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Abstract: Solid-State LiDAR (SSL) takes an increasing share of the LiDAR market. Compared with
traditional spinning LiDAR, SSLs are more compact, energy-efficient and cost-effective. Generally,
the current study of SSL mapping is limited to adapting existing SLAM algorithms to an SSL sensor.
However, compared with spinning LiDARs, SSLs are different in terms of their irregular scan patterns
and limited FOV. Directly applying existing SLAM approaches on them often increase the instability
of a mapping process. This study proposes a systematic design, which consists of a dual-LiDAR
mapping system and a three DOF interpolated six DOF odometry. For dual-LiDAR mapping, this
work uses a 2D LiDAR to enhance a 3D SSL performance on a ground vehicle platform. The proposed
system takes a 2D LiDAR to preprocess the scanning field into a number of feature sections according
to the curvatures on the 2D fraction. Subsequently, this section information is passed to 3D SSL
for direction feature selection. Additionally, this work proposes an odometry interpolation method
which uses both LiDARs to generate two separated odometries. The proposed odometry interpolation
method selectively determines the appropriate odometry information to update the system state
under challenging conditions. Experiments are conducted in different scenarios. The results proves
that the proposed approach is able to utilise 12 times more corner features from the environment than
the comparied method, thus results in a demonstrable improvement in its absolute position error.

Keywords: SLAM; LiDAR; localisation; UGV

1. Introduction

Solid-State LiDAR (SSL) overcomes many limitations of spinning 3D LiDARs, such
as high cost and manual tuning. Mainly manufactured using MEMS, SSLs are more
compact, flexible and low-budget than their competitors. However, the majority of the
SSLs are restricted by Field-of-View (FOV). SSLs does not use a traditional rotary structure.
Instead, their optical components are often directional, which provide the SSL with a
narrow FOV. Limited FOV significantly restricts the application of SSLs, especially on
autonomous vehicles, where fast scanning rate and broad coverage are still the two most
demanding features.

Furthermore, unlike spinning LiDARs, the laser beam from SSL does not necessarily
move in circles. Instead, many SSLs have irregular scan pattern. For example, the Livox
Mid series’s laser beam follows a petal shape scan pattern which symmetrically covers the
FOV. Table 1 shown the performance comparison between a 2D spinning LiDAR Hokuyo
UST-20LX, a SSL Livox Mid-40, and a multi-line 3D spinning LiDAR Velodyne HDL-64E.
Compared with traditional spinning LiDAR, using the irregular scan pattern of SSLs has
two major concerns. The first problem is that Livox Mid series generate 3D points via a
single laser beam, which is much slower than multi-beam spinning LiDARs. According to
its specification, Livox Mid-40 takes 1 s to cover 95% of its FOV. Secondly, since the scan
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pattern is in rotating petal shape, the laser beam will not cover the same surface in the
previous scans. The non-repetitive scan path challenges a mapping system to identify a
feature between two consecutive scans.

The highly cost-efficient SSLs rapidly increased its market share in the past few years.
While many researchers tried to address the above problems directly by strengthening the
accuracy of the scan-matching algorithms, this problem could be improved through other
aspects of a SLAM system.

Table 1. Performance comparison between Hokuyo UST-20LX, Livox Mid-40 and Velodyne HDL-64E.

Channels Range
(Up to) Rotation Rate Horizontal

FOV Vertical FOV Angular
Resolution Accuracy

Hokuyo UST-20LX 1 60 m 43,240 pts/s 270° N/A 0.25° ±40 mm
Livox Mid-40 1 260 m 100,000 pts/s 38.4° 38.4° 0.05° ±2 cm

Velodyne HDL-64E 64 120 m 1,300,000 pts/s 360° 26.9° 0.08° ±2 cm

This work presents a 2D and 3D hybrid LiDAR mapping system which aims to address
the limitations of a single SSL mapping unit. In the design, the mapping system features
a 2D horizontal LiDAR and a 3D forward-facing SSL. The mapping system is mounted
on top of a ground vehicle to perform mapping tasks. A dual-LiDAR cooperative model
is presented which improves the accuracy and robustness of the hybrid mapping system.
The major contributions of this paper are as follows:

• Two-Stage Point Cloud Processing. This work proposes a two-step point cloud process
which uses the 2D LiDAR readings to preprocess the scanning field of the 3D LiDAR.
By segment the FOV in to sections with feature labels, the proposed two-step feature
extraction process provides a more targeted feature point extraction approach to the
SLAM system.

