98.3% 
SVM-98.2% 
DT-99.4% 
RF-99.4% 
ANN-99.4% 

Table 6. Activation Functions. 

Activation Function  Nature Range  Classification Mathematical Notation Usage 
Sigmoid Non-linear 0 or 1 Binary classification f(x) = 1/1 + e−x Output layer 
Tanh  Non-linear −1 or 1 Binary classification Tanh(x) = 2 × sigmoid(2x) − 1 Output layer 
Relu [98] Non-linear [0,inf] Multiple classification f(x) = max(0, max) Hidden layer 
Swish Non-linear -inf to inf Multiple classification f(x) = x × sigmoid(x) Hidden layer 

Autoencoders: It is a class of deep learning model which relies on the concept of 
rebuilding the input after performing suitable compression via the application of an 
encoder followed by a decoder [99]. The prime task is to achieve dimensionality reduction 
to visualize the data and gather suitable projections from it provided input features are 
not independent and have some correlation. Vanilla, convolutional, multilayer, 
regularized are some variants of autoencoders. Meidan et al. [100] presented N-Balot 
(network-based detection of IoT botnet attacks using deep autoencoders) to detect botnet 
attacks using autoencoders. 

Roopak et al. [17] presented a deep learning-based hybrid approach particularly for 
DDOS attack detection and comparisons were made with the standalone Machine 
learning techniques. In another work, McDermatt et al. [101] provided a novel 
bidirectional long short-term memory-based RNN for the sensing of botnet activities 
amongst the consumer IoT device. Packet level detection was performed along with word 
embedding for recognition of text and conversion of packets into integer format. Further, 
Rahul et al. [16] proposed a deep neural network-based approach to predict attacks on a 
NIDS. 

On similar lines, Diro et al. [102] presented a deep learning model for the distributed 
detection of attacks to leverage the self-teaching and compression capabilities of DL to 
implement the network detection of attacks at fog nodes. The results showed that 
distributed attack detection provided better accuracy compared to the centralized 
schemes. Further, an attempt to collaborate DL technology with its shallow counterpart 
was made by Shone et al. [103]. They presented a novel unsupervised learning approach 
named NDAE (non-symmetric deep autoencoder) for feature engineering combined with 
random forest for classification. 

Ullah et al. [104] proposed a tensor-flow-based Deep neural network approach to 
detect software piracy and other malware-based attacks in the industrial IoT network. 
This DNN is used for capturing pirated software from the source code of different 
programmers from google code jam followed by an application of CNN to detect 
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footprints via binary visualization on colored images of malware files. Traffic 
classification plays a very vital role in ensuring security in IoT networks. Yao et al. [105] 
present an end-to-end deep learning-based capsule network approach for traffic 
classification and identification of malware, unlike the conventional DL methods. 

In another work, Telikani et al. [106] proposed a CSSAE technique for intrusion 
detection, especially in IoT networks. The main focus of the paper is the class imbalance 
problem in the datasets, which tends to bias the results towards the majority class. Pajouh 
et al. [107] also deployed LSTM for malware detection in ARM rooted IoT applications. In 
[108] the authors exploited RNN, and network coding in amalgamation to prevent 
eavesdropping attacks in heterogeneous IoT environments with highly unreliable storage 
structures and proposed two algorithms FAGA() (failure-aware greedy allocation) and 
FLAGA() (failure-and-load aware greedy allocation) to test the failure condition of storage 
devices. 

Table 7. Tabular Representation of Deep Learning Approaches. 

Author Dataset 
Used 

Algorithm with 
Implementation 
Platform 

Threats  Challenges  Performance Evaluation 

Roopak et 
al. [17]  

CICIDS2017 

MLP,1-d CNN,LSTM, 
CNN + LSTM 
Platform: Keras–
Tensorflow, machine 
learning implementation 
MATLAB2017a. 

