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Abstract: Microwave radar technology is very attractive for ubiquitous short-range health moni-
toring due to its non-contact, see-through, privacy-preserving and safe features compared to the
competing remote technologies such as optics. The possibility of radar-based approaches for breath-
ing and cardiac sensing was demonstrated a few decades ago. However, investigation regarding the
robustness of radar-based vital-sign monitoring (VSM) is not available in the current radar literature.
In this paper, we aim to close this gap by presenting an extensive experimental study of vital-sign
radar approach. We consider diversity in test subjects, fitness levels, poses/postures, and, more
importantly, random body movement (RBM) in the study. We discuss some new insights that lead to
robust radar heart-rate (HR) measurements. A novel active motion cancellation signal-processing
technique is introduced, exploiting dual ultra-wideband (UWB) radar system for motion-tolerant
HR measurements. Additionally, we propose a spectral pruning routine to enhance HR estimation
performance. We validate the proposed method theoretically and experimentally. Totally, we record
and analyze about 3500 s of radar measurements from multiple human subjects.

Keywords: radar; vital signs; random body movement cancellation; UWB; privacy preserving

1. Introduction

Vital-sign monitoring (VSM) devices are extremely important for human healthcare
and wellness, whether it be consumer-grade devices that promote self-health monitor-
ing or medical-grade devices that aid in early diagnosis and facilitate treatment. Remote
sensing using radar is one of such technologies that supports non-contact vital-sign mea-
surements [1–3]. Microwave ultra-wideband (UWB) radar systems have good penetrative
capability and range resolution, which enables them to non-invasively monitor internal
physiological motion of the organs of a body, such as the heart or lungs, by transmitting
low-energy electromagnetic waves. Thus, such radar systems can extract the heart-rate
(HR) and breathing rate (BR) of a subject remotely from a distance.

Radar-based health monitoring devices have a myriad of potential applications, such
as infant monitoring [4], sleep monitoring [5–7], elder care [8], and animal care [9]. The
non-contact feature of radar makes it extremely useful for healthcare applications, such
as remote patient monitoring, and enabling a more comfortable and efficient caregiving.
A non-contact way of measuring vital signs decreases the risk of infection for healthcare
professionals, and thus reduces the risk of any contagious virus transmission. This cannot
only be beneficial in the current coronavirus disease 2019 pandemic scenario [10], but also
in the long run for general patient monitoring and rehabilitation care.

Recently, there has been a strong increase in demand for consumer-grade and medical-
grade VSM devices. A significant portion of current vital-sign sensors are either wearable-
based or use optical sensors such as cameras. These approaches have drawbacks such as
requiring constant contact with the subject or a lack of privacy [11]. The optical sensors

Sensors 2021, 21, 1774. https://doi.org/10.3390/s21051774 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-9879-8369
https://doi.org/10.3390/s21051774
https://doi.org/10.3390/s21051774
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21051774
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/5/1774?type=check_update&version=1


Sensors 2021, 21, 1774 2 of 17

based on remote imaging photoplethysmography (PPG) [12] are a competing non-contact
HR monitoring technology for radar approach. HR can be extracted using a low-cost
color camera, such as a webcam, by processing a sequence of recorded video images.
However, the camera approach is subjective to skin-tones [13], motion artifacts [14,15]
and lighting condition [16,17]. Accordingly, significant efforts are investigated on imaging-
based robust methods for PPG, such as algorithmic development [18–20] and exploration
of non-visible light waves [21]. Besides raising privacy issues, the most obvious operational
disadvantage of remote imaging PPG measurement is that optical sensors in general have
poor penetrative capability. They do not penetrate clothes and blanket, which is required
for non-interruptive sensing for continuous, long-term monitoring. Thus, optical sensors
are limited for measurements from light-of-sight body spots and directly exposed skin
areas, such as hand and face. Alternatively, microwave radar technology presents a very
attractive option for ubiquitous short-range VSM due to its non-contact, see-through,
and privacy-preserving features. Vast frequency bands have been explored using radar
electronics for VSM, ranging from a few gigahertz (GHz) in low frequency band [1], tens of
GHz in millimeter wave band [22,23], and hundreds of GHz in Terahertz wave band [24].

To date, most work on non-contact radar-based VSM sensors has focused on moni-
toring a single human stationary subject. Multiple human subjects in ideal situation were
considered in these works [25–28]. Often, the subjects would typically be instructed to
remain motionless by seating still or lying down, and would be in a quiet and controlled
environment. This is because a small random body motion (a few centimeters) is often
stronger than breathing-induced (millimeter to centimeter) and heartbeat-induced (much
less than millimeter) physiological motions, potentially overwhelming the desired signal.
A few attempts [29–33] have been made to cope with random body movement (RBM)
noise via differential measurement/processing, such as multiple radars at different body
sides [30], radar and camera fusion [33], multi-frequency radar systems [34], sensing system
exploiting auxiliary sensors attached to the human body [32]. In particular, in reference [29]
two continuous wave radars were placed on opposite sides of a person to cancel body
movement through differential detection.