• Three DOF Interpolated six DOF Odometry. The proposed dual-LiDAR odometry
uses the additional three DOF (x, y and yaw) odometry generated by the 2D LiDAR to
stabilise the six DOF odometry estimation from the 3D SSL measurements.

• High Cost-Efficiency 3D SLAM System. While the proposed system features a 2D
LiDAR and a 3D SSL, the setup developed in this work only costs a fraction of
a multi-line spinning LiDAR. Combining the two LiDARs enables the system to
have a semi-omnidirectional vision of the scanning environment, thus utilising the
surrounding environment features.

The system proposed in this work can be described in three parts: the algorithm
design, the software architecture and the hardware setup. The following sections first
review some of the existing approaches, including some state-of-the-art 3D LiDAR mapping
algorithms and methods specialised for SSLs. This is then followed by the explanation of
the proposed system, including the point cloud segmentation, scan-matching process and
odometry interpolation. After that, the experiments used to evaluate the proposed system
are presented, including a detailed explanation of the hardware setup. Different sets of
experiments were conducted on various places on the Monash University campus, which
demonstrated the system’s behaviour in different environments. Last but not least, the final
part of this paper concludes the contributions of the proposed system and discusses some
limitations that could be improved.

2. Multi-LiDAR Mapping Overview

LiDAR SLAM has rapidly developed over recent years. The mapping technology
quickly evolved from 2D localisation to 3D Mapping [1–7]. Similar to other SLAM ap-
proaches, LiDAR SLAM algorithms largely depend on the type of sensors. To enhance the
performance and overcome the shortcomings of the single LiDAR mapping system, many
researchers took efforts to innovate the design of a LiDAR mapping system. These efforts
include incorporating multiple LiDARs into a single mapping unit, extend the motion
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range of a single LiDAR sensor and reengineer the mechanical feature of a LiDAR sensor.
This section reviews some of the recent achievements in this field that are related to the
design of the proposed system.

2.1. Multiple LiDAR Cooperation in SLAM Systems

Combining multiple LiDARs in a mapping unit often aims at enhancing the perfor-
mance of a SLAM system. Despite the fact that multi-LiDAR system requires extra efforts
to merge the readings before processing, adding an extra LiDAR to the system directly
enlarges the FOV of the sensing unit. In most of the multi-LiDAR systems, LiDARs are hor-
izontally aligned to ensure the same scanning direction [8–10]. In these works, the number
of LiDARs directly amplifies the scanning field. An FOV enhancing approach uses five
LiDARs mounted on each side of a car, with their scan direction parallel to the ground [10].
It uses 16-line LiDARs to perform objection in a merged point cloud. Existing studies
emphasise merging multi-LiDARs to generate an enormous point cloud, which requires
calibration during initialisation.

Calibration of multiple LiDARs aims at finding the transformation matrix between
the LiDARs and the robotic system odometry. Studies in this field use reflective conic items
which appear in both LiDAR scan results to calculate the displacement and rotation between
them [11]. Checkerboard calibration methods are also effective for calibrating mixed
types of sensors [12–14]. Changing the shape and pattern on the calibration board allows
different sensors to identify their transformation matries to the checkerboard, and thus
with respect to other system components. Other than a checkerboard, researchers use a
spherical shape item to calibrate both cameras and LiDARs on an autonomous vehicle [15].
However, the sensor position is constantly changing in real-world scenarios. There are
some calibration methods which do not relying on a pre-known target. Using Iterative
Closest Points (ICP) algorithms [16–19] to calculate the geometrical relationship between
two sets of point clouds only requires the LiDARs to have overlapped scanning areas [20,21].
When processing high-frequency LiDAR readings, synchronisation of the readings and
minimisation of the time gaps between the LiDARs are critical to the merging process.
Researchers have discussed the relationship of timestamps and synchronisation in multi-
LiDAR calibration [22,23].