DDOS 

Lack of Deep 
learning models 
that can work with 
highly unbalanced 
datasets. 

Accuracy: 
1dCNN-95.14%, 
MLP-86.34%,LSTM-
96.24%, CNN + LSTM-
97.16%. 

McDermatt 
et al. [101]  

Dataset 
generated 
by creating 
a testbed. 

BLSTM 
Mirai(scan, infect, 
control, and attack), 
UDP. 

Lack of 
comprehensive 
dataset including 
more attack 
vectors. 

Accuracy: 99.99% 
(Mirai), 98.58% (UDP). 

Rahul et al. 
[16]  KDD cup 99 

DNN with three layers 
Platform: Keras 
(Tensorflow). 

Dos, probe, User-To-
Root (U2R), Remote-
to-local (R2L). 

Lack of real-time 
IoT dataset, 
evaluation of 
deeper networks. 

Accuracy: 93%. 

Diro et al. 
[102]  

NSL-KDD 

Deep learning model 
with 150, 120, 50 neurons 
in first, second, and third 
layer respectively. 

 
Implementation of 
technique on 
different datasets. 

Accuracy: 96% to 99% 
99% (for two class-
normal and anomalous) 
98.27% (for 4 
class(normal, dos, probe, 
U2R and R2L) 

Shone et al. 
[103]  

KDD cup 
99, NSL-
KDD 

NDAE (non-symmetric 
deep auto-encoders) 
Platform: GPU enabled 
tensor-flow. 

Dos, probe, User-To-
Root (U2R), Remote-
to-local (R2L 

Lack of real-time 
traffic for 
appropriate 
analysis. 

Accuracy:  
94.58% (Dos),  
94.67% (probe),  
3.82% (R2L),  
2.70% (U2R). 

Ullah et al. 
[104] 

Google code 
jam, 
Leopard 
Mobile 
dataset1 

Deep neural networks 
Platform: Tensor-flow 

Pirated software and 
malware 
threats(industrial 
IoT). 

- Accuracy: 96% 
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Yao et al. 
[105] UTSC-2016 

Capsuleapproach(1-D 
CNN + capsule 
networklayer + LSTM + 
output layer. 
Platform:Python2.7, 
TensorFlow1.8.0 

Malware threats. - 
Higher classification 
accuracy compared to 
traditional approaches. 

The complete inspection and scrutinization of the prevailing ML and DL techniques 
concerning the survey conducted in this groundwork stipulate the following trends for 
anomaly detection in the IoT. As a matter of fact, concerning the non-availability of a par-
ticular IoT dataset has advocated researchers to orchestrate their experiments either by 
using some non-IoT series of data or come up with their data records [108,109]. Further, 
the survey conducted also helps us to reach some conclusions for the learning approaches 
which includes their advantages, disadvantages, and their suitability towards the various 
known attacks which is depicted in Table 8. 

Table 8. Conclusions about learning approaches. 

Ml And Dl 
Techniques Advantages Disadvantages Suitability Towards the Attacks 

DT 

Inherent feature selection, less 
preprocessing required, simple and 
easy to implement, can handle 
missing values, coupling with 
clustering decreases the processing 
time in misuse-based detection [29]. 

Large training time, large 
complexity, small 
alterations cause significant 
changes. 

C4.0, C5.0 show very similar 
results to ANN in [110] with real 
IoT data. 
J48 shows a high affinity towards 
the DOS attack [111]. 

SVM 

The Huge success rate in IDS, best 
for binary classification, requires 
small datasets for training, enhanced 
SVM shows better results in novel 
and real attacks. 

Reveals its weakness in 
multiclass classification, 
massive consumption of 
memory, depends on the 
kernel function. 

It is used in [9] for attack 
detection. 
Also useful in spoofing attacks, 
intrusions in access control [112], 
online outlier detection [113]. 

KNN 
It has a Fast training phase and 
makes no assumptions about the 
data.  

