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Abstract: The article deals with aspects of identifying industrial products in motion based on
their color. An automated robotic workplace with a conveyor belt, robot and an industrial color
sensor is created for this purpose. Measured data are processed in a database and then statistically
evaluated in form of type A standard uncertainty and type B standard uncertainty, in order to obtain
combined standard uncertainties results. Based on the acquired data, control charts of RGB color
components for identified products are created. Influence of product speed on the measuring process
identification and process stability is monitored. In case of identification uncertainty i.e., measured
values are outside the limits of control charts, the K-nearest neighbor machine learning algorithm
is used. This algorithm, based on the Euclidean distances to the classified value, estimates its most
accurate iteration. This results into the comprehensive system for identification of product moving
on conveyor belt, where based on the data collection and statistical analysis using machine learning,
industry usage reliability is demonstrated.

Keywords: production line; color sensor; uncertainties; control charts; machine learning

1. Introduction

Requirements for fast and accurate product identification and their measured pa-
rameters are currently increasing in industrial production environments [1,2] Intelligent
solutions with a multidisciplinary approach are one possible solution. In our case we
decided to combine and use available statistical mathematical methods together with
database and computer solutions based on machine learning. The combination of these
approaches, allows us to provide appropriate solutions for industry deployment with fast
response and accuracy, which would otherwise be difficult to implement.

One of the new challenges in the industry is rapid detection and identification of
moving products with various parameters. Nowadays, in the spirit of intelligent industry,
there is a trend to abandon mass series production and switch to customized small series
production runs according to [3–8]. We know many methods for products detection such
as (the most commonly used) barcodes, quick response (QR), radio frequency identification
(RFID) codes etc. [9]. From a production point of view, recognition price and speed are
decisive factors. Therefore we have concentrated in this article on a low-cost universal
industrial color sensor [10]. From a product recognition accuracy perspective, static product
recognition is the best, i.e., to perform product identification while the conveyor belt is
stopped. Although this procedure is the most accurate, it wastes time within the production
cycle. Therefore, we deal with the dynamic recognition of products in motion. This is more
complicated in terms of accuracy, because uncertainties arise in products’ identification,
when the measured value is outside the control chart limits.

There are more color recognition methods based on color calibration algorithms
which are suitable for our case. These depend on color models representing the respective
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color space such as RGB and its subset standard RGB (sRGB), or cyan magenta yellow
and key (CMYK), or luminance (Y), blue–luminance (U), red–luminance (V) (YUV), hue
saturation value (HSV), hue saturation brightness (HSB) and hue saturation lightness (HSL)
or CIELAB color space, as stated in [11–13]. Since the selected industrial color sensor uses
RGB color space directly, rather specific algorithms such as thin plate spline integration
(TPS-3D), partial least squares analysis (PLS) or commercial calibration algorithms, e.g.,
ProfileMaker (PROM) would be more capable from our point of view [14]. However, to
ensure the fastest possible implementation, we decided to apply the K-nearest neighbor
machine learning algorithm described in [15,16], with which we already had experience
and useful results from previous practical experiments.

2. Subject and Methods

The main objective of the article is to present a universal solution for fast detection of
industrial products based on their color. In order to have sufficient base of relevant data, we
have prepared the sample workplace shown in Figure 1a. This workplace fully replicates in-
dustrial applications and is equipped with industrial components such as a KUKA KR3R540
robot (KUKA Deutschland GmbH, Augsburg, Germany), a SICK CSM-WP117A2P color
sensor (SICK AG, Waldkirch, Germany) and a conveyor belt from Automatica (Liptovský
Mikuláš, Slovakia).
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Figure 1. (a) Design of test robotic workplace in the Siemens Tecnomatix Process Simulate environment; (b) Calibration
cubes for simulation of six different customized products.

We performed 21,600 measurements in total to obtain statistical data to determine
whether the accuracy of sensor is sufficient for moving product identification as shown in
Figure 2.

We evaluated Type A standard uncertainty for each product (color) separately from
these measurements. Then we calculated Type B standard uncertainties and subsequently
the resulting combined uncertainty, based on which we declare the best settings for the
simulated process and after for the real operation. The next step is to set regulatory limits
and create control charts for accurate identification. We can then evaluate if identified
products are within the control limits and their identification is unambiguous. In other
case, they are outside the control limits and their identification is ambiguous [17]. For these
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cases, we use the machine learning algorithm K-nearest neighbors. We have used values
acquired during the measurements of color sensor accuracy as training dataset.

Sensors 2021, 21, x FOR PEER REVIEW 3 of 20 
 

 

 
Figure 2. Measurement process workflow diagram. 

We evaluated Type A standard uncertainty for each product (color) separately from 
these measurements. Then we calculated Type B standard uncertainties and subsequently 
the resulting combined uncertainty, based on which we declare the best settings for the 
simulated process and after for the real operation. The next step is to set regulatory limits 
and create control charts for accurate identification. We can then evaluate if identified 
products are within the control limits and their identification is unambiguous. In other 
case, they are outside the control limits and their identification is ambiguous [17]. For 
these cases, we use the machine learning algorithm K-nearest neighbors. We have used 
values acquired during the measurements of color sensor accuracy as training dataset. 

The methodologies are explained and analyzed in more detail in the following sub-
sections. 

  

Figure 2. Measurement process workflow diagram.

The methodologies are explained and analyzed in more detail in the following
subsections.

Preparation of Test Robotic Workplace

It was necessary to set up workplace to test identification by the color sensor which
simulates real operation and it is automated. An automated workplace enables one to
perform a large number of measurements using different combinations of the monitored
factors. The workplace is represented by a conveyor belt, along which colored calibration
cubes move. After passing the cube and performing a measurement, the cube is caught
by the robot’s vacuum gripper and moved again to the beginning of conveyor belt. This
process is repeated for given number of measurements. The color sensor is located on the
side of conveyor belt so that its detection zone faces the belt. To attach and position sensor,
we designed a tool, which was printed on 3D printer. We first designed and assembled
the workplace using the Process Simulate simulation tool (Siemens PLM Software, Plano,
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Texas, USA). We tested there the reachability of individual points needed for execution of
catching and releasing cube operations. During testing the robot’s declared range in the
Process Simulate tool, we found this range was insufficient for the application. Therefore it
was increased by adding a flange designed to allow insertion of a suction cup mechanism.
After repeated simulation of the flanged robot range, a flange prototype was created on
a 3D printer. The robot range was also verified at the physical workplace, as shown in
Figure 3.
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Figure 3. Robot range extension using flange.