Instead of finding the nearest neighbour between two sets of point clouds, some
approaches only compare the trajectories generated from different sensors to identify the
transformation between them, which significantly reduces the computational complexity
of the calibration [24,25].

2.2. Cross-Dimensional Feature Extraction from LiDAR Data

Unlike RGB cameras, which use CMOS to generate a 2D pixel matrix, LiDARs use
a moving laser beam to sample the environment. The mechanical nature of the LiDAR
sensors makes the output point cloud contain strong geometrical information. Researches
have used this geometrical feature of the LiDAR sensor to create high-dimensional images
from low-dimensional LiDARs [26–28]. Using a 2D LiDAR attached to the top of a voice
coil helps the LiDAR to perform z-axis motions [27]. A 10 mm displacement generated
from the voice coil allows the system to produce 2.5D maps with only a 2D LiDAR. Instead
of linear motion on the z-axis, rotating along the x-axis is also a common approach to
produce 3D reading from 2D LiDARs [26,29]. Pfrunder et al. [30] used an inclined 2D
LiDAR to scan through space with the six DOF motion of the ground vehicle recorded by
other sensors. Similar approaches can also be seen in other works [31,32].

Compressing 3D point clouds into a lower-dimensional format improves the trans-
mission and storage of the generated map [33–35]. The feature compressing methods
significantly improved the mapping system’s performance in the urban environment for
two reasons. Firstly, urban synthetic scenes are often perpendicular to the ground [36–38].
Thus, downgrading the 3D map into 2D ‘bird’s-eye view’ maps has little effect on the
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navigation system [34]. Secondly, the compressed data stream improves the connectivity of
a robotic system in the network [33].

2.3. SLAM Systems with Solid-State LiDAR

Spinning multi-line LiDARs occupy a large share of the LiDAR market, both in
research and industry. The spinning mechanism ensures the laser beam repeatedly covers
the same area in different scans. However, in recent years, solid-state LiDAR (SSL) become
a rising power on the market. Compare with traditional spinning LiDAR, SSLs have less
moving parts, more compact design, low power consumption and higher reliability [39].
More importantly, SSLs generally cost less than spinning multi-line LiDARs [40].

While SSL development seems to have a promising future, directly applying spinning
LiDAR algorithms on them can be difficult. Most SSLs have irregular scan patterns, such
as ‘Z’ shape, petal shape or ellipse shape. Researchers have re-engineered the feature
matching algorithms to adapt different kinds of scan patterns [41,42].

Additionally, SSLs often have lower sampling rates compared with traditional spin-
ning LiDAR. With a rotating motor, a spinning LiDAR can easily maintain its scan frequency
above 20 Hz. However, many SSLs can only provide 10 to 15 Hz scan frequency, which
requires more robust motion blur methods [39].

Furthermore, since most of the SSLs are manufactured with Micro-electromechanical
Systems (MEMS), the optical mechanism restricted their field-of-view (FOV) [43]. Using
Velodyne Velarray M1600 as an example, the sensor only has a 120° horizontal FOV and
35° vertical FOV. Without fusion with other sensors, such a limited rectangle shape view
window limits the performance of the SLAM system [44]. Lin and Zhang [42] improved
this problem by using extra information for feature matching. Besides depth information,
this work also uses intensity as the supplemental data for feature matching.

3. Dual-LiDAR Mapping Unit Setup

To overcome the limitations of using single SSL as the LiDAR SLAM system’s input,
this section describes a 2D-3D hybrid dual-LiDAR mapping unit. The proposed mapping
unit uses Hokuyo UST-20LX, which was purchased from Hokuyo, Osaka, Japan, as the 2D
LiDAR and Livox Mid-40, which was purchased from Livox Technology, Shenzhen, China,
as the 3D LiDAR. Figure 1 shows the layout of the system. The x- y- and z-axis indicate
the Front-Left-Up (FLU) of the coordinate system in presented work. Under FLU, the two
LiDAR are vertically aligned with the positive direction of their x-axes facing the fount of
the mapping system. The two LiDARs are manually calibrated using the method described
in [11,13], such that, the shape of a reflective tape can be identified in LiDAR readings
using their intensity measurements. A 1 m long, 1 cm wide, horizontally aligned reflective
tape was carefully placed on a flat surface and adjusted using a laser interferometer-based
tracker. The Hokuyo UST-20LX was installed by aligning its reading with the reflective
tape. Using the Hokuyo UST-20LX as as the reference, the relative position of the livox
Mid-40 can be obtained via the matching the reflective tape in two LiDAR readings using
Iterative Closest Point (ICP).

