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Abstract: The design and application of sensing antenna devices that mimic insect antennae or mam-
mal whiskers is an active field of research. However, these devices still require new developments
if they are to become efficient and reliable components of robotic systems. We, therefore, develop
and build a prototype composed of a flexible beam, two servomotors that drive the beam and a
load cell sensor that measures the forces and torques at the base of the flexible beam. This work
reports new results in the area of the signal processing of these devices. These results will make it
possible to estimate the point at which the flexible antenna comes into contact with an object (or
obstacle) more accurately than has occurred with previous algorithms. Previous research reported
that the estimation of the fundamental natural frequency of vibration of the antenna using dynamic
information is not sufficient as regards determining the contact point and that the estimation of the
contact point using static information provided by the forces and torques measured by the load
cell sensor is not very accurate. We consequently propose an algorithm based on the fusion of the
information provided by the two aforementioned strategies that enhances the separate benefits of
each one. We demonstrate that the adequate combination of these two pieces of information yields an
accurate estimation of the contacted point of the antenna link. This will enhance the precision of the
estimation of points on the surface of the object that is being recognized by the antenna. Thorough
experimentation is carried out in order to show the features of the proposed algorithm and establish
its range of application.

Keywords: robotic sensor; obstacle recognition; sensing antenna; flexible robot; motion control;
active vibration damping; impact detection

1. Introduction

The first works on tactile sensors can be traced back to the early 1990s, e.g., [1].
However, natural tactile sensors, such as whiskers and antennae, have been explored in
more recent years, e.g., [2]. In the last fifteen years, several attempts have been made to
build biomimetic active sensory applications, which are also known as vibrational systems.
Mammal- or insect-inspired sensing has led to the appearance of several engineering
applications, such as the work of [3], in which whisker-based texture discrimination on a
mobile robot was presented.

In the last two decades, a robust and compact sensor device has been developed that
mimics the antennae that many insects have. This is called a “sensing antenna” and is an
active sensor that consists of a flexible link moved by servo-controlled motors and a load
cell placed between the beam and the motors. This device replicates the touch sensors
that many insects have and carries out an active sensing strategy in which the servomotor
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system moves the beam back and forth until it hits an object. At this instant, information
regarding the motor angles combined with the force and torque measurements makes it
possible to calculate the positions of the hit points, which is valuable information about the
surface of an object. A 3D map of the surface of that object can then be obtained, which
allows its recognition. The design of efficient artificial sensing antennae has been addressed
by several researchers, as in [4], in which issues such as the minimum number of sensors
required and the precision attained using antennae with different profiles (cross- sections
and curvatures) were studied.

Lightweight whiskers are being developed with several geometries and are being used
in different applications like object identification and spatial localization [5], Simultaneous
Localization And Mapping techniques (SLAM) for robot navigation [6], classification of
objects based on their material properties [7], underwater sensing whiskers to measure
water flow velocity [8], whiskers for fluid velocity sensing [9], with the purpose of using
them as an aid for drone navigation in dark or turbulent environments, and soft whiskers
that actively adjust their morphology in order to regulate their sensitivity [10].

Since a sensing antenna includes a flexible link, its dynamic model is quite complex,
because it is highly nonlinear and of infinite dimensions, i.e., it has an infinite number
of vibration modes. Fortunately, the amplitude of the modes decreases as their vibration
frequencies increase. The antenna dynamic model can, therefore, often be truncated,
and only the two or three lowest vibration modes are maintained. Higher vibration modes
can consequently be ignored and regarded as noise.

Several approaches with which to analyze the data obtained from a tactile sensor
hitting an object have been proposed, e.g., [11,12]. Of the information that can be obtained
from these data, the accurate detection of the impact instant and the point of the beam at
which the antenna collides with the object are of the utmost importance when attempting
to reduce the time required to estimate the 3D coordinates of the points on the object’s
surface with which the antenna comes into contact and improve the estimation efficiency
and accuracy.

Efficient algorithms with which to detect the collision of a robot with an object are
already available. They are based on detecting when either a measured torque or its
residue, i.e., the difference between the measured torque and its value predicted by a
model, exceeds a threshold; see [13] for rigid and [14–16] for flexible link robots. Efficient
algorithms based on the same principle have recently been developed that detect the instant
at which a sensing antenna impacts an object. The algorithm proposed in [17] detected
this instant with a delay of about 6 ms. It was later improved in [18], reducing this delay
to about 4 ms. These algorithms are required in order to control robots that interact with
the environment. For example, in [19], one of these algorithms was used to achieve force
control with robustness to uncertainties in the environment.

The objective of this paper is to improve the accuracy of the algorithms that estimate
the point of contact between the antenna and the object. These algorithms should work
only in contact mode. They are then activated at the instant at which the contact is detected
by one of the algorithms mentioned in the previous paragraph. Moreover, in order to
improve the accuracy of this contact instant estimation, the control system in charge of
moving the antenna in the free space must remove the vibration of the antenna during the
maneuver [17].

The starting point for this research is defined as: (1) the servo controlled antenna
developed in [20]; (2) the control system developed in [21] to remove vibrations in the free
movement mode of the antenna; (3) one of the mechanisms described in [17] to estimate
the impact instant of the antenna; and (4) some already existing algorithms that estimate
the contact point, which will be presented in Section 2.

This paper is structured as follows. Algorithms that have already been used to estimate
the contact point of a sensing antenna are presented in Section 2. Section 3 describes our
sensing antenna prototype, while Section 4 shows the development of our new contact
point estimation algorithm, which is the contribution of this paper. Section 5 reports several



Sensors 2021, 21, 1808 3 of 24

experiments, which illustrate that the estimations provided by our algorithm outperform
previous results, and Section 6 discusses the results obtained and compares them with
previous results. Finally, Section 7 presents some conclusions.

2. Related Work

This section describes the methods that already exist to determine the point at which
the antenna comes into contact with an object. Two of these methods will be highlighted,
since they are the basis of our approach.

The first research on this subject implemented a sensing system composed of a flexible
link that moved on a horizontal plane, a torque sensor, a joint position sensor, a rotational
actuator and a payload at the tip end of the link. In [22], this setup was used to determine the
contact point of the antenna by measuring the lowest natural frequencies of the oscillations
of the link during contact mode. A schematic representation of this methodology is shown
in Figure 1a. It was proven that the contact position cannot be determined if only the
fundamental natural frequency of the beam is taken into consideration. It was subsequently
shown that the information regarding the fundamental and the second natural frequencies
is sufficient to determine the contact point, provided that: (1) the link has a uniform mass
and stiffness distributions; and (2) a light payload is added to the endpoint of the antenna in
order to avoid indeterminacy in the estimation of some points of the link. The frequencies
are then mapped onto a contact-point coordinate function. Experiments demonstrated that
this is a very useful sensing strategy and reported estimations of the contact point of the
link with relative errors of about 3% of the length of the antenna.