The KUKA KR3 R540 robot is a low payload capacity robot. However, in our case it
exceeds the experiment requirements, as the weight of the transferred calibration cubes
is up to 100 g. The repeatability of return to programmed position for this robot reaches
a value of 0.02 mm, which is sufficient for our purposes. We also took this information
into account when calculating the resulting uncertainty of the color sensor measurements,
according to [18,19]. The primary parameters of the KUKA KR3 R540 robot are listed in
Table 1.

Table 1. KUKA KR3 R540 parameter overview.

Maximum reach 541 mm

Payload 3 kg

Pose repeatability ±0.02 mm

Number of axes 6

Mounting positions Ceiling, Floor, Wall

Footprint 179 × 179 mm

Weigh 26.5 kg

Ambient operatingtemperature 5 ◦C–45 ◦C

Protection class IP40

Controller KR C-4 compact

We installed the KUKA ethernet KUKA Robot Language (KRL) extension into the
robot for measurement process purposes. This extension allowed us to communicate via an
Ethernet connection between the robot and a computer and collect the data. After correct
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configuration, it was possible to monitor inputs coming to the robot and based on them
control outputs, in our case the conveyor belt and suction cup.

We used a conveyor belt from Automatica in the workplace implementation. The
conveyor belt specifications are shown in Table 2.

Table 2. Automatica conveyor belt specifications.

Length 1500 mm

Width 25 mm

Height 1000 mm

Motor three-phase motor Nord

Control Siemens Sinamics V20 frequency converter

Maximum revolutions 1415 RPM

Belt material rubber with anti-slip surface

The motor speed was regulated to 30 percent of the maximum revolutions per minute
(RPM), which corresponded to the setting in real operation. The frequency converter was
controlled by the robot’s output signals based on data from the control computer.

We chose the CSM-WP117A2P color sensor from SICK shown in Figure 4a for color
cubes identification,. The compact size of this sensor, which facilitates its placement at
the workplace, is one of its advantages. The sensor emits white light on the scanned
object using additive color mixing from three color diodes. Based on the reflection of
light it evaluates combinations of red, green and blue components, which finally define
the scanned color. Measurements are performed based on the light beam emitted by the
sensor. Due to the small beam size, a large color area is not required for accurate color
identification. The color sensor’s primary technical data are listed in Table 3. The sensor’s
relative sensitivity curve shows a dependency on the sensing distance as seen in Figure 4b.

Another advantage is the possibility of using communication via an input output
(IO) link. We integrated the sensor using the Sensor Integration Gateway (SIG100). The
advantage of such an integration is ability to connect multiple sensors through a single
gateway. This significantly facilitates communication and data collection from the sensors.
The SIG100 uses the Representational State Transfer (REST) application programming
interface, so it was possible to query data from the sensor via a Java Script Object Notation
(JSON) string generated by the control computer. After obtaining data from the sensor, this
data was recorded to the Structured Query Language (SQL) database MySQL, which made
their categorization and evaluation easier.
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Table 3. CSM-WP117A2P color sensor features.

Dimensions 22 mm × 12 mm × 32 mm

Sensing distance 12.5 mm

Sensing distance tolerance ±3 mm

Light source Light Emitting Diode (LED), RGB

Wave length 640 nm, 525 nm, 470 nm

Light spot size 1.5 mm × 6.5 mm

Response time 300 µs

Supply voltage DC 12 V ... 24 V

Output (channel) 1 color/8 colors via IO-Link

The measured output of the CSM WP117A2P sensor is three numerical values. Each
value represents a percentage of a primary color. Values range in size from 0 to 100 percent.
The first value represents percentage of red (R), the second percentage of green (G), and
the third value percentage of blue (B) of the subject color. Based on this information, we
defined following measurement model according to [21,22]:

δColor = [δR, δG, δB] (1)

where δColor is the resulting composite color percentage calculated from the contributions of
the red δR, green δG and blue component δB. When determining the overall measurement
result, we did not consider correlations of values due to the fact that this is new proposal
for which it is necessary to perform further experiments.

3. Results

In our experimental measurements using the color sensor, we found that the highest
influences on the measured values came from the illumination of the scanned object, the
distance of the sensor to scanned object and whether the scanned object was moving or
stopped [22–24]. Therefore we decided to perform measurements with different combi-
nations of these factors. The optimum sensing distance specified by the manufacturer is
12.5 mm, with a tolerance of 3 mm. We chose values approaching to the limit distances
of 15 mm, 10 mm and the optimal measuring distance of 12.5 mm. The illumination of
the scanned object was another major influence on the measurements. We performed
the measurements in natural daylight, with artificial light and in the dark. As a main
goal of these measurements was to determine whether the measurement accuracy would
be sufficient to identify the cubes even when the conveyor belt is running, therefore we
performed measurements of stopped and moving cubes and compared the deviations.

We measured all settings combinations for six cubes with an edge size of 30 mm and
following colors: red, blue, pink, green, yellow and brown. The measured calibration cubes
are shown in Figure 1b.

By combining the influencing factors we created 18 combinations. We performed
200 measurements for each of the cube, from which we created the resulting dataset
containing 21,600 measurements.

In the first phase we evaluated Type A standard uncertainty for individual color
components (red—uAR , green—uAG , blue—uAB ) measured by the sensor. Subsequently
we calculated total Type A standard uncertainty (utotal ) for each given combination. The
following part of the work provides the results of our Type A standard uncertainty evalua-
tion for individual colors for the abovementioned combinations, in a tabular form. When
calculating uncertainties, we used procedures published in the literature [22,25,26].

Table 4 shows the Type A standard uncertainty calculated from measurements per-
formed on a red cube. The table shows that smallest uncertainty was achieved when the
cube is stopped under artificial light at a scanning distance of 10 mm. On the other hand,
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uncertainties calculated from measurements for a cube in motion on the conveyor are
higher for all combinations of factors than for a stopped cube. This fact confirms that
movement of the conveyor has a significant effect on measurement. The highest total
uncertainty was achieved when measuring a cube in motion under artificial light at a
sensing distance of 12.5 mm.