Livox Mid-40 offers a 38.4° FOV in a 3D cone shape. On contrast, Hokuyo UST-
20LX receives 2D laser readings in 270°. The two sensors have an overlapped FOV in the
middle of their scan range where the Hokuyo observes a 2D fraction of the Livox scan field
(Figure 1).
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Figure 1. Physical layout of the mapping unit.

4. Point Cloud Preprocessing under the Manhattan-World Assumption

As illustrated in Figure 1, the 2D LiDAR scan has a 38.4° overlapping FOV with the
3D LiDAR reading. The proposed study uses the 2D LiDAR reading which falls under this
range to preprocess the 3D LiDAR scan. The proposed system is designed for unmanned
ground vehicles (UGV) in an urban scenario, which allows this study to hypothesise
that the 2D LiDAR is horizontally aligned with the scanning environment. Under the
Manhattan-World Assumption [37], the corners and planes in synthetic scenes exhibit a
strong geometrical relationship. This is especially the case in the constructed area where
walls and corners are often in an axis-aligned convention. Figure 2 shows the layout of the
corridor in Engineering Building on Monash University campus. In the picture, the corner
and surface features are axes-aligned. Vertically splitting the scanning field helps to isolate
corner or planes from the scan result.

Figure 2. Corridors in the engineering department at Monash University with the wall and corner
features vertically aligned.

4.1. 2D Section Selection

With the Manhattan-World Assumption, it is believed that the plane and corner
features observed with the 2D LiDAR are likely to be repeated vertically in the 3D LiDAR
reading. The consistency of features on z-axis allows the system to use the 2D scan to
pre-sample the 3D space.

The preprocessing is achieved by calculating the curvature of the 2D reading in each
sweep. Since this study is only interested in the 2D points overlapping in the 3D scan,
unrelated points need to removed. Shown in Figure 3, the width of the FOV of Livox
Mid-40 is 38.4°, whereas the FOV of the Hokuyo UST-20LX is 270°. Data from Hokuyo
contains a distance reading d and a sequence number. Let φa be the incremental angle
between each scan point and sp be the point sequence number.

φa =
270◦

sp
(1)
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With the incremental angle of each point φa and distance reading d, the x and y
coordinate of each LiDAR scan are:

x = dp ∗ cos(φa ∗ sp) (2)

y = dp ∗ sin(φa ∗ sp) (3)

Let f be the scale between the FOV of two LiDARs where

f =
38.4◦

270◦
(4)

Only 2D LiDAR points overlapped with the 3D LiDAR FOV are used in the section
feature extraction. Calibration is required to align the FOV of the two sensors. This work
uses the method described in [11,13] to obtain the transformation matrix between the
Hokuyo UST-20LX and Livox Mid-40. Assuming each 2D LiDAR scan S has m points.
After calibration, from 3D LiDAR’s coordinate frame, the point p from 2D LiDAR is selected
for preprocessing if:

m
2
− f ∗m

2
<= φa ∗ sp <=

m
2
+

f ∗m
2

(5)

Assuming there are n points between two points pa and pc in the scan S. Let pb be
the middle point of this sweep section. The curvature of the scan section between pa and
pc, κpb , can be described using Equation (6). Sorting all LiDAR measurements between
pa and pc according to their curvatures provides the list of points with their curvatures in
descending order.

κpb =
1

n · ||pb‖

∥∥∥∥∥ ∑
i∈n,i 6=b

(pb − pi)

∥∥∥∥∥ (6)

With the setup shown in Figure 3, the FOV was divided vertically into 15 sections.
These 15 sections include 10 corner sections and 5 plane sections. Correspondingly, the 2D
scan plane is divided into 15 sections with 2.56° pre-section. With Hokuyo UST-20LX,
there are about 10 scan points allocated in each section. The number of sections is selected
base on the angular resolution of the 2D LiDAR equipped, the size of the overlapped FOV,
and the environmental feature. The choice of selecting 10 corner sections and 5 plane
sections is considered suitable for the testing scenarios proposed in the study.