Another approach was shown in [11], in which use was made of a sensing antenna
composed of a flexible link, two rotational motors that generated 3D movements, joint
position sensors installed in the motors and a six-axis force/moment sensor placed at the
base of the link. The basic idea is that the contact point of the antenna can be determined
as the quotient between the measured moment and force. This paper made corrections to
this estimator, taking into account gravity and lateral slip. Three active motions are needed
in order to obtain contact point estimations with relative errors of between 1% and 5% of
the length of the antenna.

A sensing whisker was implemented in [23]. Its setup was similar to that of [11], but a
link that was much more flexible than those used in previous works was utilized, as shown
in Figure 1b. This link underwent geometrically nonlinear deflections, which complicated
the estimation of the contact point obtained from measurements of moments and forces at
the base of the whisker. The nonlinear model of elastica was used, which was numerically
reproduced in 3D. Experiments concerning contact imaging recognition were carried out
with this whisker, which yielded a resolution of 15.1 mm using a flexible link of 455 mm.
This implies relative estimation errors of the contact points of about 3% of the length of
the antenna.

Another approach is that of employing a tapping strategy in sensing distance informa-
tion by inspecting the strain according to a specific angular displacement [24]. The authors
of the paper in question developed a soft active whisker sensor that yielded errors of
over 5%.

An antenna prototype similar to [11] was developed in [20], but it had a payload
at the tip. This prototype combined an estimator of the impact instant with an estimator
of the contact point based on the static information provided by the forces and torques
measured by a load cell. Contact point estimation experiments were carried out in [25].
The resolution obtained was 14 mm for a 505 mm flexible link, i.e., a relative error of 3%.
In [17], the tip payload was subsequently removed, and its link was replaced with a link
that was almost twice as long. An estimator based on the quotient between the torque
and the force measured at the base of the antenna was used, which yielded a resolution
of 30 mm using a link of 980 mm in length, i.e., a relative error of 3% of the length of
the antenna.
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Finally, we should mention a recently conceived of algorithm that uses a nonlinear
dynamic estimator to determine the contact position in a massless link with a payload at
the tip [26]. This algorithm is simple, but has the drawbacks that its convergence (stability)
has not been proven and that only simulated results have been provided.

In this paper, therefore, we pursue the creation of a contact point estimator with the
following features:

1. It does not require a small payload placed at the tip of the antenna. This will allow
the antenna to move faster and obtain more information about the object surface in a
given period of time, since the load to be moved by the actuators will be reduced.

2. The accuracy of the estimation must be better than the accuracy provided by the
aforementioned methods, i.e., a relative error that is much lower than 3% must
be attained.

3. The algorithm must be sufficiently fast and reliable to be used in a real prototype.

In order to obtain these features, the following sections show the development of an
algorithm that is based on the adequate fusion of the information provided by two of the
previous strategies: that which uses the natural frequencies of vibration of the antenna [22]
and that which uses the static information provided by the forces and torques measured at
the base of the antenna [17]. This methodology is schematically represented in Figure 1c.

Figure 1. Different methodologies used in: (a) [22], (b) [23]; and (c) the present paper.

3. Materials
3.1. Experimental Setup

The experimental prototype is a two-degrees-of-freedom (2DOF) robotic system with
a single flexible link, which is used as a sensing antenna in haptics applications, shown in
Figure 2a. Its structure is made of stainless steel, with three legs to ensure perfect stability.
The flexible link is attached at one of its ends (denoted as the absolute origin O) to two
direct current (DC) mini-servo actuator PMA-5A motor sets that include harmonic drive
reduction gears. One servo-motor rotates the system with azimuthal movements, whereas
the other rotates the system with elevation movements. These DC motors have incremental
optical encoders that measure the angular position of the motors θ1 and θ2, which are the
azimuthal and attitude joints, respectively. The system also has a force-torque (F-T) sensor
located at the origin O, which allows the measurement of the Cartesian coupling force and
torque existing between the link and the servomotor structure. The signals are acquired
through the use of gauges located inside the sensor, which are multiplexed and amplified
in order to send the information regarding forces and torques to the data acquisition card
(DAQ). The servomotor structure, which rotates according to the motor angles, holds the
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F-T sensor and the flexible beam that is attached to one of its two sides. More information
about this platform can be found in [27].

A schematic diagram of the system is represented in Figure 2b, in which the equivalent
length of the beam is l; Pt is the tip of the flexible beam, and Pr is the beam tip itself when the
beam is considered to be a rigid beam; ∆P is a 3D vector that describes the beam deflection
at the tip; E is the Young modulus; I is the inertial moment resulting from the flexible beam
cross-section; and mt is the tip mass, which will be removed in our experiments. The tip
position is expressed in spherical coordinates φ1 and φ2 with regard to the absolute frame
O-XaYaZa, along with the motor angles θ1 and θ2, which also define the orientation of the
O-XmYmZm frame. Coupling forces and torques are provided by the F-T sensor in this
frame and are represented by ~Fm =

(
Fm

x , Fm
y , Fm

z

)
and~Γm =

(
Γm

x , Γm
y , Γm

z

)
, respectively.

Figure 2. 2DOF flexible-beam sensor: (a) mechanism design and (b) schematic diagram. F-T, torque-force.

A third frame, XcYcZc, is defined from the force measured by the F-T sensor at the
point at which the antenna touches the surface of an obstacle at a certain point of the
antenna at a determined instant: (1) the Yc axis is the direction of the reaction force of
the object on the antenna; (2) the Zc axis is perpendicular to Yc and to the vector ~OPr (see
Figure 2b); and (3) the Xc axis is perpendicular to the other two axes. Figure 3 shows all
the frames and the relations among them.

Figure 3. Frame associated with the contact point and the reaction force of the object.

The data acquisition and control algorithms were programmed using Labview. Simu-
lations were performed using Simulink/ MATLAB. The data acquisition (measurements,
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control signals and written data) sampling time was Ts = 1 ms. A scheme of the compo-
nents of the system is shown in Figure 4.

NI-6229

NI-6220

Ampli ers DC-motors

Multiplexor F-T Sensor

Servo-Motor System

Sensory System

Figure 4. Scheme of the sensing antenna.

Table 1 shows the parameters of the two motors of the system, where the subscript
i = 1, 2 defines the two degrees of freedom of the antenna. Kmi is the motor constant that
defines the motor torque applied on the basis of the input voltage; Ji is the motor rotational
inertia; vi is the viscous friction coefficient; Vnlc

i is the Coulomb friction in terms of voltage;
and ni is the reduction gear ratio.

Table 1. Parameters of the motors.