It requires abundant 
storage, expensive, depends 
on the value of K, and 
suffers from the 
dimensionality curse. 

Mostly used in combination with 
other classifiers [48,107]. 
Useful for access control 
intrusion detection, malware. 

RF 
No feature selection, no overfitting 
problem, usually has the best 
accuracy. 

Time-consuming because of 
the development of decision 
trees. 

It has achieved 99% accuracy. for 
the DOS attack [106]. 
Useful for malware detection,link 
fault detection [83], access 
control.  

NB Robust towards the noise, simple and 
easy to implement 

It cannot capture useful 
information because of the 
assumption of 
independence amongst the 
features. 

Used in [49] for intrusion 
detection, access control. 

ANN 
Robust model and can handle non-
linear data. 

It suffers from overfitting, 
and the technique is time-
consuming, selection of 
activation function is 
another overhead and 
estimating an appropriate 

Very useful DOS attack detection 
[83,114]. 
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number of units in each 
layer. 

RNN Efficient modeling of time-series data 

Difficulty in training, cannot 
remember very long 
sequences with Relu or tanh 
activation function [115]. 

Eavesdropping [107]. 

LSTM 

Reduces a load of feature 
engineering, effective for 
unstructured datasets, can remember 
long sequences of attack patterns. 

Difficult to train because of 
gigantic memory bandwidth 
requirements. 

IoT malware [108], botnet 
activities, used in [116] for attack 
detection in fog networks. 

The table mentioned above will assist readers with the choice of learning approach 
they want to implement in their researches based on their advantages, disadvantages, and 
their suitability towards the various attacks. 

5. Case Studies 
5.1. Healthcare and IoT 

The innovation in numerous IoT technologies has led to the decentralization of 
healthcare mechanisms from being traditional to a customary localized forum via the as-
sistance of IoT-authorized gadgets. These gadgets are based on the concept of a multisen-
sor framework for recording various parameters. These include recording blood sugar, 
ECG (electrocardiogram), pulse, temperature, etc. of the patient. This customization sup-
ports the notion of remote health tracking, which in particular involves at-home medica-
tion, elderly care, or any fitness program [117–119]. Healthcare in IoT primarily involves 
four basic entities, which are actors, sensors, communication networks, and applications. 
The actors include the patients, clinical staff involving the doctors, nurses, experts. Sensors 
are used for illuminating the actors with paramount requirements and subsequently dis-
patching the information via a suitable communication network [120]. There are profuse 
devices prevalent for reading and tracking vital patient data and other medical statistics. 
These devices range from smart wearables like smart bands, watches, shoes to intelligent 
video cameras and meters. Applications assist with real-time notifications, thus aiding 
any emergency services. 

The real-time monitoring of data generated by smart devices and their transmission 
in the ecosystem is very critical to intelligent decision-making. These intelligent systems 
work autonomously without human intervention and decision regarding mitigating a 
specific threat is taken in real-time after adapting to environmental changes. Figure 9 de-
picts secure smart healthcare management with the use of technologies like artificial in-
telligence, blockchain, machine learning, and deep learning providing autonomous work-
ing and decision making. Sensors are used for reading patient's data and are connected to 
the microprocessors. These microprocessors are further connected to any wireless com-
munication technology for routing and forwarding the data through the gateway. The 
data are stored in the virtual machines popular as clouds for preprocessing and analysis. 
These data can be accessed by doctors, experts, and even patients. However, a proper 
security mechanism is required to prevent any kind of damage by the adversaries. 