Table 4. Type A standard uncertainty for a red cube.

Illumination
Sensor Distance

(mm)
Cube Stops Cube in Motion

uAR (%) uAG (%) uAB (%) utotal(%) uAR (%) uAG (%) uAB (%) utotal(%)

Natural daylight 10 0.010 0.005 0.011 0.016 0.105 0.021 0.026 0.110
Natural daylight 12.5 0.001 0.007 0.011 0.013 0.079 0.031 0.034 0.091
Natural daylight 15 0.004 0.011 0.001 0.012 0.060 0.023 0.020 0.067

Artificial light 10 0.000 0.003 0.001 0.003 0.198 0.036 0.043 0.206
Artificial light 12.5 0.002 0.003 0.001 0.004 0.458 0.041 0.051 0.463
Artificial light 15 0.004 0.001 0.011 0.012 0.065 0.030 0.028 0.077

Darkness 10 0.000 0.011 0.000 0.011 0.160 0.029 0.034 0.166
Darkness 12.5 0.016 0.000 0.008 0.018 0.064 0.025 0.027 0.074
Darkness 15 0.000 0.003 0.005 0.006 0.103 0.029 0.027 0.110

Table 5 shows resulting Type A standard uncertainty for a blue cube. The lowest
uncertainty is shown for measurements performed when the cube is stopped in the dark
with a distance of 12.5 mm between the sensor and the scanned object. The highest
uncertainty was achieved when measuring the cube moving along the conveyor belt under
artificial light at a distance of 10 mm.

Table 5. Type A standard uncertainty for a blue cube.

Illumination Sensor Distance
(mm)

Cube Stops Cube in Motion

uAR (%) uAG (%) uAB (%) utotal(%) uAR (%) uAG (%) uAB (%) utotal(%)

Natural daylight 10 0.000 0.004 0.022 0.022 0.021 0.093 0.259 0.276
Natural daylight 12.5 0.011 0.003 0.004 0.012 0.020 0.027 0.049 0.059
Natural daylight 15 0.002 0.005 0.012 0.013 0.030 0.059 0.057 0.087

Artificial light 10 0.010 0.012 0.000 0.016 0.018 0.115 0.318 0.339
Artificial light 12.5 0.002 0.006 0.008 0.010 0.018 0.018 0.056 0.062
Artificial light 15 0.014 0.000 0.007 0.016 0.052 0.106 0.106 0.159

Darkness 10 0.014 0.001 0.002 0.014 0.022 0.095 0.235 0.254
Darkness 12.5 0.001 0.007 0.004 0.008 0.024 0.030 0.027 0.047
Darkness 15 0.011 0.003 0.007 0.013 0.042 0.111 0.113 0.164

Table 6 lists the Type A standard uncertainty calculated from data obtained when a
pink cube was measured. The lowest total uncertainty was recorded for a static cube in the
dark at the distance of 15 mm. The highest uncertainty was recorded when measuring the
cube in motion under artificial light at a distance of 10 mm.

Table 7 shows the total Type A standard uncertainty calculated for green cube measure-
ments. The lowest uncertainty was achieved when the cube is stopped under artificial light
at a measuring distance of 10 mm. The highest uncertainty was recorded for measurements
performed for a moving cube in natural daylight at a distance of 15 mm.
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Table 6. Type A standard uncertainty for a pink cube.

Illumination Sensor Distance
(mm)

Cube Stops Cube in Motion

uAR (%) uAG (%) uAB (%) utotal(%) uAR (%) uAG (%) uAB (%) utotal(%)

Natural daylight 10 0.003 0.005 0.000 0.006 0.119 0.035 0.066 0.141
Natural daylight 12.5 0.005 0.008 0.019 0.021 0.197 0.043 0.137 0.244
Natural daylight 15 0.006 0.003 0.016 0.017 0.035 0.042 0.037 0.066

Artificial light 10 0.018 0.022 0.010 0.030 0.192 0.218 0.230 0.371
Artificial light 12.5 0.000 0.015 0.019 0.024 0.213 0.084 0.131 0.264
Artificial light 15 0.006 0.007 0.012 0.015 0.077 0.053 0.036 0.100

Darkness 10 0.027 0.006 0.016 0.032 0.087 0.039 0.056 0.111
Darkness 12.5 0.000 0.014 0.014 0.020 0.149 0.028 0.074 0.169
Darkness 15 0.000 0.000 0.008 0.008 0.045 0.031 0.023 0.059

Table 7. Type A standard uncertainty for a green cube.

Illumination Sensor Distance
(mm)

Cube Stops Cube in Motion

uAR (%) uAG (%) uAB (%) utotal(%) uAR (%) uAG (%) uAB (%) utotal(%)

Natural daylight 10 0.007 0.012 0.001 0.014 0.028 0.093 0.048 0.108
Natural daylight 12.5 0.011 0.002 0.017 0.020 0.021 0.031 0.020 0.042
Natural daylight 15 0.004 0.014 0.004 0.015 0.053 0.179 0.041 0.191

Artificial light 10 0.005 0.002 0.002 0.006 0.044 0.147 0.079 0.173
Artificial light 12.5 0.014 0.019 0.012 0.026 0.023 0.034 0.027 0.049
Artificial light 15 0.001 0.016 0.012 0.020 0.026 0.045 0.024 0.057

Darkness 10 0.007 0.001 0.003 0.008 0.020 0.051 0.027 0.061
Darkness 12.5 0.000 0.004 0.008 0.009 0.020 0.029 0.020 0.041
Darkness 15 0.008 0.009 0.013 0.018 0.038 0.054 0.022 0.070

Table 8 lists Type A the standard uncertainty calculated for a yellow cube. The table
shows that the lowest uncertainty was achieved when the cube is stopped under artificial
light at a distance of 12.5 mm. The highest uncertainty was achieved when measuring a
moving cube under artificial light at a distance of 10 mm.

Table 8. Type A standard uncertainty for a yellow cube.