In this paper, we focus on investigation of motion-tolerant radar method for HR
estimation in realistic settings with a dual-UWB impulse radar system. The two UWB
radar sensors are strategically placed at the front side of human chest to create differential
measurement of a common chest motion and upper body motion, for example, back-and-
forth motion (BFM). The UWB sensor towards the left chest captures major heartbeat signal
plus other common signals present in the other sensor on the right side of the chest. The
directly sampled radio frequency (RF) signals are fused and converted in the complex
baseband for spectral analysis. The recovery of useful vital-sign spectral structure by
RF differencing operation to suppress BFM and breathing motion is theoretically and
experimentally justified. Subsequently, a spectral-based HR pruning technique is proposed
to exploit spectral heartbeat harmonics [26,35] when the fundamental heartbeat is masked
by motion residual. The proposed method is tested against comprehensive motion-tolerant
experiments. Finally, the impact of breathing dynamics and heartbeat dynamics on HR
estimation performance are thoroughly discussed.

2. Materials and Methods
2.1. Experimental Setup and Design

The study was approved by the ethics committee of the Arizona State University
(approval number: HPR-5-3b). All research was performed in accordance with relevant
guidelines and regulations. Three human subjects were included during the study. In
particular, the studied subjects have different physical conditions. One evidence is that
some subjects have relatively lower resting HR while other subjects relatively higher
resting HR. One of the goals of this experimental study is to demonstrate the limitations of
conventional radar approaches. The existing methods mostly assume that (1) the testing
subjects are stationary and (2) spectral separation is enough for HR calculation. These
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assumptions are in general not true. These facts are demonstrated through multiple
relatively longer-term measurements, which capture involuntary RBM in the prolongated
recordings. Additionally, multiple challenging poses are considered. These include stable
seating (with back support), free-style seating (without back support), and standing. The
second goal of this study is to provide a motion-tolerant radar method with active motion
cancellation technique to solve the aforementioned issues. For validation, the proposed
algorithm is tested in several carefully designed experiments, in which the test subjects are
instructed to move back and forth constantly.

A novel dual-radar system setup is presented as illustrated in Figure 1. Both radars
are placed at chest height in the front of the human body but with a tilted angle, 45°,
with respect to a center line which is perpendicular to the chest plane. Exploiting spatial
diversity with this frontal side dual-radar setup, similar radar channels can be created for
RBM cancellation purpose, achieving the goal of improved vital-sign detection. The sensor
pointing to the left chest area where the heart chamber is located captures all kinds of body
motion including chest motion and heartbeat. As for the other sensor pointing to the right
side of the chest, it captures the common body motion, as seen in another radar channel
except that it only sees a small portion of heartbeat signal. Due to channel noise, the weak
heartbeat signal is negligible in this sensor. Thus, the following assumption is made here
that heartbeat signal is only present in one radar channel while the rest of body motions
are common to both radar channels.

Figure 1. Novel dual-UWB radar system same-side scenario. (a) Stable seating; (b) free-style seating; (c) standing.

2.2. Measurement Devices

A fingertip oximeter together with a digital dataloger (NeuLog heart-rate and pulse
logger sensor, model NUL-208) was used to collect standard PPG signal as pulse reference
from the test subjects. The PPG signal is acquired at a sampling rate of 50 Hz. A chest air
pressure belt (NeuLog respiration monitor belt logger sensor, model NUL-236) was used
for providing breathing reference. The breathing signal is also acquired at a sampling rate
of 50 Hz. The pulse reference device and breathing reference device are synchronized in
hardware (Figure 2).

The dual-UWB radar system (Figure 1) consists of two independent radar sensors
(Xethru X4M03 development kit) equal distant from the test subject. These radar sensors
operate at center frequency 7.3 GHz with effective signal bandwidth 1.4 GHz. On board
patch antennas have directional beamwidth about 60° in azimuth and elevation. Each of
these sensors employs an UWB impulse signaling scheme and direct RF receiver architec-
ture [36], critical sampling at RF and preserving all the information, including vital-sign
signals, carried in the received signal in the digital domain [37]. For spectral masking,
the transmitter employs a biphase coding modulation scheme, where the encoding bit
sequence is independently generated at each sensor node using a pseudo-random noise
pattern [36]. Thus, each sensor only sees its own signal backscattered from the target of
interest. The two sensors are physically wired to a control unit and synchronized in time.
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Figure 2. Neulog optical pulse sensor and respiration monitor belt logger sensor used to record PPG signals and breathing
signals from the test subject as standard reference for heart-rate and breathing rate.

2.3. Proposed Signal Processing

The major signal-processing steps are highlighted in Figure 3 to extract human sub-
ject’s HR. The proposed signal-processing algorithm can be categorized into five processing
blocks, including direct RF signal fusion, RF to complex baseband conversion, range-
Doppler analysis to locate the range of interest, spectral peak detection and HR calculation.
Each processing block is discussed in the following sections.

Figure 3. Block diagram showing the main processing steps to extract human subject’s heart-rate from radar signals.