Figure 3. Overlapping FOV of the two LiDARs.

Staring from the point with the highest curvature score, if the section of the selected
point is not tagged yet, then mark the current section as a corner feature section. This
process is repeated until there are ten corner sections selected. Similarly, five plane sections
are marked based on the points have the smallest curvature value. This process is described
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in Algorithm 1. In this study, it was found that the number of both plane and corner sections
can be changed to adapt to the application scenario.

Algorithm 1 Mark Sections with Feature Tag.
Input: Pointssorted; Section[ ]
Output: Section[ ] with feature tag

plane_number = 5
for (i = 0, i < plane_number) do

Sid =
φPointssorted [i]

2.56
if (Section[Sid] NOT marked) then

Section[Sid] is plane section
else

plane_number+ = 1
end if

end for
corner_number = 10
for (i = 0, i < corner_number) do

Sid =
φPointssorted [Points.Size−i]

2.56
if (Section[Sid] NOT marked) then

Section[Sid] is corner section
else

corner_number + = 1
end if

end for

4.2. 3D Feature Selection with 2D Preprocessing

3D feature selection in LOAM is based on the curvature of the scan line. While
using a spinning LiDAR, the laser beams are travelling in a circle. The repeated trajectory
lays the foundation for the feature selection method in most of the state-of-the-art SLAM
systems. However, directly applying this method to the Livox Mid-40 in this project will
face difficulties, including:

1. The petal shape scan path gives the scan trajectory a non-even curvature. This makes
differentiating corners from planes more challenging.

2. The slow scanning rate results in a larger displacement for the same feature point
appear in two consecutive scans, thus harder to be paired by the matching function.

With intensity displayed in grayscale, Figure 4 shows a frame comparison of point
cloud received from Livox Mid-40 within 100 ms, 200 ms, 1000 ms and 5000 ms, respectively.
According to the specification of form Livox, the LiDAR only covers 20% of the FOV in
100 ms. Livox Mid-40 will need 1000 ms to cover 95% of the FOV. The irregular scan pattern
makes the same spot takes a long time to be scanned twice. It is also worth noting the petal
shape scan pattern created an uneven coverage of the scan FOV, which the centre of the
FOV has a higher scan density than the edge.

Figure 4. Points from Livox Mid-40 reading: (a) 100 ms, (b) 200 ms, (c) 1000 ms, (d) 5000 ms.
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With section information from preprocessing in Section 4.1, the proposed system could
segment the FOV into a number of sections with feature tags. The tags are indicating the
most significant feature in the section, which provides the 3D SSL with an extra layer of
information in point cloud processing. The results of vertically segmenting the 3D LiDAR
readings into 15 sections is reflected in Figure 5a with different sections assigned with a
different color.

(a) Segment 3D point cloud in to 15 sections (b) Remove unwanted points from the scan

Figure 5. Scan sections and point filtering.

The Livox reading was processed in a way similar to [29,42], where linear interpolation
is used to restore each LiDAR reading from motion blur. The processed point cloud is then
split into lines every half-a-petal. Under FLU, let θp be the angle between the 3D LiDAR
point and the x-axis.

θp =
arctan2(y, x)

π
∗ 180◦ (7)

Then the points on each lines were stored into the corresponding section container
with sequence number Sid according to:

Sid =
θp

2.56◦
(8)

where 2.56◦ is calculated by dividing 38.4◦ FOV into 15 sections. With all LiDAR points
been stored into section containers, the next step is to remove the unwanted points from the
point cloud. Overall, four kinds of points are removed from the feature selection process:

• Scan pattern belongs to different sections are processed independently. Since it is
difficult to estimate the curvature of a point on the end of a line, points close to the
edge of each section are ignored. In Figure 5b, these points include: s, t, r, u, g, h, m, n.