Illumination
Sensor Distance

(mm)
Cube Stops Cube in Motion

uAR (%) uAG (%) uAB (%) utotal(%) uAR (%) uAG (%) uAB (%) utotal(%)

Natural daylight 10 0.001 0.000 0.013 0.013 0.292 0.280 0.125 0.423
Natural daylight 12.5 0.008 0.002 0.014 0.016 0.145 0.123 0.103 0.216
Natural daylight 15 0.014 0.001 0.004 0.015 0.172 0.144 0.048 0.229

Artificial light 10 0.019 0.003 0.003 0.019 0.383 0.333 0.112 0.520
Artificial light 12.5 0.004 0.005 0.000 0.006 0.118 0.104 0.092 0.182
Artificial light 15 0.014 0.007 0.011 0.019 0.144 0.112 0.027 0.184

Darkness 10 0.001 0.008 0.015 0.017 0.268 0.255 0.089 0.380
Darkness 12.5 0.002 0.014 0.010 0.017 0.158 0.099 0.078 0.202
Darkness 15 0.006 0.014 0.000 0.015 0.163 0.141 0.041 0.219

Table 9 contains Type A standard uncertainty calculated for measurements performed
for a brown cube. The lowest total uncertainty was recorded when the was stopped under
natural daylight at a distance of 10 mm. The highest uncertainty was recorded when
measuring a cube in motion in the dark at a distance of 10 mm.



Sensors 2021, 21, 1797 9 of 20

Table 9. Type A standard uncertainty for a brown cube.

Illumination Sensor Distance
(mm)

Cube Stops Cube in Motion

uAR (%) uAG (%) uAB (%) utotal(%) uAR (%) uAG (%) uAB (%) utotal(%)

Natural daylight 10 0.000 0.002 0.001 0.002 0.078 0.091 0.057 0.133
Natural daylight 12.5 0.008 0.008 0.014 0.018 0.043 0.056 0.051 0.087
Natural daylight 15 0.001 0.002 0.003 0.004 0.062 0.032 0.029 0.076

Artificial light 10 0.000 0.001 0.005 0.005 0.038 0.045 0.037 0.070
Artificial light 12.5 0.008 0.009 0.002 0.012 0.019 0.031 0.067 0.076
Artificial light 15 0.001 0.000 0.003 0.003 0.095 0.055 0.052 0.121

Darkness 10 0.000 0.006 0.001 0.006 0.117 0.116 0.085 0.185
Darkness 12.5 0.012 0.001 0.013 0.018 0.031 0.031 0.039 0.059
Darkness 15 0.005 0.000 0.007 0.009 0.050 0.026 0.033 0.065

When we compare all calibration cubes, the lowest Type A standard uncertainty
shown in the dataset is for the brown cube, when a stopped cube is measured under
different conditions. The highest uncertainty is shown by measurements performed for
pink cubes. When evaluating the data measured on the conveyor without stopping the
cube, measurements made on the green cube achieve the lowest Type A standard uncer-
tainty, while values measured for the yellow cube show the highest uncertainty. By further
examining data from the objects’ illumination point of view, we came to the conclusion that
values of Type A uncertainties are lowest when measuring in the dark. This conclusion
was confirmed by data obtained in both static and motion measurements. The highest
Type A uncertainties were recorded in daylight static measurements, which may be due
to its variance. When measuring in motion, we recorded the highest Type A uncertain-
ties for artificial light measurements, which could be affected by reflection of light from
moving objects.

From the objects’ distance point of view the lowest Type A uncertainties corresponded
to the data measured at a distance of 15 mm and the highest uncertainties were for
measurements performed at a distance of 10 mm between the sensor and the measured
object. We came to the same findings when evaluating the data from static as well as
motion measurements.

As already mentioned in the tables, measurements performed for cubes in motion
showed several times higher Type A uncertainties for all colors and all factor combinations
than measurements performed for static cubes.

In the following part of the article we focus on Type B uncertainties, which we
determined based on identifiable sources of uncertainties affecting the measurements.
After our analysis of the measurement process, we identified six components of Type B
uncertainty. These sources and their value distributions are listed in Table 10 [22,25,26].

The first identified component of Type B uncertainty is the uncertainty of cube place-
ment by the robot. We estimated this value of uncertainty based on the repeatability of
the robot’s return into a specified position. This is stated in the robot documentation, ac-
cording to standards for industrial manipulators. We also took into account the calibration
deviation of the robot effector and flange shape deviation caused by inaccurate assembly of
individual 3D printed parts. Based on the combination of these factors, we finally estimated
the resulting component called cube placement by robot, hereinafter represented by uB1.

As the second component of Type B uncertainty, we identified the sensitivity of the
sensor at different sensing distances. Since we measured at three distances between the
sensor and the scanned object, namely distances of 10, 12.5 and 15 mm, we determined
its sensitivity at the mentioned distances based on sensor documentation. The sensitivity
for the individual distances is hereinafter referred to as uB2 and its values for individual
distances are given in Table 10.

The third component of Type B uncertainty is the effect of illumination. We determined
this component by estimation based on experimental measurements. As already mentioned
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in previous subsections, data measured in the dark achieved the lowest variability. Based
on this, the lowest uncertainty value was assigned to this uncertainty component in the
dark measurements. The uncertainty values for individual illumination are given in Table
10 with the designation uB3.

Table 10. Type B uncertainty components.

Uncertainty
Component Uncertainty Type Uncertainty Value Distribution

Repeatability uA In Tables 4–9 —

Cube placement
by the robot * uB1 0.02% equal

Sensor distance
sensitivity

uB2

uB210mm = 0.100%
equaluB212.5mm = 0.105%

uB215mm = 0.096%

Illumination effect ** uB3

uB3darkness = 0.700%
equaluB3arti f icial = 1.000%

uB3daylight = 0.800%

Conveyor movement effect * uB4
uB4motion = 0.005% equal
uB4static = 0.000%

Range of measured
values uB5 (0 ÷ 7)% equal

Microclimate *** uB6 0.1% equal
* value estimated based on the documentation; ** value estimated from experimental measurements; *** esti-
mated value.

As the next component of Type B uncertainty we determined the effect of conveyor
movement. When estimating the value of this uncertainty component, we used the doc-
umentation of the conveyor belt motor, specifically the motor speed. The values of this
uncertainty component for measurements of static cubes and moving cubes are given in
Table 10 under the designation uB4.