Kmi(
Nm
V ) Ji(kgm2) νi(N · m · s) Vnlc

i ni

Motor 1 0.003 6.2× 10−3 30.4× 10−3 0.48 100
Motor 2 0.003 1.8× 10−3 28.5× 10−3 0.42 100

Links of different diameters and the lengths and loads at their tips can be used on this
platform. However, there are some constraints, such as the size of the antenna and the load
at the tip, owing to mechanical limitations: the torques of the motors, the maximum speed
and acceleration of the movements and the yield stress of the material of which the antenna
is composed. In this work, a very long and lightweight flexible link made of carbon fiber
and without any load at the tip (mt = 0) was used for two reasons: (1) since the workspace
of the antenna is directly related to the length of the antenna, we chose a long antenna
in order to reach more distant points; and (2) adding a mass to the tip is mechanically
unnecessary and slows down the motion of the antenna, while the use of a lightweight
antenna without any load at the tip makes it possible to perform faster movements owing
to the reduced overall mass of the antenna. Table 2 shows the characteristics of the sensing
antenna, where E is the Young modulus, r is the radius of the link cross-section and I is
the inertial moment of the link cross-section, which can be calculated from r by taking into
account the fact that the link has a circular section.

Table 2. Characteristics of the flexible beam.

Parameters of Flexible Link Quantity Unit

Length l 0.98 m
Radius r 1 mm

Cross-section CS 3.08 mm2

Section inertia moment I 0.785 mm4

Young’s modulus E 115× 109 N
m2

Linear density ρ 4.7 g/m
Link mass mb 4.6 g
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A photograph of the robotic sensing antenna is provided in Figure 5. It shows a
camera-based system, which is used as an external sensor to measure the position of the
tip of the flexible link.

Figure 5. Photograph of the sensing antenna.

The dynamic models of these subsystems are defined below. Dots are used to denote
differentiation with respect to time t, and primes denote partial differentiation with respect
to coordinate x.

3.2. Actuator Dynamics

Our 2DOF sensing antenna is moved by two DC motors with high ratio reduction
gears. The dynamic model of each motor i (i = 1, 2 is the azimuthal or attitude joint) with a
reduction gear of ratio 1 : ni is provided by:

Γi = ni · Kmi · ui = Ji · θ̈i + νi · θ̇i + Γnlc
i + Γcoup

i (1)

where Γi is the motor torque, ui is the input voltage to the motor, θ̈i and θ̇i are the ac-
celeration and velocity of each motor (where θi is the angle of the motor i), Γcoup

i is the
moment transmitted by the actuator to the link and Γnlc

i is the Coulomb friction term, which
is non-linear.

In this equation, voltages ui are the control signals. As it is assumed that the motors
have servo amplifiers with very fast dynamics, the currents of the motors and, therefore,
the motor torques Γi are assumed to be proportional to the previous voltages. The constants
Kmi define that proportionality. Table 1 shows the values of the parameters of Equation (1).

3.3. Planar Dynamics of the Contact Sensing

Figure 6 shows a scheme of the antenna in contact mode. It represents the bending of
the antenna in a plane perpendicular to the surface of the object at the contact point (this
plane includes the origin O and the contact point). In this figure, y is the deflection of the
antenna, t is time, XY is the 2D frame of the bending plane, where X is the direction of the
antenna if it is rigid, x is the position along the beam, xc ∈ [0, l] is the point of the antenna
at which the contact is produced and yc is the deflection at that point, which is assumed to
be constant because the contacted object is rigid.

Figure 6. Scheme of the deflection on the bending plane.
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The following assumptions are made about the antenna:

1. The beam deflection is limited to 10% of the total beam length in order to obtain a
linear beam deflection. In this case, deflections y are small when compared to the
corresponding x values. The deflected abscissa, therefore, has approximately the
same value as the undeflected abscissa, arctan

( y
x
)
≈ y

x , and both x and y become the
coordinates of a point of the deflected beam expressed in the frame XY.
This assumption is justified because: (a) the figure of 10%, needed to assume a
geometrically linear deflection, is an approximate value commonly used in studies of
beam deflections and vibrations (a justification of this value can be found in [28]); (b)
though free movements are performed carrying out fast trajectories, deflections are
lower than this limit because the antenna is very lightweight, and then, the inertial
forces are low; and (c) in contact mode, the force exerted by the antenna on the object
is programmed to be high enough to allow a reliable estimation of the contact point,
but low enough to prevent exceeding this deflection limit.

2. The antenna was manufactured to have a uniform cross-section.
3. Since the antenna is a very slender beam, rotatory inertia, shear deformation and

internal friction are ignored.
4. The total mass of the antenna is much smaller than that of the contacted object, and the

object does not, therefore, move during the sensing process.
5. Regarding the antenna dynamics in the free movement, it was demonstrated in [27]

by carrying out extensive simulations and experimentation that, since the linear
density of the beam ρ is sufficiently small: (a) the vibration associated with the first
mode is much more relevant than the vibrations associated with the other modes;
(b) the Coriolis and centripetal torques are much smaller than the inertial torques,
and they can, therefore, be neglected; (c) the previous item allows us to assume
that the azimuthal and attitude dynamics are approximately decoupled; and (d) the
gravitational torque is significant in the attitude component of the movements.

The following assumptions are made about the contact mode:

1. The contacted object is rigid.
2. The contact is produced at a single point, as was commonly assumed in the previous

works.
3. Sliding of the contacting bodies relative to one another is negligible once a specific

value of the pushing force has been attained, i.e., if the pushing force of the antenna
on the object surpasses a specific value, slipping is prevented.

4. Since there is no deformation in the X axis of the antenna, longitudinal contact forces
do not influence the dynamics modeled.

5. The linear density of the beam ρ is sufficiently small, and the contact force is suffi-
ciently large to be able to assume that gravity influences neither the vibration modes
of the beam nor its steady-state deflection. In particular, Section 5.6.2 checks that the
first vibration frequency, which is the one used in this work, does not change because
of the effect of gravity.

Linear dynamics are assumed for the system shown in Figure 6. The superposition
principle can, therefore, be applied, and the deflection of the antenna can be expressed as
the addition of two components:

y(x, t) = yt(x, t) + ys(x) (2)

The first component yt(x, t) is the transient response of all the points of the beam,
while ys(x) is the steady-state component (permanent deflection of the beam assuming
that the transient has vanished).

If the third assumption about the antenna holds, the transient can be obtained from
the partial differential equation of Euler–Bernouilli beams:

E · I · y′′′′t (x, t) + ρ · ÿt(x, t) = 0 (3)
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from which the effect of gravity is removed.
Equation (2) holds because a linear dynamic system is assumed. Since the superposi-

tion principle is applied, the transient can be obtained from Equation (3) by assuming that
the base end of the link is clamped to the motors and the point at which the link comes into
contact with the object is aligned with the direction of the base end of the link, i.e., with
Xm. The following contour conditions must, therefore, be taken into account in order to
solve Equation (3) [22]:

yt(0, t) = 0, y
′
t(0, t) = 0, y

′′
t (l, t) = 0, y

′′′
t (l, t) = Rm · ÿt(l, t),

yt(xc, t) = 0, y
′
t(x+c , t) = y

′
t(x−c , t), y

′′
t (x+c , t) = y

′′
t (x−c , t) (4)

where x−c signifies that x approaches xc from the left, x+c signifies that x approaches xc from
the right and Rm = mt/mb is the ratio between the mass of the payload and the mass of the
beam, mb = ρl. In our case, Rm = 0, because the link has no payload at the tip, i.e., mt = 0.
Equations (3) and (4) can be solved by using the separation of variables method. This
process, which was described in [29], yields a general solution of the form:

yt(x, t) =
∞

∑
i=1

Ai · ϕi(x) · sin (ωi · t + αi) (5)

where ϕi(x) is the natural mode, ωi is the angular frequency, Ai is the amplitude and αi is
the phase angle of the i-th vibration mode.