2.3.1. Active Motion Cancellation
Direct RF Signal Processing

Active motion cancellation is a key processing setup before any conventional signal
processing is applied. With explicit suppression of any large RBMs, long-term heart-rate
monitoring is feasible because no human subject can maintain an absolute stationary po-
sition for an extended period of time in any relaxed state. Two radar channels provide
two slightly different observations from the two strategically positions for sensor fusion
operation. The ability to access directly sampled RF samples allows mixing the two copies
of RF radar scans (left side SRF

L and right side SRF
R ) at the same time. The differential

measurement by differencing the two RF radar scans (left side SRF
L and right side SRF

R )
provides a desirable residual signal with enhanced pulse signal, such that the motion
artifact and stronger breathing is suppressed prior to apply other signal-processing tech-
niques. The received RF signal is modeled as a nonlinear function (£{}) of normalized
RBM R(τ, t), breathing signal B(τ, t) and pulse signal H(τ, t) and receiver noise W(τ, t).
These components are organized in two-dimensional (2-D) matrix format, as follows,

SRF
L (τ, t) = £

{
R(τ, t), B(τ, t), H(τ, t), WL(τ, t)

}
(1)

SRF
R (τ, t) = £

{
R(τ, t), B(τ, t), WR(τ, t)

}
, (2)

where τ denotes fast-time samples corresponding to the range domain while t denotes
slow-time samples corresponding to the temporal domain. The HR calculation is operated
along the slow-time samples. By differencing Equations (1) and (2) at t = ti, where i
denotes ith slow-time index, we have,
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sRF
Di f f (τ, ti) = sRF

L (τ, ti)− sRF
R (τ, ti). (3)

Baseband Signal Processing

The residual RF signal Equation (3) is digitally downconverted to complex baseband
by mixing with a nominal carrier.

sBB
Di f f (τj, t) = sRF

Di f f (τj, t)e−j2π fcτ . (4)

The common approach is to extract the Doppler phase component from Equation (4),
using pBB

Di f f (τj, t) = unwrap
[

arctangent [sBB(τj, t)]
]
. “arctangent” denotes arctangent

demodulation operating on the ratio of real component and imaginary component of
the baseband signal sBB(τj, t) at the range of interest dj = 2 c τj. Moreover, “unwrap”
operator is applied to deal with the wrapping problem when the absolute jumps between
consecutive phase samples are greater than or equal to 180o.

However, it is found that the phase-based method does generate stable spectrum over
time in the presence of RBMs in this study. Instead of phase extraction, the spectral peak
detection for HR calculation is performed on the complex signals (Equation (4)) because
the higher-order spectral features of heartbeat in complex signal frequency domain aid in
HR calculation when the residual motion interference masks the fundamental heartbeat
spectral energy.

2.3.2. Analytical Spectral Analysis of Fused Sensor Signal

The spectral representation of the complex-based signal sBB
Di f f (τj, t) is derived to

demonstrate that (1) the major frequency components related BFM are suppressed via
differencing RF signals and (2) the heartbeat harmonic spectral features are maintained in
the complex-based signal model and thus is helpful for rate calculation. For convenience, a
simplified motion model is used for characterizing the RBM profile,

R(t) = AR sin(2π fRt), (5)

which matches the constant BFM considered in this study. AR is the amplitude of BFM and
fR denotes the cyclic frequency of the activity. Similarly, the respiratory activity and the
cardiac activity are defined using the same model but with appropriate amplitude values
and frequency values to match their physical characteristics.

B(t) = AB sin(2π fBt) (6)

H(t) = AH sin(2π fHt), (7)

where the amplitude values of these three activities follow AR � AB � AH , fB for normal
human subject is around 10 to 20 beats per minute (BPM) and fH 60 to 100 BPM. For UWB
impulse radar, the received pulse is modeled as an attenuated and shifted version of the
transmitted pulse p(τ). The BFM, breathing motion and heartbeat motion modulate the
pulse and create a time-varying delay profile τD(t) around a nominal distance d0 with the
associated time-delay τ0 = 2d0/c. The backscattered signal from the left chest is given as,

sRF
L (τ, t) = AT p(τ − τD,L(t)) (8)

τD,L(t) =
2
(
d0 + R(t) + B(t) + H(t)

)
c

, (9)

where AT denotes the amplitude of the target response and c speed of light. The backscat-
tered signal from the right chest is given as,

sRF
R (τ, t) = AT p(τ − τD,R(t)) (10)

τD,R(t) =
2
(
d0 + R(t) + B(t)

)
c

. (11)
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Accordingly, the differential complex baseband signal sBB
Di f f (τj, t) is obtained,

sBB
Di f f (τ, t) = sBB

L (τ, t)− sBB
R (τ, t) (12)

= AT
(

p(τ − τD,L(t))− p(τ − τD,R(t))
)
e−j2π fcτ . (13)

For convenience, the sBB
L (τ, t) and sBB

R (τ, t) in Equation (12) are evaluated separately.
Through forward and backward Fourier transforms (FT) with respect to t and τ, the FT of
sBB