• The fringe points on the edge of the LiDAR FOV are not considered for feature points
due to the curved fringe beam path of the Livox Mid-40. The proposed methodology
limited the FOV of the SSL to 37° to remove fringe points. In Figure 5b, these points
include: k, j, i, h.

• When a corner is covered in a scan, the point on the far side of the LiDAR scan will be
not considered as a feature point. Same as [29], it is considered that the far side of a
corner point may not be visible in future scans. In Figure 5b, these points include: e, p.

• Since the 3D LiDAR scan is divided into sections, some scan lines only have a tiny
intersection with a section. In the proposed method, a scan line with less than 6 points
in a section will not be considered as candidature points in that section. In Figure 5b,
these points include: a, b, c.
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After removing unwanted points from the point cloud, the system performs feature
selection from each section container. Each section container is attached with a feature
type tag as described in Algorithm 1. This work only selects the tagged features from the
corresponding section container.

The plane feature selection in 3D is similar to the 2D process, which is based on the
curvature calculation in Equation (6). However, in the 3D point cloud, the number of
neighbour points involved in the calculation was reduced. The point is considered a plane
feature if the average curvature with its six nearest neighbours is less than 0.1.

On the other hand, the corner features are calculated differently. Let La and Lb be
the two lines formed by the five nearest neighbours on each side of the target point pc,
respectively. Assume κLa and κLb be the curvatures of the two lines, where

κLa =
1

5 · ||pc‖

∥∥∥∥∥ c

∑
i=c−5

(pc − pi)

∥∥∥∥∥ (9)

κLb =
1

5 · ||pc‖

∥∥∥∥∥c+5

∑
i=c

(pc − pi)

∥∥∥∥∥ (10)

Let θc be the angle between the two lines La and Lb normalised to the unit vector.
The point pc is considered as a corner point where

κa < 0.1 and κb < 0.1 and 70◦ < θc < 120◦

With the selected feature points, a scan-matching is performed as in [42]. Figure 6
illustrates the data flow of point cloud processing with the readings from the Livox Mid-40
used in this work. Only corresponding feature points in the section are selected based on
the tag type of the section. When only one feature is selected in each section, the proposed
algorithm loosens the restriction of the number of points. Instead of 4 points on each scan
line, maximally 1000 points are selected in each section. A VoxelGrid filter is applied to
enhance the evenness of the sample feature points. The length of each edge of the voxel
cube is set to 0.3 m. The choice of voxel size is made based on the environmental feature,
the point cloud density, and the system performance.

Figure 6. Data flow of the proposed dual-LiDAR odometry system.
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5. Pose Estimation with Dual-LiDAR Sensing Unit

Single SSL SLAM systems suffer from their limited FOV. Fewer feature pairs in two
consecutive scans cause the system to be sensitive to rapid movements, especially in sharp
turns. To further strengthen the stability of the mapping system, this work also introduces a
pose stabilisation mechanism that uses the pose estimation from the 2D LiDAR to stabilise
the estimation from 3D LiDAR.

The calculation of the six DOF system pose is based on the plane and corner feature
distance as in [42]. Besides the six DOF pose estimation, the proposed system also generates
a three DOF incremental pose estimation on x-, y- and yaw-axis from the 2D LiDAR scan
using Point-to-Line Iterative Closest Point (PL ICP). While the mapping system mainly
relies on the six DOF estimation, the three DOF estimation provides a supplemental
pose update.

The proposed design of dual-odometry targets the instability of the mapping system in
extreme scenarios. As explained in Section 3, the FOV of the six DOF odometry is restricted
to 38.4°, thus in the risk of insufficient feature points. Furthermore, the rapid change of
the scan scenes will increase the difficulty of calculating the displacement between feature
points. On the other hand, with Point-to-Line Iterative Closest Point (PL-ICP), calculating
three DOF pose estimation based on 2D LiDAR readings provides a more stable and higher
frequency odometry.