The component uB5 was determined from the range of measured values, based on
the difference between the maximum and minimum measured values of individual color
components. We determined the interval for each combination of measurement settings for
each color. The resulting interval of calculated values is shown in Table 10.

The last component of Type B uncertainty is the microclimate. This component
includes the effect of the external environment on the measurements. The determined
value of this uncertainty component is given in Table 10, defined according to [21].

Based on the uncertainty components listed in Table 10, we calculated the combined
standard uncertainty and expanded uncertainty. When determining the expanded un-
certainty, we chose the expansion coefficient k = 2 i.e., the Gaussian distribution for a
coverage probability of 95.45%.

We calculated the combined standard uncertainty based on the total standard Type
A uncertainty from data in Tables 4–9 and the total standard Type B uncertainty given in
Table 10. These total uncertainties, listed as uAtotal and uBtotal , are recalculated for every
color cube, representing the customized product separately.

We can state based on these calculations (a sample calculation is presented in Section 3.1)
that the influence of conveyor belt movement on the measurement uncertainties is con-
siderable. Measurements made on a moving conveyor belt show higher values of uncer-
tainties. This was confirmed for all cube colors and combinations of the measurement
process settings.

During data evaluation we found the lowest uncertainty was recorded for measure-
ments performed on brown cube. The brown cube achieved the best results when measur-
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ing on a stopped or even moving conveyor belt. On the other hand, the highest uncertainty
was achieved for a static green cube and for a yellow cube in motion.

We investigated the effect of sensor distance from the scanned object as the next
factor. The data indicate 15 mm as most suitable measuring distance for both static and
motion measurements. In the static measurements, the highest uncertainties were recorded
when measuring at a distance of 12.5 mm. Measurements in motion reached the highest
uncertainties at a measuring distance of 10 mm. It can be stated that the measuring
affects motion measurements more than static ones. While for static measurements the
uncertainties at individual distances achieve similar values, for motion measurements the
uncertainty at a distance of 10 mm is significantly higher than at distances of 12.5 and
15 mm.

When evaluating the uncertainties of the data in terms of the lighting used, we found
the lowest measurement uncertainties for measurements of stopped as well as moving
cubes on the conveyor, accomplished in the dark. We recorded the highest values of
uncertainties when measuring under artificial light. For static measurements, the value of
the uncertainties under artificial light is significantly higher than in daylight. This is not the
case for measurements in motion, where the uncertainties recorded in daylight and under
artificial light have very similar values, which may be caused by cube color reflections.

Our findings show that if we want to use all colors of cubes, the best combination of
settings of the measurement process is a measuring distance of 15 mm and the measurement
should be performed in the dark, ideally with stopped cubes.

3.1. Statistical Evaluation of Measured Data

To demonstrate a sample procedure of statistical evaluation of uncertainties, we chose
a brown color cube as the customized product, based on the best results whether stopped or
in motion. Table 11 shows values of individual measured color RGB components, measured
for a moving brown cube at a scanning distance of 15 mm, in the dark. Column R indicates
the percentage of red component, column G indicates the percentage of green component
and column B indicates the percentage of blue component, respectively.

In the first evaluation step we determined the standard Type A uncertainty for indi-
vidual color components using statistical methods, according to Equations (3) and (4).

uAR =

√
∑n

i=1(xRi − xR)
2

n(n − 1)
= 0.016% (2)

uAG =

√
∑n

i=1(xGi − xG)
2

n(n − 1)
= 0.006% (3)

uAB =

√
∑n

i=1(xBi − xB)
2

n(n − 1)
= 0.011% (4)

Total Type A standard uncertainty is then [11,15]:

uAtotal =
√

u2
AR

+ u2
AG

+ u2
AB

= 0.180% (5)

In the next step, we defined the individual sources of Type B uncertainties based
on the equipment documentation and our experimental measurements. The sources of
uncertainties we used for determination of combined standard uncertainty are shown in
Table 12, as mentioned in [18].
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Table 11. Type B uncertainty components.

Measurement
Number Red(%) Green(%) Blue(%)

1 43.433 24.600 15.743

2 42.886 24.457 15.267

3 43.100 24.457 15.800

4 42.200 24.378 14.767

5 41.725 23.933 15.267

6 42.767 24.800 15.600

7 43.100 24.350 15.475

8 43.400 24.725 15.600

9 44.225 24.600 14.767

10 43.850 24.600 14.600

11 43.433 24.711 14.800

12 43.100 24.711 15.171

13 43.000 24.933 15.933

14 42.100 23.933 15.433

15 42.600 24.725 15.800

∑ 644.919 367.913 230.023

Average color
representation 42.9946 24.52753 15.33487

The resulting color 82.857

Table 12. Uncertainty sources for the brown cube.

Uncertainty
Component Uncertainty Type Uncertainty Value Distribution

Repeatability uA 0.180% —

Cube placement
by the robot * uB1 0.020% equal

Sensor distance
sensitivity uB2 0.096% equal

Illumination effect ** uB3 0.700% equal

Conveyor movement effect * uB4 0.005% equal

Range of measured
values uB5 1.216% equal

Microclimate *** uB6 0.100% equal
* value estimated based on the documentation, ** value estimated from experimental measurements, *** estimated
value related to the workplace.

The first uncertainty component is repeatability and it indicates the total standard
uncertainty determined by the Type A method. The uncertainty component called cube
placement by the robot determined by the type B method, was estimated based on the
return repeatability of the robot manipulator with the considered assembly deviation of
the robot vacuum gripper. The uncertainty component sensor distance sensitivity was
determined based on the documentation of the CSM-WP117A2P color sensor. When
determining the illumination effect, we used experimental data obtained with different
types of lighting (darkness, daylight, artificial light) from experiments. The uncertainty
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component called conveyor movement effect is calculated based on the conveyor speed
specified in its documentation. The uncertainty component range of measured values was
determined based on calculations performed on our experimental data. The influence
of microclimate includes the impact of the surrounding environment, in our case an air-
conditioned laboratory as mentioned in [19,25].