L (τ, t) is obtained as (see Appendix A for detailed derivation of sBB
L (τ, f )),

sBB
L (τ, f ) = AT

∞

∑
k=−∞

∞

∑
l=−∞

∞

∑
q=−∞

δ( f − k fR − l fB − q fH)×
∫ ∞

−∞
dν
[

P(ν) ej2πν(τ−τ0)

×Jk
(
4πν

AR
c
)

Jl
(
4πν

AB
c
)

Jq
(
4πν

AH
c
)] (14)

= AT

∞

∑
k=−∞

∞

∑
l=−∞

∞

∑
q=−∞

CL,(k,l,q)(τ)δ( f − k fR − l fB − q fH), (15)

where Jk(.) denotes the Bessel function of the first kind [38] and CL,(k,l,q)(τ) is given as the
following equation and its absolute value achieves the maximum at τ0,

CL,(k,l,q)(τ) =
∫ ∞

−∞
dν
[

P(ν) ej2πν(τ−τ0) × Jk
(
4πν

AR
c
)

Jl
(
4πν

AB
c
)Jq
(
4πν

AH
c
)]

, (16)

where P(ν) denotes the FT of the transmitted pulse p(τ). Then,

∣∣sBB
L (τ, f )

∣∣ ≤ |AT |
∞

∑
k=−∞

∞

∑
l=−∞

∞

∑
q=−∞

∣∣CL,(k,l,q)(τ0)
∣∣δ( f − k fR − l fB − q fH) =

∣∣sBB
L (τ0, f )

∣∣. (17)

On the other hand, the FT of sBB
R (τj, t) with respect to t is derived in the same fashion,

sBB
R (τ, f ) = AT e−j2π fcτ0

∞

∑
k=−∞

∞

∑
l=−∞

CR,(k,l)(τ)δ( f − k fR − l fB), (18)

|sBB
R (τ, f )| ≤ |AT |

∞

∑
k=−∞

∞

∑
l=−∞

|CR,(k,l)(τ0)| δ( f − k fR − l fB) = |sBB
R (τ0, f )|, (19)

where CR,(k,l)(τ) is given as,

CR,(k,l)(τ) =
∫ ∞

−∞
dν
[

P(ν) ej2πν(τ−τ0) × Jk
(
4πν

AR
c
)

Jl
(
4πν

AB
c
)
]
. (20)

By inspecting Equations (12), (15) and (19), the FT of sBB
Di f f (τj, t) with respect to t is

approximated as,

∣∣sBB
Di f f (τ0, f )

∣∣ ≈ |AT |
∞

∑
k=−∞

∞

∑
l=−∞

∞

∑
q=−∞

∣∣CL,(k,l,q)(τ0)
∣∣δ( f − k fR − l fB − q fH)

− |AT |
∞

∑
k=−∞

∞

∑
l=−∞

|CR,(k,l)(τ0)| δ( f − k fR − l fB).
(21)

The theoretical spectral power representation of the complex baseband signal sBB
Di f f (τ0, t)

consists of weighted impulse pulse train located at frequency locations from combinations
of fR, fB and fH . To focus on the most relevant spectral harmonics, only consider the
orders of harmonics up to the second order in the analytical analysis and consider the
positive frequency locations given the spectral symmetry in Equation (21), meaning that
k, l, q is either 0 or ±1 or 2 and |k|+ |l|+ |q| ≤ 2. The corresponding weights |CL,(k,l,q)| and
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|CR,(k,l)| significantly decrease when the order of harmonics increases (>2). Without loss of
generality, let fR < fB < fH . Therefore, Equation (21) is expanded out as,

∣∣sBB
Di f f (τ0, f )

∣∣ ≈ |AT |
{
|CL,(1,0,0)(τ0)|δ( f − fR) + |CL,(0,1,0)(τ0)|δ( f − fB) + |CL,(0,0,1)(τ0)|δ( f − fH)

+|CL,(2,0,0)(τ0)|δ( f − 2 fR) + |CL,(0,2,0)(τ0)|δ( f − 2 fB) + |CL,(0,0,2)(τ0)|δ( f − 2 fH)

+|CL,(1,−1,0)(τ0)|δ( f + fR − fB) + |CL,(0,−1,1)(τ0)|δ( f + fB − fH) + |CL,(−1,0,1)(τ0)|δ( f + fR − fH)

+|CL,(1,1,0)(τ0)|δ( f − fR − fB) + |CL,(0,1,1)(τ0)|δ( f − fB − fH) + |CL,(1,0,1)(τ0)|δ( f − fR − fH)
}

−|AT |
{
|CR,(1,0)(τ0)|δ( f − fR) + |CR,(0,1)(τ0)|δ( f − fB) + |CR,(2,0)(τ0)|δ( f − 2 fR)

+|CR,(0,2)(τ0)|δ( f − 2 fB) + |CR,(−1,1)(τ0)|δ( f + fR − fB) + |CR,(1,1)(τ0)|δ( f − fR − fB)
}

(22)

≈ AT
{
|CL,(1,0,0)(τ0)|δ( f − fH) + |CL,(2,0,0)(τ0)|δ( f − 2 fH)

+|CL,(0,−1,1)(τ0)|δ( f + fB − fH) + |CL,(−1,0,1)(τ0)|δ( f + fR − fH)

+|CL,(0,1,1)(τ0)|δ( f − fB − fH) + |CL,(1,0,1)(τ0)|δ( f − fR − fH)
}

.