Upon introducing the variable β2
i = ωi ·

√
ρ

E·I , the frequencies of the vibration modes
are provided by the solutions to the equation:

cosh (βi · (l − xc)) · [sin (βi · xc) cosh (βi · xc)− sin (βi · (l − xc))] +

cos (βi · (l − xc)) · [sinh (βi · (l − xc))− sinh (βi · xc) · cos (βi · xc)] +

cos (βi · xc)[sin (βi · xc)− cos (βi · xc) · sinh (βi · xc)] = 0 (6)

which are obtained by taking into account that Rm = 0. A detailed description of how this
model was obtained can be found in [22].

The second component ys(x) can be obtained from the Euler–Bernouilli deflection
equation of a static beam, ignoring the effects of gravity:

y
′′′′
s (x) = 0 (7)

The following contour conditions have to be taken into account in order to solve this
differential equation:

ys(0) = 0, y
′
s(0) = 0, y

′′
s (l) = 0, y

′′′
s (l) = 0,

ys(xc) = yc, y
′
s(x+c ) = y

′
s(x−c ), y

′′
s (x+c ) = y

′′
s (x−c ) (8)

The solution of Equation (7) is a three degree polynomial in x. The contour conditions
of Equation (8) impose different polynomials on the intervals before and after the contact
point xc:

ys(x) = −yc

2
·
(

x
xc

)3
+

3 · yc

2
·
(

x
xc

)2
, [0, xc]

ys(x) =
3 · yc

2
·
(

x
xc

)
− yc

2
, [xc, l] (9)
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3.4. Steady-State Measurements

The variables measured by the F-T sensor can be obtained from the Euler–Bernouilli
deflection equation of a beam at x = 0:

|~Γ| = E · I · |y′′(0, t)| (10)

whose direction is normal to the plane defined by the frame XY and:

|~F| = E · I · |y′′′(0, t)| (11)

whose direction is opposite the pushing.
The fifth assumption of the antenna states that the internal damping of the beam is

zero. The transient response, therefore, never vanishes. However, let us now assume that
the transient yt(x, t) has disappeared after some time. This can be caused by the light
internal damping of the beam, which always exists and which, as time goes by, makes
the transient response vanish, or it may be the result of an active control that removes
the vibrations. If we, therefore, assume that the transient yt(x, t) has vanished, only ys(x)
remains, and the previous expressions become:

|~Γ| = E · I ·
∣∣∣∣3 · yc

x2
c

∣∣∣∣ (12)

|~F| = E · I ·
∣∣∣∣3 · yc

x3
c

∣∣∣∣ (13)

4. Methods

This section presents the new method with which to detect the point of the antenna
that comes into contact with an object. It is based on the fusion of the information provided
by the transient component of the dynamic response of the system(Equation (5)) and
the steady-state component of the response (Equation (9)). Characterizing these two
components of the response from the measured signals makes it possible to take advantage
of the separate benefits of these two kinds of information.

Our method estimates the contact point using the first natural frequency of the tran-
sient response, which is obtained from Equation (6). If there were two possible contact
points for a given vibration frequency, the true point would be discriminated by using
an estimator based on the steady state, which utilizes the measurements of Equations (12)
and (13). It is important to note that the angular positions of the motors are controlled
throughout the process.

The method proposed in order to estimate the contact point xc is synthesized in the
following steps:

1. The antenna moves freely in 3D space in a motor servo-controlled manner until it hits
an object.

2. An algorithm estimates the instant tc at which the antenna collides with the object.
3. After contact has been made: (1) the motors of the sensing antenna keep moving in a

servo-controlled manner in an attempt to follow the commanded trajectory; and (2)
the reaction force of the object on the antenna, −~Fm, and the coupling torque, −~Γm,
keep increasing as a consequence of the motor movement.

4. The motors are stopped at the instant t1 at which the antenna pushes the object with
a programmed force whose magnitude is Fm

m . Hereafter, the base of the antenna will
remain quiet, and according to contact mode Assumption 3, the contact point of the
antenna and the object will remain steady without slipping. Possible rebounds of the
antenna with the object as a consequence of the impact vanish before reaching instant
t1. Hereafter, a contact mode is reached, and the frame Xc, Yc, Zc, which is attached to
the contact point, is defined from the force measured by the F-T sensor at this instant
(see Figure 3). After t1, the behavior of the antenna is characterized by the following:
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(a) Its vibrations are almost undamped, and their frequencies are provided by the
solution of Equation (6).

(b) There is no vibration in the Xc direction, since Assumption 4 of contact mode
implies that the antenna does not have compressive or tensile strain.

(c) Antenna vibrations are consequently produced only in directions Yc and Zc.
(d) The pushing of the antenna often damps the vibration in the direction Yc.

In these cases, the only significant vibration is produced in the Zc direction.
(e) The shape of the antenna in the steady state is provided by Equation (9) and is

contained on the plane defined by the axes Xc and Yc.

5. Once the motors have stopped, two estimators of the contact point are triggered at
time t1. The first estimator (denoted as Estimator 1) is based on calculating the first
(fundamental) natural frequency of the remaining vibration and is active during a
programmed time interval ∆te1. The second estimator (denoted as Estimator 2) is
based on calculating the torque/force ratio and ends when the torque/force ratio
converges to a constant value. The time that has elapsed until this convergence has
been produced is represented by ∆te2.

6. The estimation process ends at the instant te = t1 + max(∆te1, ∆te2).
7. At instant te, the procedure yields the position of the contact point. Of all the points

provided by the estimator on the basis of the fundamental frequency (Estimator 1),
the procedure proposes that which is closer to the point provided by the torque/force
ratio estimator (Estimator 2).

8. Finally, at instant te, the motor trajectories are reprogrammed in order to ensure that
the antenna keeps pushing the object or starts searching for another point with which
to make contact.

The algorithms involved in this method are described in the following subsections.

4.1. Motor Control

The antenna always moves in a controlled manner. The controllers do not change:
their parameters remain the same in free and contact modes. Only the trajectories for the
two motors θ∗i (t), i = 1, 2 change once a contact point has been estimated.