In the proposed work, the quality of the six DOF pose estimation is evaluated via
two cost functions, which is in the same fashion of LOAM and Livox-LOAM. Let pl be a
point in the LiDAR frame. After applying rotation and translation using the current LiDAR
pose, the coordinates of pl in map frame is pm. For a corner point, the Principal component
analysis (PCA) is used to assure the nearest 5 neighbour points of pm on the map belongs to
a corner feature where the biggest eigenvalue is three times lager than the second biggest
eigenvalue. If the PCA process indicates the neighbours surrounding pm is forming a line,
then Equation (11) is the residual function of the pose estimation.

rcorner =
|(Pm − P5)× (Pm − P1)|

|P5 − P1|
(11)

Similarly, if pm is a plane point, and the smallest eigenvalue of PCA of its 5 nearest
neighbours is three times smaller than the second smallest eigenvalue, then pm is considered
as a valid plane feature. Equation (12) is used for the pose estimation of plane features.

rplane =
(Pw − P1)

T((P3 − P5)× (P3 − P1))

|(P3 − P5)× (P3 − P1)|
(12)

On the other hand, the three DOF pose estimation from the 2D LiDAR uses PL-ICP,
where the optimisation target is the minima squire error between current point and the
normal vector of its two closest neighbours in the previous scan. Since the two LiDARs
evaluated in this study have different publish rates, the 2D LiDAR scans used in three
DOF pose estimation are recorded based on the frequency of 3D LiDAR measurements.
The 2D LiDAR scans received between the 3D LiDAR frames are excluded from the pose
estimation process.

The proposed approach keeps examining the two residuals from the six DOF pose
estimation. If either of the preset thresholds are exceeded, the current six DOF pose update
is replaced by the three DOF pose estimation transformed into the map frame. In this study,
it was found that setting the threshold of plane feature residual to 0.01, and the corner
feature residual threshold to 0.02 provide the most suitable outcome.

Upon updating the system state with three DOF (x-axis, y-axis and yaw) pose infor-
mation, the z-axis, pitch and roll states are inherited from last system state. Noting that
the proposed approach only modifies the three out of the total six DOF, which are the x-,
y and yaw axes of the SLAM system. The UGV developed in this project can travel on a
slope to generate motions in z-, roll and pitch axes, but the majority of motions, especially
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the sharp turns are more related to the x-, y- and yaw axes. Stabilising the motions in the
modified three DOF provides the system with a more accurate six DOF system state for the
next round of six DOF pose estimation, thus improves the six DOF pose estimation.

6. Hardware Design and Experiments

The mapping unit developed in this work is illustrated in Figure 7a. Figure 7b shows
the mounting method of the mapping unit on the testing platform. All system components
are built with the Robotic Operating System (ROS) framework [45], which allows the
intercommunication between sensors. An onboard computer with quad-cores running at
1.7 GHz and 4 GB of RAM is attached to the vehicle to host the proposed software system.
The chassis of the robot is based on a three wheels differential drive model.

(a) Dual-LiDAR mapping unit (b) The evaluation platform
Figure 7. Developed mapping unit and testing platform.

6.1. Evaluation of the Proposed Feature Selection Method

The presented feature selection algorithm was evaluated with the ground platform
travelling through a long corridor inside the Monash University Engineering Building.
With the proposed feature selection method, the SLAM system is able to identify feature
points in the environment more efficiently. Shown in Figure 8a, Livox-LOAM is less
sensitive to corner features in the testing environment. The algorithm extracts a very
limited amount of corner points from the building structure. Compare with Livox-LOAM,
in Figure 8b, the proposed algorithm successfully covered a larger number of corner points.
It is worth noting that the proposed system correctly identifies the corners between the
floor, ceiling and the wall, which significantly improves the coverage of corner features.

On the other hand, Livox-LOAM classifies a vast amount of points as plane features.
From Figure 9a, it could be seen that plane feature selection process include some non-
plane points in the results. However, plane feature selection is more restricted with the
proposed algorithm, where only five plane sections are considered in each scan. As a result,
the proposed system only picks the five smoothest surfaces in the current scan frame as the
plane feature.

To further investigate the feature selection difference between the proposed system
and the Livox-LOAM, the numbers of feature points collected by both algorithms were
compared in six different attempts. Each attempt is base on a single scan reading from a
Livox Mid-40 running at 10 Hz. To average the result, this study took the tests in different
environments, with indoor and outdoor scenarios. The results of the tests are shown in
Table 2. Using Livox-LOAM, the mapping system only identified a limited amount of
corner points in the environment. The unbalanced feature numbers lead the system to rely
more on plane points than corner points.
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(a) Livox-LOAM

(b) The proposed algorithm
Figure 8. Compare corner feature collection between the proposed algorithm and Livox-LOAM in
10 scan frames.