(23)

The result in Equation (23) is important since it implies that BFM R(t) and breath-
ing motion B(t) is suppressed in the spectral domain and the dominant spectral com-
ponents are the heartbeat harmonics. The last four terms in Equation (23) representing
frequency intermodulations around the fundamental heartbeat frequency, but will not
cause ambiguity because the weight of fundamental heartbeat is stronger than the other
weights (|CL,(1,0,0)| > |CL,(0,−1,1)|, |CL,(−1,0,1)|, |CL,(0,1,1)| and |CL,(1,0,1)|) and more impor-
tantly the second-order harmonic of heartbeat (2 fH) further way from these intermodula-
tions interference provides additional trace of HR. From Equation (22) to Equation (23), the
weighted impulse responses at the common frequencies are cancelled out because of the
following assumption,

CL,(k,l,0)(τ0) ≈ CR,(k,l)(τ0). (24)

This approximation is obtained by invoking the mean value theorem from Equation (16),

CL,(p,q,0)(τ0) ≈ ∆ f × P( fc)Jk
(
4π fc

AR
c
)

Jl
(
4π fc

AB
c
)J0
(
4π fc

AH
c
)

(25)

≈ ∆ f × P( fc)Jk
(
4π fc

AR
c
)

Jl
(
4π fc

AB
c
) = CR,(p,q)(τ0), (26)

where ∆ f represents the signal bandwidth. The last term in Equation (25), J0
(
4π fc AH/c) ≈ 1.

Given the radar system parameter fc = 7.3 GHz and AH = 0.08 mm [39], J0
(
4π fc AH/c)

gives a value of 0.99986.

2.4. Spectral-Based Heart-Rate Calculation Algorithm

It is known that HR calculation from spectral peak selection in radar-based approaches
suffers from overwhelming interference of breathing harmonics [35]. One typical such
radar measurement is shown in Figure 4. The fundamental HR location overlaps with
the higher-order breathing harmonic (5th in this example), which makes it challenging to
calculate HR over time without external reference (Figure 4b). Therefore, the heartbeat
spectral harmonic features are exploited to improve the detection robustness and help to
identify the fundamental HR.

When RBM is not present, the received signal is dominated by the breathing signal
and the pulse signal is often found at least 10-dB to 20-dB weaker than the breathing sig-
nal. The pulse signal in the temporal waveform is overwhelmed as seen in Figure 4a, and
thus the spectral-based peak detection algorithm is commonly used. However, herein
the scenario of interest is HR recovery when constant RBM occurs (Figure 5a,b). Directly
applying conventional signal processing renders failure without explicit motion cancella-
tion (Figure 5d,e). On the other hand, the proposed HR calculation is operated on RBM
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suppressed input signals, it is possible to reuse these existing signal-processing steps for
rate calculation, as demonstrated in Figure 5f.

Figure 4. Spectral-based heart-rate (HR) and breathing rate (BR) calculation. (a) raw Doppler phase from single radar
measurement dominated by breathing motion; (b) the corresponding complex vital-sign spectrum with the most relevant
spectral features labeled with help of breathing and pulse references. The shaped areas denote the frequency region of the
fundamental HR and HR harmonics.

Spectral Peak Pruning Routine

Meaningful vital-sign spectrum is revealed with the aforementioned active motion
cancellation technique (Figure 5f) when BFM occurs. Afterwards, a spectral peak pruning
routine is proposed to provide consistent HR estimate. Based on common knowledge, a
heartbeat bandpass filter is first applied. Please note that this frequency range should be
tuned matching the testing human subject’s resting HR. Then, this range is divided into
N equally spaced intervals to recover the fundamental HR and up to the Nth heartbeat
harmonic. Within each frequency interval, the C most significant peaks are recorded. The
cth peak location in the nth frequency interval, LocN

c , is normalized relative to the order
of harmonic n, and n = 1, . . . , N. This is because the HR harmonics are multiple of the
fundamental HR.

en
c =

Locn
c

n
, (27)

where c denotes the cth largest peak and c = 1, . . . , C. A set E of potential HR estimates
is obtained,

ĥr ∈ E =
{

e1
1, . . . , e1

c , . . . , e1
C,
∣∣ . . . . . .

∣∣, en
1 , . . . , en

c , . . . , en
C,
∣∣ . . . . . .