Various IoT architectures have progressed over the past years. Some of the promi-
nent architectures are given. For example, mHealth is a primary health care system with 
a three-layered structure. The layers include a data collection layer for apprehending and 
collecting the data followed by a data storage layer, which provides for stocking the data 
in the stack pile racks, and a data processing layer for a proper inspection and scanning 
of data [121]. Additionally, 6Lowpan consists of numerous access points with forwarding 
and routing capabilities. The deployed sensor nodes, along with the access points, lead to 
the formation of clusters. The connection is achieved via the assistance of IPV6. This ap-
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proach is preferred over others due to its low energy requirements, which makes it suita-
ble for the battery-powered sensor. Gao et al. [122] discuss a Zigbee-based structural 
health monitoring system. The revolution in WSN allows multiple sensor nodes to com-
municate wirelessly with the base station. To increase the lifetime of the network, a low-
energy communication channel is necessary. This led to the injection of Zigbee for com-
munication in the health monitoring system. 

Despite many benefits, this sector of technology suffers from various loopholes, 
which are enumerated below. The massive growth in the deadly underlying medical con-
ditions of the population requires well-organized, systematic, and efficient healthcare 
management. Despite the numerous benefits like better diagnosis, treatment, and other 
facilities, the smart and ubiquitous nature exposes it to multiple cyber threats. Cybersecu-
rity in healthcare is at a nascent stage and thereby requires proactive and improved tech-
nologies to protect it from various attacks. Understanding different security challenges 
are necessary before dealing with other intricacies of it. There are numerous challenges 
and issues for contemporary health care applications. The broadcast nature of communi-
cation in healthcare leads to the exploitation of the privacy of the patients, thus launching 
platforms for serious threats like eavesdropping. This aspect, in turn, leads to the exploi-
tation of the confidentiality of the data [123]. Furthermore, any change in the data received 
from the sensors can be life-threatening in the case of healthcare applications. Therefore, 
integrity and authentication are the two major concerns here. Moreover, the author in 
[124] depicts how emergency services can be disrupted and compromised because of a 
lack of a single cloud-based infrastructure where all e-health records can be accessed. Fur-
ther security breaches in cloud storage can worsen the situation. 

To address the above-mentioned flaws, better and improved security frameworks are 
required that necessitate the amalgamation of machine learning in this sector. Besides fix-
ing critical medical conditions like the identification of tumors, bleeds, etc., this AI tool 
can solve many security-related affairs and issues by acting as an anomaly detector. 
Newaz et al. [125] suggested the application of health guard: an ML-based security appli-
cation framework for healthcare systems. This framework leveraged multiple ML algo-
rithms (KNN, Random Forest, DT, ANN) for detecting malicious activity and was able to 
achieve an accuracy of 91%. The framework can encapsulate and observe correlations 
amongst multiple body functionalities and other crucial signs. The structure was tested 
against threats that included tamped medical devices, DOS, and other false data. To fur-
ther increase security, research is being carried out to combine ML with blockchain tech-
nology. 

Tanwar et al. [126] suggested the use of ML in blockchain to improvise data security 
and privacy. The architecture was proposed by integrating the blockchain with ML. The 
learning potential of ML combined with blockchain technology that will not only make it 
smarter but also reduce many data-oriented issues in IoT could be seen in recent works 
[127–130]. Decentralization, transparency, and immutability are the primary objectives of 
blockchain technology, which help to improve the security of the system [131–133]. This 
combination will result in correct predictions and better security. Additionally, Nilima et 
al. [134] further backed that the usage of ML with blockchain to make the system smarter 
and deal with privacy, integrity, and authentication issues. 
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Figure 9. Secure Smart Healthcare System. 