From the individual components of uncertainty determined by the type B method, we
subsequently calculated a total Type B uncertainty according to the following formula:

uBtotal =
√

u2
B1

+ u2
B2

+ u2
B3

+ u2
B4

+ u2
B5

+ u2
B6

= 1.410% (6)

After calculation of the total Type A standard uncertainty and total Type B standard
uncertainty, we determined the combined standard uncertainty based on a formula given
in [18]:

uC =
√

u2
Atotal

+ u2
Btotal

= 1.422% (7)

When defining the expanded uncertainty, we chose the expansion coefficient k = 2
i.e., the Gaussian distribution for a coverage probability of 95.45%. The relationship in the
sense of [19,26] then applies to the expanded uncertainty:

U = k·uC = 2.844% (8)

The result of color measurements (for the brown calibration cube) using the CSM-
WP117A2P color sensor after merging the color components and rounding, according to
the balance table in Table 13, can be written as follows:

Table 13. Balance table of uncertainties for the brown cube.

Uncertainty Balance for the Brown Calibration Cube Moving on the Conveyor

Measurement
Impact

Standard
Uncertainty Distribution Sensitivity

Coefficient
Uncertainty

Contribution

ci·ui (%) ci ci·ui (%) (ci·ui)
2 (%)

uA Repeatability 0.180 — 1 0.180 0.032400

uB1
Cube

placement by the robot 0.020 equal 1 0.020 0.000400

uB2

Sensor
distance

sensitivity
0.096 equal 1 0.096 0.009216

uB3 Illumination effect 0.700 equal 1 0.700 0.490000

uB4
Conveyor movement

effect 0.005 equal 1 0.005 0.000025

uB5
Range of measured

values 1.216 equal 1 1.216 1.478000

uB6 Microclimate 0.100 equal 1 0.100 0.010000

uc (%) 1.422000

U (%) 2.844000

The resulting color = (82.857 ± 2.844)%; k = 2.
Similar calculations were applied to all the other colors representing customized

industrial products. Based on the results, the brown color was evaluated as the best and
therefore its sample calculation was presented in this subsection.
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3.2. Definition of Control Limits and Control Chart Creation

For proper functionality of a logistics system, it is necessary to ensure that sensors
located at workplaces are able to correctly identify calibration cubes based on red, green
and blue color components. We decided to use the control chart statistical tool to ensure
the stability of the measurement process. This is a graphical method using the principle of
statistical tests of significance. The purpose of control charts is to compare and visualize
the current state of measurement with respect to predefined limits. When defining the
limits, we take into account the internal variability of the measured process. The basic
parts of a Shewart control chart are [27,28]: central line (CL); upper control limit (UCL);
and lower control limit (LCL).

The central line represents the reference value of the displayed characteristic, in our
case the average of measured values X. We assume a normal distribution therefore the
control limits are set at the distance of 3σ on both sides of the central line, where σ denotes
the standard deviation. The control limit above the central line represents the high control
limit and the control limit below the central line represents the low control limit.

We initially assumed the possibility of creating two charts for each calibration cube,
which would cover all combinations of the measurement process settings. While one of
the charts would monitor the process stability when measuring stopped cubes, the second
would do this for a moving conveyor belt. As mentioned in the evaluation of uncertainties,
data measured during the movement of cubes on the conveyor belt showed several times
higher uncertainties than data measured when the calibration cube was stopped. Based on
this finding, two control charts would allow us to define control limits for a larger number
of colors in static measurements without overlapping.

The color component values of the measured color within one setting combination,
show a relatively low degree of variability. However, comparison of individual sets showed
that the average measured values of color components differs depending on the settings
combination used. Further testing revealed that illumination is the main factor influencing
the change of these values. Other variability of values occurred for scanning distance
changes, but this difference was not so significant. Based on these findings, the best way to
increase the number of identifiable colors would be to create a database of control limits
for each combination of measurement process settings. Limits could be then selected based
on the particular conditions at the measurement site.

From the part of this work describing measurement uncertainties, we can see the
lowest achieved measurement uncertainties correspond to the brown calibration cube.
The best combination of measurement settings was in the dark, at a distance of 15 mm.
Therefore, we chose a brown cube measured in the dark, at a scanning distance of 15 mm,
as an example for determining the stability of the measuring process using control charts.

3.3. RGB Color Component Charts for Measurement of Stopped Brown Cube

Figures 5–7 show the color components control charts created from measurements
of a brown cube in the dark at a scanning distance of 15 mm. We used the whole set of
measurements for a given settings combination when determining the control limits, but we
printed only the first 45 measured values to maintain the clarity of the charts. The vertical
axis of the charts shows the values of the measured color components in percentages. The
horizontal axis shows the measurement number at which the value was recorded. We used
procedures described in the literature to define the control limits [29].

Figure 5 show red color components control chart. When determining the control
limits, we started with a normal distribution i.e., we set the control limits at a distance of
3σ from the central line. However, in the case of a stopped cube, this distance was not
sufficient for the upper control limit, as several values exceeded this limit, which caused
instability of the control chart. Therefore we moved the upper control limit to the distance
of 4σ, which proved to be sufficient to ensure the stability of the control chart based on the
visualized dataset, as all measured values were within control limits.
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Figure 7. Blue color component control chart for a brown cube measured in the dark, at a scanning distance of 15 mm;
(a) stopped cube; (b) cube in motion.

Similarly we set the limits for the green and blue color components. After application
of the measured data, we found the that control charts are stable. The control chart for
the green color component is shown in Figure 6 and the control chart for the blue color
component is shown in Figure 7. As we can see from the charts, the lowest variability in
values was identified for the green color component. We set limits based on the normal
distribution, and in the case of the green color component, these were sufficient to ensure
the stability of the control chart and it was not necessary to expand them. In the case of the
blue color component for a stopped cube, we extended the lower control limit to 4σ. This
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covered all measured data, and also did not unnecessarily expand the interval too much by
shifting both control limits.

3.4. Stability Monitoring of the Measuring Process

Based on the control charts created for the individual color components for all com-
binations of measurement settings for the calibration cubes, it is possible to continuously
monitor the stability of the measurement process at individual workplaces in produc-
tion. After implementation of a color sensor into the production process, a combination
of settings is selected based on the measurement conditions at the given workplace and
respective control charts are selected for the individual color components of calibration
cubes. If the measuring process is stable i.e., all measured values are inside the control
limits range, it will also ensure the smooth operation of the logistics system, because it will
work with correct data.