∣∣, eN
1 , . . . , eN

c , . . . , eN
C
}

. (28)

The final HR estimate is chosen from the set E using a majority vote strategy. The HR
estimate is calculated as,

ĥr =
{

mean
[
∑
n∗

en∗
cn∗

]
; argmax

n∗
λ
}

, (29)

where n∗ belongs to a subgroup from n = 1, . . . , N such that they (en∗
cn∗ ) yields the most

common votes λ, where 0 ≤ λ ≤ (N
2 ). A common vote is achieved when,

|en1
c1 − en2

c2 | <= η, when n1 6= n2, (30)

where c1 or c2 = 1, . . . , C and n1 or n1 = 1, . . . , N. η is a consensus tolerance parameter and
is set to 2 BPM empirically. If no consensus (λ = 0) is found using Equation (30) in the
set E , then the testing estimate that has smallest difference to the previous HR estimate
is selected.

ĥr =
{

en̊
c̊ ; argmin

c̊,n̊

∣∣en
c − ĥr

prv∣∣}. (31)

The proposed spectral peak pruning routing is summarized in Algorithm 1.
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Algorithm 1: Spectral-Based Peak Selection for Heart-Rate Calculation

Result: ĥr
obtain sBB

Di f f (τj, t) according to Equation (4);

apply heartbeat bandpass filter ;
find N × C spectral peaks ;
normalize the peak locations according to Equation (27) ;
form a testing set E ;
if consensus exists then

ĥr is the mean of the contributing estimates in E according to Equation (29)
else

ĥr is the estimate in E , which has smallest difference to the previous HR estimate according to Equation (31);
end

Figure 5. Heart-rate (HR) and breathing rate (BR) recovery in the presence of BFMs using RF fusion technique. From 45
to 72-s and 80 to 100 s, the human subject in free-style sitting position was instructed to move back and forth constantly.
(a,b) represent the RF signals from the sensor pointing to the left side of the chest and to the right side of the chest;
(c) represents the differential RF signal; while (d–f) show the corresponding vital-sign spectra from complex baseband
signals, before and after motion cancellation, using 20-s of data from the highlighted time interval in (a–c) from 45 to 72-s;
(g–i) show the corresponding vital-sign spectra from complex baseband signals, before and after motion cancellation, using
20-s of data from the highlighted time interval in (a–c) from 78 to 100-s.
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2.5. Evaluation Metrics

Visual inspection and quantitative measures of the experimental results are used to
justify the proposed radar algorithm. The RF waveform front single sensor and dual-
sensor are compared to show the effect of RF fusion for motion cancellation (Figure 5a–c).
Inspection of the corresponding the vital-sign spectra indicates the HR recovery perfor-
mance (Figure 5d–i). For quantitative measures, HR error statistics are computed and
displayed in terms of the empirical cumulative distribution function (CDF) of HR es-
timation errors (Table 1). The calculated empirical CDFs is used to compare different
algorithms (Figures 6 and 7). For visual inspection, the HR calculated with the proposed
radar signal processing is compared against the reference HR from the acquired PPG
signals (Figures 8 and 9).

Figure 6. Heart-rate (HR) estimation error analysis from different poses. Blue curve denotes the proposed method using
sensor fusion with spectral peak pruning algorithm and green curve the complex signal demodulation method (CSD).
(a) stable seating; (b) free-style seating; (c) standing.

Figure 7. HR estimation error analysis for free-style seating and standing with back-and-forth motions (BFM). (a) experiment
scene of free-style seating with BFM; (b) experiment scene of standing with BFM; (c) estimation CDF of free-style seating
with BFM; (d) HR estimation error CDF of standing with BFM.
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Table 1. Summary of HR Estimation Error Statistics (BPM) in Various Scenarios.

Subject 1 Subject 2 Subject 3

Algorithms Proposed (RMSE, STD) CSD Proposed CSD Proposed CSD
Stable Seating 1.05, 0.59 1.27, 0.92 1.38, 0.90 1.25, 0.88 1.55, 1.03 2.34, 1.03

Free-Style Seating 2.49, 1.60 3.98, 3.13 2.66, 1.80 4.59, 3.71 2.72, 2.02 3.68, 3.55
Standing 2.90, 2.20 9.71, 4.53 2.27, 1.80 10.30, 4.44 3.23, 1.98 9.08, 4.62

Seating + BFMs 3.89, 2.26 12.70, 4.72 4.16, 2.51 13.44, 4.56 3.74, 3.45 8.21, 5.02
Standing + BFMs 6.88, 5.26 11.25, 5.39 8.22, 4.98 15.21, 6.11 7.55, 6.22 13.46, 5.87

Figure 8. Investigation of dynamic breathing profiles on HR monitoring. (a) consistent shallow breathing; (b) varying
regular breathing; (c) deep breathing.

Figure 9. Investigation of heartbeat dynamics on HR monitoring. (a) low resting HR; (b) high resting HR.