5.2. Smart Vehicular System 
In addition to ensuring security in the healthcare sector using IoT, there are many 

scenarios where the application of the internet of things is being realized. Recently, the 
application of IoT in vehicular security systems has gained huge success and attention 
[135]. The progression in intelligent technologies has opened a wide array of opportunities 
for the ever-vulnerable smart vehicle systems. The availability of 4G LTE and 5G commu-
nication spectrum has unlocked many possibilities for cyber-attacks leading to compro-
mise of security in smart vehicular systems (SVS) [136]. These connected vehicles are the 
source of generation to the enormous amount of data and therefore are vulnerable to 
many security attacks. Some of the popular security attacks on the SVS are Denial of Ser-
vice(DoS), Blackhole, Replay, Sybil, Impersonation, Malware, Falsified information, and 
timing attack [137]. All these cyber-attacks attempt to destabilize the functioning and per-
formance of the SVS. The application of intelligence on monitoring and controlling these 
sensors enabled smart vehicular systems to have made these systems more robust and 
secure. Deep learning techniques and machine learning-based algorithms like k-NN, 
SVM, decision trees, etc. are in use for developing a security solution in vehicular systems 
using IoT. An example of the Tyre Pressure Monitoring System (TPMS) [138] in the intel-
ligent and connected system of vehicles ensures proper monitoring of tyre pressure in all 
the tyres of the vehicle including the spare wheel in the boot. The system was devised for 
ride comfort and robust handling of the vehicle on the road. The use of sensors for all the 
tyres ensures the collection of real-time data for the proper safety of the vehicle. A cyber-
attack on this system may leak the collected data to the attacker, thereby compromising 
the valuable data such as the location of the vehicle, speed of the vehicle, and the braking 
behavior of the driver [139]. The prevention against such types of attacks using learning-
based mechanisms has made this system more applicable in current scenarios [140]. 
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The security challenges the smart vehicles face today could be realized from the se-
verity of security incidents in smart vehicles [141,142]. The infotainment system vulnera-
bilities are being exploited to get into smart cars [143]. Tesla motors faced the causality in 
the smart car accident all due to the compromised sensors [144]. Anand et al. [3] discussed 
the use-case of smart transportation covering the common attack surfaces and inherent 
vulnerabilities. 

5.3. Smart Manufacturing System 
With the amalgamation of hardware, software, and the internet with IoT, another 

promising domain with immense potential to improve the global economy is smart man-
ufacturing. The four vital components of any manufacturing unit or organization are pro-
cesses, people, products, and infrastructure [145]. The application of sensors in any of 
these four components results in yielding an enormous amount of data which would be 
very critical for the overall monitoring and control of the manufacturing systems. The 
main advantage of having IoT in manufacturing is the optimum functioning of these four 
components. With the benefits of IoT in manufacturing, there are pitfalls too. These smart-
systems are vulnerable to cyber threats leading to malfunction of the overall systems [146] 
[147]. However, the ever-evolving use of machine learning and deep learning techniques 
in manufacturing helps to prevent and mitigate cyber threats. One of the security issues 
in manufacturing units is the prediction and management of vulnerabilities [148]. In these 
categories of security issues, the machine learning algorithms are applied to gather the 
data to identify the areas of the fault occurrences, i.e., to predict future issues from past 
issues [149-151]. 

6. Research Challenges and Future Directions 
The expeditious advancement of IoT usage in multiple sectors brings security com-

plications to the forefront. The tremendous volumes of research conducted in the past 
years still limit IoT to its nascent stage. The prime reason for the multiple challenges IoT 
is facing that limit its expansion is in the security zone. In this section, the emerging chal-
lenges which halt the IoT growth are discussed and pinpointed in Figure 10. 

i. Intelligence-based Vulnerability Management: Firstly, the heterogeneity of the de-
vices in the smart digitized world limits the automated detection and discovery of 
the vulnerabilities. Further, adding to this is the lightweight security requirement for 
their protection. These factors culminate the need to restructure the security analysis 
platform. The survey conducted in this paper also backs this restructuring by merg-
ing AI with IoT and presenting various solutions offered in this context. However, to 
further improvise the attack discovery, detection, and mitigation, some problems 
need to be confronted. These include a lack of real-time datasets. The datasets avail-
able for the research purpose do not reflect real-world attack scenarios and are often 
unbalanced. Further, the continuously changing functionalities of the networking en-
vironment require retraining of the system, thereby adding to the overhead. 