The scheme proposed in [17,27], which is shown in Figure 7, is used to control the
position of the motors. It includes a feedback of the coupling torque Γcoup

i (the torque
measured by the F-T sensor at the base of the antenna) that makes the dynamics of the
controlled motors insensitive to the movements of the antenna and to its operating mode
(free or contact). This feedback of the coupling torque drastically simplifies the dynamic
models used to design the motor controllers, thus making the design of the motor control
system relatively simple.

Proportional, integral and derivative (PID) controllers with a low-pass filter term,
i.e., of the form R(s) = a2·+a1·s+a0

s·(s+b) , are used in the motor control because they ensure
good trajectory tracking, compensate disturbances such as unmodeled components of
the friction and are robust to parameter uncertainties, thus providing a precise and fast
positioning of the motor. These PID controllers are arranged according to the two degrees of
freedom scheme shown in Figure 7, in which two of these controllers, R1,i(s) and R2,i(s), are
implemented in each motor control in order to place the poles and zeros of the closed-loop
system at the desired locations.

ui(t)θ
∗

i (t)
Motor(i)

θi(t)

Γ
coup
i (t)
niKmi

R1,i(s)

R2,i(s)

u′i(t)

Figure 7. Motor control loop scheme.
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The four closed-loop poles of this scheme are placed in the same arbitrary location
pi by following the algebraic method described in [27]. The two zeros of the closed-loop
are also placed in pi in order to cancel two poles of the closed-loop. The overall transfer
functions of the servo-controlled motor then become:

Mi(s) =
θi(s)
θ∗i (s)

=
1

(1 + εi · s)2 ; εi = −p−1
i , i = 1, 2 (14)

Since very fast motor movements are desired, the absolute values of poles pi are
chosen to be high.

4.2. Estimation of the Contact Instant

Estimating the instant at which the contact is produced is of the utmost importance
as regards launching the mechanisms in charge of estimating the contacted point of the
beam. We used a mechanism that was previously proposed in [17] and that is briefly
described below.

Consider the coupling torque~Γm(t) and the force ~Fm(t) provided by the F-T sensor
in the Cartesian rotated frame (Xm,Ym,Zm) of Figure 2b. Denote the effect of gravity
on the beam, which is provided in the F-T sensor frame as a force ~Fm

g (t) = (−mb · g ·
sin(θ2), 0,−mb · g · cos(θ2)) and a torque~Γm

g (t) = (0, 0.5 ·mb · g · l · cos(θ2), 0) , where mb

is the mass of the link (see Table 2). Denote as~Γm
e (t) a real-time estimation of the coupling

torque in the free movement mode, assuming no gravity. This estimation is yielded by an
observer of the first vibration mode, which was experimentally identified as:

Γm
e,i(s) =

0.37 · s2

s2 + 0.3 · s + 16.42 · θi(s), i = 1, 2 (15)

where Γm
e,1(t) provides the torque component in the Zm axis, −Γm

e,2(t) provides the compo-
nent in the Ym axis and the torque component in the Xm is zero because there is no torsion
in the beam. It is easy to implement this observer, since its inputs are the measured motor
angles θ1(t) and θ2(t). The approximate observation of the coupling torque is completed by
adding the torque produced by gravity~Γm

g (t) to~Γm
e (t). Denote the residual error between

the measured and the estimated coupling torques as:

~rm(t) = ~Γm(t)−
(
~Γm

e (t) +~Γm
g (t)

)
(16)

A contact is then produced at the instant at which the absolute value of the filtered
residual error vector exceeds an experimentally determined threshold. This instant is
denoted tc.

4.3. Estimator Based on Characterizing Vibration Frequencies (Estimator 1)

The work in [22] demonstrated that the contact point of a sensing antenna could be
estimated through the analysis of its natural vibration frequencies after the contact with
the object had been established, i.e., by analyzing the transient component yt(x, t). We
should stress that this method was used by assuming that the base end of the antenna is
clamped and the point at which the link comes into contact with the object is aligned with
the direction of the base end of the link, and that vibration appeared only in the contact
direction (in the Yc axis, because the contact point was also assumed to be a pinned end).

Let us consider the dynamic model of Equations (3) and (4) described in the previous
section, which yields oscillatory responses of the form of Equation (5). Its natural frequen-
cies can be obtained according to the contact point by solving Equation (6). Figure 8 shows
the natural frequencies of the beam fi obtained by solving Equation (6) as a function of xc.
This last equation yields βi values, which are transformed into frequency values using the
expression:
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fi = 2 · π ·
√

E · I
ρ
· β2

i (17)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.98
Contact point, x

c
 (m)

0

10

20

30

40

50

F
re

qu
en

ci
es

 (
H

z)

f
1
(x

c
)

f
2
(x

c
)

Figure 8. Frequencies of the system.

Figure 8 shows that the relations between the vibration frequencies and the contact
points fi(xc) are not monotonic functions [22]. This means that there is always a range in
which two different contact points correspond to a single measured frequency. However,
the position of the contact point is defined solely by the whole spectrum of the natural
frequencies of the system, or in other words, there is one and only one contact point
corresponding to a fixed spectrum of the system frequencies. In fact, knowledge of only the
fundamental and the second natural frequencies is sufficient in order to solely determine
the contact point if the beam has uniform mass and stiffness distributions.

However, in real applications, f1 and f2 are estimated from signals provided by the F-T
sensor, which include higher natural frequencies and noise. It is often difficult to discover
the exact location of the contact point because experimental estimations always include
errors. Figure 9 plots the function f2- f1 parametrized by the contact location xc ∈ [0, l].
This curve has no self-intersections, signifying that the pair of two first fundamental
frequencies make it possible to localize the contact point solely. However, the end point
of the sensing curve xc = 0.98 m is very close to the point xc = 0.615 m, signifying that
the combination of f1 and f2 is not essentially different and can be confused in practical
applications (Figure 9 shows that, in our sensing antenna, a difference of only 1 Hz in f2
can produce a drastic change in the estimation of xc between the two previously mentioned
values). The information regarding the third natural frequency could be used to make
the final decision, but it would highly complicate the procedure. This problem was solved
in [22] by adding a small payload to the tip of the beam (Rm 6= 0). However, overloading
the antenna with a tip payload reduces the speed of the antenna and the efficiency of the
recognition process.

Frequencies f1 and f2 can be obtained by recording the measures of the forces and
torques provided by the F-T sensor during a fixed time interval that includes several cycles
of the fundamental mode. The fast Fourier transform (FFT) of these signals is carried out,
and their first two peaks characterize f1 and f2. In practice, these two frequencies can be
obtained by recording a single component of the torque.

Our estimator is different from the method shown in [22] in the following respects:

1. It records the vibration in the direction Zc, unlike the method shown in [22], which
does so in the direction Yc.

2. Our estimator uses only the curve of Figure 8 corresponding to the first frequency,
f1(xc). As stated above, in some cases, it yields two solutions. However, the second
estimator will, in that case, discriminate the correct value of xc.

3. The motors apply a torque to the antenna in order to carry out the estimation, i.e., in
this case, the point at which the link comes into contact with the object is not aligned
with the direction of the base end of the link, unlike that which occurs in [22], in which
the contact point is aligned with that direction.
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Figure 9. Sensing curve f2- f1.