3. Motion-Tolerance Demonstrations

Two sets of studies are conducted for HR estimation error analysis in the presence
of motion artifacts. The involuntary body motions from various poses and controlled
BFMs are examined separately. These motion-tolerant experiments are repeated on three
human subjects. The corresponding HR estimation error statistics for each subject and each
case are summarized in Table 1 in terms of root mean squared error (RMSE) and standard
deviation (STD), RMSE± STD. The HR results are generated with a 20 s sliding window
with one sample increment. The number of equally spaced frequency intervals is chosen to
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be N = 3 and up to 3rd heartbeat harmonics are used. The graphical representation of HR
estimation performance of the subject 1 is displayed in Figures 6 and 7 as an example.

The empirical CDFs of HR estimation error from stable seating, free-style seating and
standing are shown in Figure 6. The proposed method includes active motion cancellation
to recover meaningful spectrum at the frequency of interest and consequently the spectral
peak pruning routine for consistent rate calculation. The complex signal demodulation
method (CSD) [40,41] is added to the HR estimation performance comparison, in which
only one sensor data from the left side is used and the dominant spectral peak in the
heartbeat frequency region is selected to calculate HR. Three datasets, five minutes each,
are used to produce the results in Figure 6a–c. From case in Figure 1a to case in Figure 6c,
the stability of human body decreases, and the prolonged recording time captures realistic
motion interference. The CSD performance significantly degrades from stable seating
to standing as the human body stability decreases. On the other hand, the proposed
method only degrades mildly in these cases. The performance gap between the proposed
method and the CSD is largest in the standing example while their performance is almost
comparable in sable seating example.

Controlled BFMs were introduced to the second set of experiments to challenge the
motion-tolerant performance of the proposed algorithms. While the human subjects were
seating (without back support) and standing with normal breathing, they were instructed to
move back and forth slightly with maximum physical displacement about four centimeters
as seen in Figure 7a,b. The accumulated BFM period is at least 60 s of the two minutes
experiment time. Two datasets are used to produce Figure 7c,d. In these two challenging
cases, the CSD method completely fails as the HR estimation is quite low with RMSE 12.70
BPM and 11.25 BPM. For example, 12% of the time the HR estimation error is less than
5 BPM in seating with BFMs and 22% of the time in standing with BFMs. The proposed
method with active motion cancellation is effective with RMSE 3.89 BPM and 6.88 BPM. In
addition, about 75% of the errors are within 5 BPM in seating with BFMs and about 67% in
standing with BFMs.

4. Novel Breathing and Heartbeat Dynamics Analysis

Single radar platform with insufficient degree of freedoms (limited RF bandwidth and
lack of spatial resolution) really limits the signal-processing capability for practical HR
monitoring applications. The dual-radar fusion technique is demonstrated to be effective
to handle HR monitoring in the presence of BFM to certain extent. However, still a few
aspects are not well recognized and investigated. The dynamics of breathing activity
makes a significant impact on HR monitoring and result in unreliable HR measurements.
Three carefully designed experiments are demonstrated and compared side by side to
illustrate this new insight on radar HR sensing. Three different breathing profiles are
considered: consistent shallow breathing, varying breathing patterns from normal to fast
breathing, consistent deep breathing. The test subject was seated in a stable chair with back
support and instructed to perform these informed breathing activities while preventing
any other body movements. The extracted breathing patterns from radar measurements
are displayed in each subfigure. Their patterns match the pre-designed configuration. The
breathing pattern in Figure 8a is regular shallow breathing with smaller amplitude, the
breathing pattern in Figure 8b experiences a transition from slow to fast breathing as
seen in the increased repetition cycle while the breathing pattern in Figure 8c has larger
amplitude and increased breath interval corresponding to deep breathing profile. In the
shallow breathing example, the CSD and the fusion-based method generates similar results.
Both HR evolutions are consistent with the pulse reference. When breathing fast, the BR
estimation increases and the strong breathing harmonics get closer to the fundamental
HR. Thus, the CSD method starts deviating from the truth while the proposed method
still provides accurate estimates. When breathing motion is exaggerated in the case of
deep breathing, the conventional method fails to provide consistent results throughout
the experiment. Robust measurement is achieved in the proposed method enabled by
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active motion cancellation in the RF stage. Note the exaggerated breathing motion is
demonstrated as a source of RBMs that challenges the HR monitoring performance and
validate our approach.

Another novelty of this study is the investigation of human subject dependent charac-
teristics, the different resting HR among human subjects. HR statistics for normal healthy
people is about 60–100 BPM. For robust radar algorithm it should work for most individ-
uals. For example, resting HR for well-trained athletes can be well under 60 BPM and
even close to 40 BPM while for some it can be close to 100 BPM. This is an important
consideration, as it breaks the original basis of spectral-based HR calculation that HR and
BR are further apart and thus separable. In this regard, people with lower resting HR are
difficult to detect because the fundamental HR is inside the breathing harmonic frequency
region. The following examples validate this new insight. Two test subjects were selected
based on their resting HRs: one about 50 BPM and the other one about 90 BPM, both
subjects were instructed to breath at 17–20 BPM range to ensure the ambiguity for HR
detection for the subject with lower resting HR. For the low resting HR subject, the CSD
method and phase-based method constantly underestimate HR due to stronger breathing
harmonics however the proposed method can trace the HR over time (Figure 9a). On the
contrary, for the high resting HR subject, both methods can perform HR monitoring by
comparing against the pulse reference (Figure 9b).