Color identification is essential to ensure smooth logistics operations. Without correct
color identification, inaccuracies in calculations of the current state of materials on the line
arise. Inaccuracy has a negative impact on the functionality of the system in long running
operation. By implementing control charts, we can identify values that are outside the
control limits and examine their cause.

The aim of the application of control charts is to maintain the stability of the measuring
process. In the case of process instability, it is necessary to assess each measured value
individually. The value can be also excluded, if this is an isolated case with a large
deviation from the control limits. If this case is repeated and values accumulate outside the
control limits, it is possible to implement some of appropriate corrective mechanism, e.g.,
shortening the calibration interval, extending the control limits, reduction of defects on the
calibration cube or sensor.

If one of the sensor readings writes to the database a value that is outside the control
limits for that color component of the measured color, the color is not successfully identified.
In the next part, we address the failure of color identification and the possibility to solve
this issue with minimum impact on the logistics process. At the same time we must be able
to identify the origin of measurement errors.

3.5. K-Nearest Neighbors Algorithm for Identification of Values Outside the Control Limits

After a value is scanned by a sensor, this value is recorded into the database table
corresponding to a particular sensor, based on some unique sensor identifier. Measurement
number which is unique in the table is assigned to the value. The measured values of
individual color components are thereafter loaded into the logistics system. Once values
are available, it is checked whether color components are within the control limits of any
of the defined colors. The color is identified, if component values are inside the control
limits. If values fall outside the control limits, we still need to identify the color to avoid
the disruption of logistics processes, which is controlled by the colors. For identification of
colors based on values that are outside the control limits, we decided to use the K-nearest
neighbor machine learning algorithm, which we implemented in the Python programming
language.

The K-nearest neighbor is classification algorithm often used in the analysis of large
datasets based on common attributes. In the first step, the algorithm assigns training
data to a certain group based on their designation. The training data in our case are
values measured during our experimental measurements. These data have six independent
variables based on which the resulting dependent variable is defined and determining the
group [30]:

• Conveyor belt speed;
• Illumination;
• Scanning distance;
• Measured value of red, blue and green color component.
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Since we divided the data for control charts according to combinations of measurement
settings, the dependent variables conveyor belt speed, illumination and scanning distance
are constant for all measured colors. Based on this fact, we need only three variables to
define the dependent variable, in our case color. These variables are measured values of
individual RGB color components.

The training sets for algorithm at specific setting of measurement parameters thus
contain 1200 measurements i.e., 200 for each measured calibration cube. We divided the
data into training and testing data, using a ratio of 80/20 (training/testing) for functionality
testing purposes. We can test in that manner whether the algorithm has not adapted too
much to the training data, and still be able to respond to a new dataset. As sample data set,
we chose measurements performed on a moving conveyor belt, in the dark, at a scanning
distance of 15 mm. Figure 8 shows distribution of training data based on the dependent
variable, in our case color, where the coordinates of individual points are determined based
on RGB coordinates. As we can see in Figure 8, the data are grouped according to the color
of cubes and there are visible gaps between the individual colors. After application of the
algorithm on the training data, we verified its accuracy on the test dataset. Thanks to the
mentioned gaps, the algorithm achieved an accuracy of 100% in categorization of the test
data. This algorithm configuration is subsequently used to check measured values outside
the control limits.
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If a measured value outside the control limits of any color occurs during the process,
this value is tested by an algorithm trained for that setting. The algorithm attempts to
classify this value. The K-nearest neighbor algorithm for classification uses the Euclidean
distances of trained data to the value to be classified. According to the input parameter of
algorithm, which is number of searched neighbors, it determines given number of points
with the lowest possible Euclidean distance to the value to be classified. The class of the
new value is identified based on the class where most of the selected neighbors belong
to [15,31].

The trained algorithm is therefore a tool which can be used for immediate estimation
of measured colors when recorded a value is outside the control limits. We can reduce
inaccuracies between the real and digital control system by application of the algorithm and
ensure the smooth process running. It is necessary in our case to set the maximum distance
of the nearest neighbor, what can filter out the category of values created by incorrect
measurements. If we did not set the maximum distance tolerance, each measurement
would be identified as one of the colors, no matter how far the measured values were from
the control limits of defined colors. The application of the algorithm is important, espe-
cially when deploying sensors in a new workplace, until all environmental influences are
identified. However, the algorithm is only offers the possibility of temporarily identifying
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solutions for values outside the control limits. If large number of values are outside the
control limits during the measurements, one of the abovementioned corrective mechanism
must be applied e.g., an extension of the control limits.

4. Discussion

One of the main trends nowadays is a shift away from mass series production and
a transition to custom production based on the increasing requirements of demanding
customers [8,32]. The consequence of this trend is often several variations of the same
product on one production line at the same time. Each variation has its own specifics which
must be taken into account within the production process. For this reason, it is currently
essential to be able to recognize products with the highest possible accuracy and speed.
Every single stop due to products’ identification, increases the work cycle and prolongs
the production time of a product. Technology with intelligent recognition capability is
relatively expensive and difficult to maintain [33].

The article offers us an advantageous alternative to expensive and complex technology
for dynamic scanning and identification of products in motion, in the form of using a
cheap static industrial color sensor with simple maintenance and adjustment wherever
the type of production allows. It involves a simple color sensor commonly used in the
industry [34–37]. The difference here is its usage in dynamic identification, where it is not
primarily suitable due to the sensor characteristics. Based on our research and experiments,
we can responsibly declare that it is possible to use a simple sensor for dynamic (more
complex) product identification. However, statistical methods must be used in order
to obtain combined standard uncertainties and control charts for a given sensor [38,39].
Subsequently the mentioned K-nearest neighbor machine learning algorithm allows us to
rectify any sensor errors in dynamic color scanning [16]. The static color sensor with the
best scanning results of static products, by using proposed methodology described in the
article, becomes capable of identifying products even in motion. On-the-fly identification
speeds up the entire production line and thus allows us to produce more products in the
same time. Not least of all, since the conveyor belt does not stop, it significantly extends the
technology operating life (by minimizing the occurrence of mechanical shocks), reduces
required service (because of less mechanical component damage) and saves electricity
(thanks to skipped energy-inefficient start-ups).