4.4. Estimator Based on the Torque/Force ratio (Estimator 2)

Estimators of the contact point based on the torque/force ratio were used in [17]
and [25]. In this section, we propose an improved version of them.

If Equation (10) is divided by Equation (11), we obtain that:

xc =
|~Γm|
|~Fm|

(18)

which makes it possible to estimate the contact point using measurements provided by the
F-T sensor. This expression would be true if there were no gravity and the antenna had
only a steady-state deflection, i.e., once the transient had vanished.

Since our antenna is moving in 3D space, gravity influences the measured values of
torque~Γm and force ~Fm, and its effect has to be removed from these magnitudes. In the
presence of gravity, the contact point xc on the beam can, therefore, be approximately
estimated by algorithm [17]:

xc ≈
|~Γm −~Γm

g |
|~Fm − ~Fm

g |
(19)

where~Γm
g and ~Fm

g are provided by the expressions presented in Section 4.2.
As stated previously, the vibrations in contact mode are almost undamped. The time

required to reach the steady state and subsequently determine xc from Equation (19) is,
therefore, very long, which makes the estimation procedure unsuitable. We consequently
adapted the algorithm of Equation (19) in order to yield estimations of xc during the
transient response of the antenna. During the transient, the measures provided by the F-T
sensor are the addition of the steady-state values and the sum of components caused by
the vibration modes. In this paper, therefore, we propose to pass signals ~Fm(t) and~Γm(t)
through a low-pass filter:

G(s) =
1

1 + s
ωc

(20)

whose cutoff frequency ωc is tuned depending on the range in which the fundamental
frequency of the vibrations may vary. This removes the vibration modes from the measured
signals and maintains their low frequency components. If we represent the filtered signals
of ~Fm(t) and~Γm(t) using ~Fm

f (t) and~Γm
f (t), respectively, the expression:

xc(t) ≈
|~Γm

f (t)−~Γ
m
g (t)|

|~Fm
f (t)− ~Fm

g (t)|
(21)

will yield a reasonable estimation of xc during the transient response of the antenna.
This algorithm is valid only if there is no lateral slip during the contact and ends at

the instant t1 + ∆te2 at which the output of Equation (20) converges to a finite value.
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5. Results

This section provides our experimental results. Section 5.1 shows the calibration
of the xc- f1 curve, while Sections 5.3–5.5 illustrate the steps of the estimation method
described in Section 4 by showing the processing of the signals obtained in a representative
experiment. This experiment moves the antenna on a horizontal plane until it hits an
obstacle. The antenna then pushes the obstacle horizontally. Section 5.6 presents the results
provided by our estimator.

5.1. Calibration of the Fundamental Frequency-Contact Point Function

Estimator 1 determines the fundamental frequency of vibration. This frequency is
then used to obtain the contact point from the lowest curve of Figure 8. The curves shown
in this figure were obtained from Equation (6) and critically depend on the parameter
T =

√
ρ/(E · I) . According to Equation (17), this parameter allows βi to be converted

into fi values. There are two alternatives by which to determine the parameter T: (1) from
the theoretical values of ρ, E and I shown in Table 2; or (2) by obtaining an equivalent
parameter Te, which optimally adjusts the sensing curve β1(xc) obtained theoretically
from Equation (6) to the fundamental frequencies f1 obtained experimentally at several
contact points.

This work uses the second option for the sake of the precision of the results. An
experimental parameter Te is, therefore, determined that minimizes the mean squared
error between the fundamental natural frequencies obtained after substituting the β1
obtained from Equation (6) in Equation (17) and the fundamental frequencies obtained
from experimentation. In this calibration process, the antenna moved on a horizontal
plane and pushed the object with a force whose direction was contained on that plane (the
surface of the object contacted was vertical). The fundamental frequency was subsequently
determined by carrying out the FFT of the torque measured in the Yc axis. This torque
sensed the vibration in the Zc axis, which as previously mentioned, did not have the
damping that the vibration in the Yc axis underwent as a consequence of pushing in
that direction.

For the calibration of the curve xc- f1, contact points were considered in a range
of xc = 0.3 m to xc = 0.98 m, regularly spaced in increments of 5 cm. The fitting of
the theoretical curve β1(xc) to the results of these experiments yielded an optimal value
Te = 0.2124. The theoretical value of T obtained from the parameters shown in Table 2 was
T = 0.2282, which implies a relative difference of 7% between these two values. Figure 10
shows the fitting of the curve f1(xc) to the experimentally obtained frequencies.
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Figure 10. Calibration of the frequency-contact point function.

The cutoff frequency of the low-pass filter of Equation (20), ωc, can be tuned using
the results from Figure 10. This figure shows that the range of values of the fundamental
frequency of our antenna after impact is in the range [31.4, 106.8] rad/s and that the lowest
frequencies correspond to the contact points that are closest to the base of the antenna.
A cutoff frequency of ωc = 5 rad/s was, therefore, chosen for G(s), which is about six
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times lower than the inferior limit of the frequency range. This value allows a reasonable
filtering of the vibrations while producing a slight phase lag in the signals measured.

5.2. Detection of the Impact Instant tc

The impact instant tc is estimated using the residue defined in Equation (16). The
threshold of this estimator is independent of the contact point and the relative orientation
between the antenna movements and the object surface. We used a threshold whose
value is 0.02 for all the experiments. This was determined by employing the maximum
residual obtained during free movements plus a security margin of 50%. Figure 11a
shows the measured coupling torques and the coupling torques estimated by employing
Equation (16). Figure 11b depicts the residual error, ~rm(t), that exists between the measured
and the estimated coupling torques, the threshold of the estimator and the estimation of
the impact instant tc, which is triggered when the residual error surpasses this threshold.
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Figure 11. Estimation of the instant of contact: (a) Measured and estimated coupling torques; (b) residual error.

5.3. Detection of the Instant t1

The time t1 is provided by the instant at which the magnitude of the object reaction
force |~Fm| provided by the F-T sensor surpasses a threshold of Fm

m = 0.8N. This threshold
value is considered sufficiently high to prevent slipping. Signal |~Fm(t)| often has a vibration
of high amplitude, which makes it difficult to obtain t1. This signal is, therefore, passed
through the low-pass filter of Equation (20) tuned with a ωc = 5 rad/s, as occurred in
Section 5.1, in order to remove that vibration.

Figure 12a shows the evolution of |~Fm(t)| and its filtered signal. This figure also shows
the programmed force Fm

m , which triggers the stopping of the motors when this force is
reached. Note that the filter does not completely remove the vibration in this experiment.
However, it is important to mention that, in this experiment, the contact is produced at
xc = 0.3 m, which is the worst possible case because the antenna vibrates with the lowest
frequency and the highest amplitude. These two features cause the worst behavior of the
filter. However, this figure shows that, even in this disadvantageous case, the algorithm
yields an estimation of t1, which is useful. In any other experiment, the filtering of |~Fm(t)|
is much better, and vibrations do not, in most cases, appear in the filtered signal.