5. Conclusions

A novel motion-tolerant non-contact HR estimation algorithm is presented and demon-
strated with a dual-UWB impulse radar system. The active motion cancellation is achieved
via direct RF signal fusion from the two radar sensors. The radar sensors are placed at
chest height about 60 cm away at equal distance. They are pointing at different sides of the
chest to create spatial diversity and differential measurements for enhanced HR detection
when RBMs occur. A spectral-based HR peak pruning routing is proposed to deal with the
ambiguity issue for detecting HR by exploiting higher-order spectral features of heartbeat.
The proposed method is theoretically proved by an analytical analysis of the spectral rep-
resentation of the differential complex baseband signal model. The developed algorithm
is validated through a comprehensive experimental study for three human subjects. HR
measurement performance are compared for three different poses, including stable seating,
free-style seating and standing. A robustness test is conducted in the presence of BFMs,
showing effectiveness of the proposed algorithm.

Additionally, two insights toward robust HR sensing using radar sensors are intro-
duced and discussed. Radar sensors are motion-based measurement and thus they are
sensitive to heartbeat and breathing motion. The latter one is stronger and always coupled
with heartbeat. Naive spectral separation is not sufficient for differentiating the two activi-
ties, which is the basis for most popular methods for radar. In this regard, three different
breathing profiles are investigated from suppressed breathing, fast varying breathing and
deep breathing, in which the conventional radar signal processing behaves differently
and fails to detect the fundamental HR due to stronger breathing motion and nearby
breathing harmonics. A robust radar approach for HR is necessitated to monitor people
with different resting HR. The HR diversity comes from the fact that people have different
physical conditions, emotional states, lifestyles and more. It is shown to be difficult for the
conventional radar signal processing to track HR for low resting HR human subject due to
the reduced spectral gap between breathing and heartbeat. The proposed theory provides
a new perspective on addressing these issues.
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Appendix A. Derivation of sBB
L (τ, f ) in Equation (15)

The detailed derivation of Equation (15) is provided. Equation (19) can be deducted
in the similar way. The goal of spectral analysis is to inspect BFM frequency fR, breathing
frequency fB, heartbeat frequency fH and associated harmonics. This can be achieved by
taking FT of sBB

L (τ, t),

sBB
L (τ, f ) =

∫ ∞

−∞
dt sBB

L (τ, t)e−j2π f t, (A1)

Instead of directly working on Equation (A1), it is often more useful to work on the
2-D FT of sBB

L (τ, t), sBB
L (ν, f ), to get sBB

L (τ, f ),

sBB
L (τ, f ) =

∫ ∞

−∞
dν sBB

L (ν, f )ej2πντ , . (A2)
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The 2-D FT sBB
L (ν, f ) is first derived,

sBB
L (ν, f ) =

∫ ∞

−∞

∫ ∞

−∞
dt dτ

[
sBB

L (τ, t)e−j2π f te−j2πντ
]

=
∫ ∞

−∞
dt e−j2π f t

∫ ∞

−∞
dτ
[
sBB

L (τ, t)e−j2πντ
]

=
∫ ∞

−∞
dt e−j2π f t

∫ ∞

−∞
dτ
[
AT p(τ − τD,L(t))e−j2π( fc+ν)τ

] (A3)

=
∫ ∞

−∞
dt e−j2π f t AT p(ν) e−2π ν τD,L(t) (A4)

= AT p(ν)e−j4πντ0

∫ ∞

−∞
dt e−j2π f t e−j 4πνR(t)

c e−j 4πνB(t)
c e−j 4πνH(t)

c , (A5)

where change of integration variable is applied from Equations (A3) and (A4). τ0 is the
time-delay associated with the target distance. The time-varying delay, τD,L(t), is defined
in Equation (9). By invoking the expansion of a series of Bessel functions [38] on the last
three terms in Equation (A5), sBB

L (ν, f ) can be written as,

sBB
L (ν, f ) = AT p(ν)e−j4πντ0

∫ ∞

−∞
dt e−j2π f t

×
( ∞

∑
k=−∞

Jk
(
4πν

AR
c
)
e−j2πk fRt

)( ∞

∑
l=−∞

Jk
(
4πν

AB
c
)
e−j2πl fBt

)( ∞

∑
q=−∞

Jk
(
4πν

AH
c
)
e−j2πq fH t

) (A6)

=
∞

∑
k=−∞

∞

∑
l=−∞

∞

∑
q=−∞

AT p(ν)e−j4πντ0 Jk
(
4πν

AR
c
)

Jl
(
4πν

AB
c
)

Jq
(
4πν

AH
c
)

×
∫ ∞

−∞
dt e−j2π( f+k fR+l fB+q fH)t.

(A7)

Plugging Equation (A7) into (A2), the spectral representation of interest is obtained
and consequently the derivation of Equation (15) completes.
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