We currently see a demand for product identification technology in industrial enter-
prises [30]. Therefore, we would like to focus on enhancement of identification methods
in the future. We plan to incorporate of optical methods for dynamic product recognition
using special 3D sensors which are already at our disposal. These include the Photoneo
PhoXi [40] or cheaper camera OpenCV alternatives [41], where we anticipate their inte-
gration with standard Cognex industrial cameras, supported by additional software for
intelligent product recognition [42].
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29. Palenčár, R.; Ruiz, J.M.; Janiga, I.; Horníková, A. Statistical Methods in Metrological and Testing Laboratories; SUT: Bratislava, Slovakia,
2001; p. 366. ISBN 80-968449-3-8.

http://doi.org/10.3390/pr9020247
http://doi.org/10.3390/app9163325
http://doi.org/10.3390/machines6020023
http://doi.org/10.1016/j.ifacol.2018.08.474
http://doi.org/10.1109/TII.2018.2873186
http://doi.org/10.1007/s00170-019-04203-1
http://doi.org/10.1016/j.ifacol.2019.11.525
http://doi.org/10.3390/s17071562
http://www.ncbi.nlm.nih.gov/pubmed/28677637
http://doi.org/10.3390/proceedings2130906
http://www.color.Org/faqs.xalter#wh2
http://doi.org/10.3390/s120607063
http://doi.org/10.1109/ICITISEE.2017.8285514
http://doi.org/10.3390/math9020119
http://doi.org/10.3390/s20226418
https://www.kuka.com/sk-sk/servisn%C3%A9-slu%C5%BEby/downloads?terms=Language:sk:1;Language:en:1Language:en:1&q=
https://www.kuka.com/sk-sk/servisn%C3%A9-slu%C5%BEby/downloads?terms=Language:sk:1;Language:en:1Language:en:1&q=
https://www.sick.com/ag/en/registration-sensors/color-sensors/csm/c/g305962
https://www.sick.com/ag/en/registration-sensors/color-sensors/csm/c/g305962
http://doi.org/10.3390/s20185433
http://www.ncbi.nlm.nih.gov/pubmed/32971868
http://doi.org/10.3390/s20041175
http://www.ncbi.nlm.nih.gov/pubmed/32093348


Sensors 2021, 21, 1797 20 of 20

30. Zheng, N.; Lu, X. Comparative Study on Push and Pull Production System Based on Anylogic. In Proceedings of the International
Conference on Electronic Commerce and Business Intelligence, Beijing, China, 6–7 June 2009; pp. 455–458. [CrossRef]

31. Peng, X.; Chen, R.; Yu, K.; Ye, F.; Xue, W. An Improved Weighted K-Nearest Neighbor Algorithm for Indoor Localization.
Electronics 2020, 9, 2117. [CrossRef]

32. Micieta, B.; Binasova, V.; Lieskovsky, R.; Krajcovic, M.; Dulina, L. Product Segmentation and Sustainability in Customized
Assembly with Respect to the Basic Elements of Industry 4.0. Sustainability 2019, 11, 6057. [CrossRef]

33. Groover, M.P. Automation, Production Systems, and Computer-Integrated Manufacturing; Pearson Education, Inc.: Upper Saddle
River, NJ, USA, 2008; ISBN-13>978-0132393218.

34. Jia, J. A Machine Vision Application for Industrial Assembly Inspection. In Proceedings of the Second International Conference
on Machine Vision, Dubai, UAE, 28–30 December 2009; pp. 172–176. [CrossRef]

35. WU, D.; Sun, D.W. Colour measurements by computer vision for food quality control—A review. Trends Food Sci. Technol. 2013,
29, 5–20. [CrossRef]

36. Li, J. Application Research of Vision Sensor in Material Sorting Automation Control System. IOP Conf. Ser. Mater. Sci. Eng. 2020,
782, 022074. [CrossRef]

37. Shrestha, A.; Karki, N.; Yonjan, R.; Subedi, M.; Phuyal, S. Automatic Object Detection and Separation for Industrial Process
Automation. In Proceedings of the IEEE International Students’ Conference on Electrical, Electronics and Computer Science
(SCEECS), Bhopal, India, 22–23 February 2020; pp. 1–5. [CrossRef]

38. Mandel, B.J. The Regression Control Chart. J. Qual. Technol. 1969, 1, 1–9. [CrossRef]
39. Vapnik, V. The Nature of Statistical Learning Theory; Springer Science & Business Media: Berlin, Germany, 2013; ISBN 978-1-4757-

3264-1.
40. Photoneo PhoXi Scaners. Available online: https://www.photoneo.com/phoxi-3d-scanner/ (accessed on 14 February 2021).
41. Koori, A.; Anitei, D.; Boitor, A.; Silea, I. Image-Processing-Based Low-Cost Fault Detection Solution for End-of-Line ECUs in

Automotive Manufacturing. Sensors 2020, 20, 3520. [CrossRef]
42. Cognex Vision Pro Deep Learning. Available online: https://www.cognex.com/products/deep-learning/visionpro-deep-

learning (accessed on 14 February 2021).

http://doi.org/10.1109/ECBI.2009.26
http://doi.org/10.3390/electronics9122117
http://doi.org/10.3390/su11216057
http://doi.org/10.1109/ICMV.2009.51
http://doi.org/10.1016/j.tifs.2012.08.004
http://doi.org/10.1088/1757-899X/782/2/022074
http://doi.org/10.1109/SCEECS48394.2020.195
http://doi.org/10.1080/00224065.1969.11980341
https://www.photoneo.com/phoxi-3d-scanner/
http://doi.org/10.3390/s20123520
https://www.cognex.com/products/deep-learning/visionpro-deep-learning
https://www.cognex.com/products/deep-learning/visionpro-deep-learning

	Introduction 
	Subject and Methods 
	Results 
	Statistical Evaluation of Measured Data 
	Definition of Control Limits and Control Chart Creation 
	RGB Color Component Charts for Measurement of Stopped Brown Cube 
	Stability Monitoring of the Measuring Process 
	K-Nearest Neighbors Algorithm for Identification of Values Outside the Control Limits 

	Discussion 
	References