Figure 12b depicts the angle of the azimuthal servo-controlled motor during this
maneuver. It shows that this angle is not affected by vibrations and that after the instant t1,
the motor is stopped.

The coordinate frame attached to the contact point is defined at instant t1. The force
measured by the F-T sensor at this instant defines the axis Yc. The angles of the motors
measured at this instant are used to calculate the point Pr, and hence define the vector

−→
OPr.

Axis Zc is subsequently calculated as the unity vector aligned with the cross product of
−→
OPr and the Yc axis. Finally, axis Xc is calculated as the cross product of the other two axes.
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Figure 12. (a) Magnitude of the contact force |~Fm(t)| and its filtered signal; (b) motor angle.

5.4. Estimation of xc Based on the Determination of the Fundamental Frequency f1

Estimator 1 obtains the fundamental frequency of vibration by calculating the FFT
of the moment measured by the F-T sensor in the Yc axis. Figure 13a shows this moment,
while Figure 13b shows the magnitude of the FFT applied in an interval ∆te1 of this recorded
signal, in the case of an azimuthal movement and a contact in xc = 0.3 m. Note that: (a)
in this case, axis Yc is aligned with axis Ym of the F-T sensor (in the opposite direction),
and the signal provided in this direction is, therefore, −Γm

y ; (b) only one peak is observed
in Figure 13b; and (c) this peak corresponds to the fundamental frequency of the vibration
of the antenna after the impact, which can be easily estimated from that figure.

0 1 2 3 4 5
Time (s)

-0.01

-0.005

0

0.005

0.01

0.015

0.02

yc
 (

N
m

)

t
1
+  t

e1
t
1

t
c

(a) (b)

Figure 13. (a) Coupling torque Γc
y; (b) magnitude of the fast Fourier transform of Γc

y after the impact.

5.5. Estimation of xc Based on the Determination of the Torque/Force Ratio

Estimator 2 uses the torque/force ratio of Equation (21) to determine xc from mea-
surements provided by the F-T sensor. As mentioned previously, in order to speed up the
estimation process, the measured force and torque are passed through the low-pass filter
of Equation (20) tuned with ωc = 5 rad/s. Figure 14a shows the result of 0.44 m yielded by
this estimator when the contact is produced in xc = 0.4 m. Figure 14b shows the result of
0.914 m yielded by this estimator when the contact is produced in xc = 0.85 m.
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Figure 14. Estimator based on the torque/force ratio: (a) contact point 0.4 m; (b) contact point 0.85 m.
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5.6. Experiments Regarding Contact Point Detection Based on Combined Static and
Dynamic Information

Experiments were performed for different antenna movements and relative orienta-
tions between the movement and the object surface. It is not necessary for the object to
impact in the direction normal to its surface. However, the angle between the vector that
defines the direction of the impact and the vector normal to the surface of the impacted
object should not be large in order to reduce lateral rebounds and slipping.

Two sets of experiments were carried out in order to verify the performance of our
procedure: (1) the antenna performed azimuthal movements (perpendicular to the direction
of gravity); and (2) the antenna performed vertical movements (affected by gravity). In each
set of experiments, the antenna came into contact with the object at link points in the range
of xc = 0.3 m to xc = 0.98 m, regularly spaced in increments of 5 cm. Moreover, five
experiments were carried out at each contact point in order to show the repeatability of
our proposed estimator. Figure 15a,b show the setups used in the azimuthal and vertical
movement experiments.

(a) (b)

Figure 15. Setups of the experiments of azimuthal (a) and vertical (b) movements to make the contact
with the object.

The procedure described in Section 4 was applied in all the experiments: Estimator 1,
which is the most accurate, determined the possible set of xc values (one or two), while
Estimator 2 was used to make the decision as to which candidate was the correct xc, in the
case of there being two candidates.

5.6.1. Case 1: Azimuthal Movement

A first set of 75 experiments was carried out by performing azimuthal movements.
Figure 16a shows the estimation of the contact points, xc,e, using the proposed algorithm
versus the real contact point xc. Figure 16b shows the absolute errors between xc and xc,e.
These figures prove that the proposed technique estimates the contact points of the antenna
in a precise manner. These results have a maximum error of 4 cm. However, in most cases,
the errors are around 1 cm (1% of the length of the antenna), which shows that the results
yielded by our algorithm are significantly better than the results obtained in former works.
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Figure 16. Experimental results obtained for the estimation of the contact point for Case 1: (a) estimated xc,e versus real xc;
(b) absolute errors.
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Table 3 provides details of the results of this first set of experiments. It shows the real
value of the contact point, xc, the average value of the estimator for the five experiments,
xc,e, the average value of the absolute value of the error of the estimator for each contact
point, e, the maximum error of the estimator, emax, and the standard deviation of the error
in the estimation, σ.

Table 3. Experimental results obtained for the estimation of the contact point for Case 1.

xc
(cm) 30 35 40 45 50 55 60 65 70 75 80 85 90 95 98

xc,e
(cm) 30.5 35.7 40.6 45.5 50.1 55.1 60.6 65.0 70.8 76.2 80.0 85.8 90.1 95.6 98.1

e
(cm) 0.5 0.7 0.6 0.5 0.3 0.2 0.6 0.1 0.8 1.5 0.9 0.8 0.3 0.7 0.1

emax
(cm) 0.7 1.3 0.9 1.0 0.6 0.4 1.1 0.3 1.5 3.9 1.4 1.2 0.6 1.4 0.1

σ
(cm) 0.2 0.5 0.3 0.3 0.2 0.1 0.3 0.1 0.4 1.5 0.5 0.5 0.2 0.4 0.02

5.6.2. Case 2: Vertical Movement

A second set of 75 experiments was carried out by performing elevation movements.
Figure 17a shows the estimation of the contact points, xc,e, using the proposed algorithm,
while Figure 17b shows the absolute errors between the contact point xc and the estimated
point xc,e. These figures again prove that the proposed technique accurately estimates the
contact points of the antenna. These results have a maximum error of 6.6 cm. However,
in most cases, the errors are around 1 cm, which are again significantly better than the
results obtained in former works.
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Figure 17. Experimental results obtained for the estimation of the contact point for Case 2: (a) estimated xc,e versus real xc;
(b) absolute errors.

Table 4 provides the details of the results of this second set of experiments. The real
value of the contact point, xc, the average value of the estimator for the five experiments,
xc,e, the average value of the absolute value of the error of the estimator for each contact
point, e, the maximum error of the estimator, emax, and the standard deviation of the error
in the estimation, σ, are shown.