ii. To Automate the Patch Management Process: The prime challenge to address the 
vulnerabilities in the smart devices is the lack of a single automated binary code patch 
generator that is functional across multiple platforms. The leading cause is the gen-
eration of devices by different manufacturers. Therefore, this prescribes their usabil-
ity and prevents us from achieving an appropriate and feasible solution for the firm-
ware patching. Further adding to this is the variable nature of the operating system 
and architectural patterns followed in the numerous devices. Thus, automatic patch 
generation requires a deep understanding of the entire mechanism, thereby making 
it a long-term security goal. 

iii. To manage a separate database for IoT vulnerabilities: From the studied literature 
and growing attacks, it is seen that the general IoT devices with inherent known 
vulnerabilities are flooded to the market. These IoT nodes, in turn, act as a stepping 
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stone for the adversaries to launch various attacks like Mirai, Hajime. Thus, to handle 
the insecure IoT devices, maintaining structured information about the exploits and 
known vulnerabilities in the smart environment would be of immense use. VARIoT 
is one such project working exclusively to develop a separate database for managing 
IoT vulnerabilities. 

 
Figure 10. Emerging Challenges and Open Issues. 

i. To maintain a balance between Efficiency and Security in an IoT system: In addi-
tion, a balance needs to be achieved between efficiency and data security. Due to the 
inverse nature, one often gets compromised. Therefore, incorporating ML and DL to 
the fog nodes must be explored in depth to the intelligence near the data sources to 
reduce the latency and the bandwidth. Though ML and DL can detect multiple at-
tacks, still the challenge for mitigating all possible attacks persists. Therefore, supple-
menting the research further is required by exploring the incremental machine learn-
ing near the sources. 

ii. Learning-based challenges in securing IoT: Machine Learning being known for 
extracting knowledge from the data were used for both malevolent and noble 
purposes. It is found that the potential adversaries make efficient use of these 
learning algorithms (machine learning and deep learning-based) to break the 
cryptographic secrets. For example, Recurrent Neural networks are being used by 
the authors for cryptanalysis. Furthermore, false data input feeds to the machine 
learning model result in improper functioning of the entire learning-based system. 
The problems of the oversampling, inadequate training dataset, and feature 
extraction are also a matter of concern in adding intelligence to smart environments. 

7. Conclusions 
The extensive study conducted in this research culminates in the various facets of 

IoT, beginning from the overview of the technology to the different architectural ap-
proaches. The outline is followed by an in-depth security analysis depicting a taxonomy 
of attacks, anomalies, and vulnerabilities. The technology has brought and will continue 
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to bring numerous benefits to its pertinent implementation. However, the deep contem-
plation regarding the security aspects of it highlights the raising concerns in this sector. 
Thus, appropriate defense mechanisms like access control, IDS, and authentication are 
required to handle it. Due to the non-applicability of traditional security approaches (fire-
walls, antivirus) primarily because of low memory and computational constraints, other 
defense mechanisms like IDS have gained popularity. This paper highlights the numerous 
research efforts in the application of IDS based on the ML and DL algorithm as a security 
shield in this area. Additionally, the pros and cons of the various learning techniques are 
listed with their suitability towards different attacks conducted with critical analysis. Fur-
ther, a case study highlighting the various facets of healthcare is also provided which fur-
ther helps in understanding the practical implementation of IoT and learning-based secu-
rity methods in real-world scenarios. The Smart Vehicular system and Smart Manufactur-
ing systems are also explored in terms of their applications after being connected and the 
security challenges presented as a byproduct. Furthermore, after the extensive literature 
surveyed and presented, it is found that the critical issues namely automated patch man-
agement, intelligent vulnerability management system, and a separate depository for IoT 
vulnerabilities must be handled in hand for sustainable IoT. In the future, hybrid learning-
based techniques will be explored to secure growing smart environments. 
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