Finally, Figure 18 plots the fundamental frequencies of the vibration of the antenna
obtained in these experiments, and the sensing curve from Figure 10 is superimposed
over them.It shows that the xc- f1 curve calibrated in Section 5.1, which used the dynamic
model of Equation (3) that ignored the effect of gravity, accurately reproduces the xc- f1
data obtained under the conditions of gravity. This supports the third assumption made
about the antenna in Section 3.3, which stated that the influence of gravity on the vibration
of our antenna is very small.
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Table 4. Experimental results obtained for the estimation of the contact point for Case 2.

xc
(cm) 30 35 40 45 50 55 60 65 70 75 80 85 90 95 98

xc,e
(cm) 31.1 34.5 41.1 44.9 50.6 55.0 60.1 64.2 69.9 77.3 78.5 84.3 89.6 95.7 98.1

e
(cm) 1.1 0.5 1.2 0.4 0.7 0.3 0.2 0.8 0.3 2.3 1.8 0.7 0.8 0.7 0.1

em
(cm) 1.4 0.6 1.5 1.2 1.0 0.7 0.6 0.9 0.6 2.9 6.6 1.0 1.4 1.0 0.1

σ
(cm) 0.2 0.1 0.5 0.4 0.3 0.2 0.3 0.2 0.2 1.2 2.7 0.4 0.4 0.3 0.02
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Figure 18. Fundamental frequencies obtained in the experiments of vertical contact versus funda-
mental frequencies provided by the model (3) of azimuthal contact.

6. Discussion

The technique that yields the most accurate estimation of the contact point is that
based on determining the first two frequencies of vibration in contact mode. However, its
application to our antenna had several drawbacks.

The first drawback was that, in many of the experiments, it was not possible to
estimate the second vibration frequency. Figure 19 plots the FFT amplitude of the signals
Γc

y(t) experimentally obtained for several contact points xc. This figure shows that the
frequency of the first vibration can easily be obtained in all cases, but that the peak of
the second vibration frequency can be observed only when xc is close to the base of the
antenna, i.e., when xc ≤ 0.5 m, which are the most unlikely cases. Moreover, in the case
of the second vibration mode, this figure shows that the corresponding peak is not sharp,
which leads to an inaccurate estimation of the value of the second vibration frequency.
In particular, it is impossible to know where the second vibration frequency is in the FFTs
in Cases c and d of the figure.

The second drawback is that a small payload had to be added to the tip of the antenna
in order to distinguish between pairs of frequencies ( f1, f2) that were very close (see
Figure 9) and thus avoid errors in the estimation of xc. For example, in [22], an antenna of
0.29 m in length was used, and a payload was added to its tip, which increased its total
weight by 18.9%. This added payload produced a slight increase in the rotational inertia
of that antenna. However, in the case of longer antennae like ours, which is 0.98 m long,
that increase in the rotational inertia combined with the torque caused by the gravitational
force of this payload in the elevation motor may slow down the movement of the motors.
Note that rapid movements are required in order to carry out efficient explorations of the
environment. The addition of this payload to long antennae must, therefore, be avoided.
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(a) (b)

(c) (d)

Figure 19. Experimental results obtained after processing Γc
y: (a) contact point 0.3 m, (b) contact

point 0.5 m, (c) contact point 0.8 m and (d) contact point 0.9 m.

In order to overcome the two previous drawbacks, our method combines the estima-
tion of the fundamental frequency with the estimation of the ratio between the measured
torque and force. In order to obtain an accurate estimation of that ratio, it is necessary for
the antenna to push the object with a significant force that is greater than the threshold Fm

m .
The motors consequently have to provide significant torques to the antenna. This is a third
drawback of the method based on estimating the first two frequencies: it cannot be applied
to a combined estimation process like ours because it was designed to work under the
assumption that the torques provided by the motors are zero in the steady state (see [22]).

A fourth drawback is that [22] obtained the vibration frequencies from measures of
the torque in the Zc axis. Oscillations in the Yc direction are, therefore, used to characterize
these frequencies. However, in some cases, the pushing force, which is applied in the Yc

direction, quickly dampens the vibration in this direction and prevents the attainment of
the vibration frequencies from these measurements. This is illustrated in Figure 20, which
shows torques in the Yc and Zc directions recorded during the xc estimation process in
several contact mode situations. In Case d, the vibration quickly disappears from signal Γc

z,
and in Case b, the first vibration mode is distorted by significantly higher modes that may
degrade the estimation of its frequency. However, Γc

y provides a relatively clean signal of
the first vibration mode in all cases.

Our estimator overcomes the aforementioned drawbacks by combining the dynamic
and static information of the F-T sensor:

1. It needs only to estimate the frequency of the first vibration mode.
2. It does not require the attachment of a payload at the antenna tip in order to avoid

sensitivity problems caused by the frequency estimation process.
3. The dynamic model of the antenna in contact mode proposed by [22] is extended to

the case in which the actuator applies a permanent torque to the base of the antenna.
4. We found that it was not, in some cases, possible to estimate the fundamental fre-

quency from the vibration measured in the direction of the reaction force of the object
on the antenna. However, we found that estimating this frequency from the vibration
produced in the direction perpendicular to the previous one was more reliable.
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Figure 20. Experimental torques during the estimation process: (a) azimuthal movement with contact point in 0.4 m, (b)
azimuthal movement with contact point in 0.7 m, (c) elevation movement with contact point in 0.4 m and (d) elevation
movement with contact point in 0.7 m.

Special attention must be paid to the linearity assumption (Assumption 1 about
the antenna of Section 3.3) both in free movement and contact mode. Azimuthal and
attitude movements in free mode can be approximately linearized and decoupled, as was
stated in Assumption 5 about the antenna of Section 3.3. This linearized model yields
transfer functions (15) that are used in the algorithm of Section 4.2 to estimate the contact
instant. Moreover, these linearized models were used in the closed-loop control of the free
movement in [17,21], yielding satisfactory results. Regarding contact mode, the precision
attained in the estimation of the contact point shows that the linearity assumption is
adequate. However, it remains as an open question if assuming a nonlinear model of the
deflection, like, e.g., in [30], would improve the accuracy of the estimation. This will be the
object of our future research.

Finally, we should mention that our methods outperformed the accuracy of the
methods cited in the Related Work section. These methods yielded estimates of the contact
point with errors of over 3% of the length of the antenna, while our method increases the
accuracy of the estimates by more than three times.

7. Conclusions

This paper addresses the idea of improving the accuracy of the estimation of the
point at which contact is made between an active sensing flexible antenna and an object by
combining static and dynamic information regarding the deflection of the antenna with
information about the instant of the impact. We show a method that processes these data in
order to allow more precise estimations of the contact point than occurred in other previous
research (errors of about 1% of the length of the antenna).

Active sensing antennae are being used as an aid for the navigation of mobile robots
in dark, dusty or smoggy environments with obstacles. Increasing the precision of the
contact point estimation is a step forward, since it endows these robots with the ability to
not only detect, but also recognize objects in their surroundings

Our future research will address the reduction in the time required by the estimation
procedure and its application to object recognition tasks using a mobile robot.
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