(a) Livox-LOAM

(b) The proposed algorithm
Figure 9. Comparison of plane feature collection between the proposed algorithm and Livox-LOAM
in 10 scan frames.

With the proposed point preprocessing method, the system built a pre-knowledge
about the scanning surface, which helps the system identify more corner features from
the environment. Additionally, since feature selections are limited by sections, only the
high-quality surfaces are considered as the plane feature in the proposed approach. Overall,
the proposed feature selection algorithm can create a more accurate and balanced feature
selection results for the following scan-matching process.
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Table 2. Number of different feature points selected by Livox-LOAM and the proposed algorithm in
1 frame of Livox Mid-40 scan reading with the sensor running at 10 Hz.

Livox-LOAM Proposed Algorithm

Corner Plane Corner Plane

test_1_Indoor 15 3544 209 1544
test_2_Outdoor 11 1945 150 1325
test_3_Indoor 9 3064 174 2004

test_4_Outdoor 32 2931 95 1754
test_5_Indoor 17 2815 357 1388
test_6_Indoor 4 2032 235 2084

6.2. Evaluation by the Odometry Comparison

Using three corridors connected by two sharp turns, this section investigates the
performance of the proposed odometry interpolation algorithm. During the experiments,
the range of both LiDARs were limited to 30 m. The ground vehicle was travelling at around
0.95 m/s with an angular velocity of 1.17 rad/s while turning. A laser interferometer-
based tracker was used in these experiments to record the ground truth of the system
state. The laser tracker tracks the retroreflector mounted on the vehicle to record its six
DOF motions. Figure 10a describes the trajectory comparison between the three DOF pose
estimation from the 2D LiDAR, the six DOF pose estimation from 3D SSL with Livox-
LOAM, the presented 2D-3D mixed SLAM approach and the ground truth collected by
the laser tracker. The experiment environment is illustrated in Figure 10b, with the robot
travelled from the right side of the image to the left.

In Figure 10a, the outcome of 2D LiDAR incremental pose estimation illustrates its
outstanding performance in corners. However, with PL-ICP algorithm, the three DOF
odometry is vulnerable to feature less long corridors. On the other hand, six DOF pose
estimation using Livox-LOAM successfully positioned the system in the long corridor
scenario during the first one-third of the test. Nevertheless, as shown in Figure 10a,
with limited FOV, the system has poor performance in sharp turns, especially when
obstacles are close to the LiDAR. The error accumulated on the map which affected future
mapping results and caused large drifts in the trajectory. The trajectory of the proposed
algorithm is the closest to the ground truth in the experiments. The LiDAR odometry
performance significantly improved with the proposed system, where the displacement
between system trajectory and the ground truth is minimised. An axis-wise comparison
between the proposed system, the Livox-LOAM and the ground truth is illustrated in
Figure 11a. The proposed odometry interpolation method successfully enhanced the
robustness in x- and y- axes. Similar results can be seen in Figure 11b, where the proposed
system significantly outperforms the compared approach in motions on yaw axis. It is
worth to note that compared with the ground truth the proposed system has less accuracy
on z- roll and pitch axes as they are not enhanced by the three DOF odometry interpolation
method described in Section 5. However, the presented approach still outperforms the
Livox-LOAM algorithm with the dual-LiDAR feature extraction method described in
Section 4.

Compared with the ground truth, the proposed approach has absolute position error
(APE) of 5.64. Since the accumulated mapping error of the Livox-LOAM approach is signifi-
cantly larger, its APE in the same test was 41.32. Additionally, on the average, the proposed
algorithm is able to utilize 12 times more corner feature points than the Livox-LOAM.
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(a) Trajectory comparison

(b) A picture of the testing environment

Figure 10. Trajectory Comparison between proposed approach, Livox-LOAM and the ground truth.

(a) X-, y- and z-axes comparison

(b) Roll, pitch and yaw comparison
Figure 11. Odometry Comparison between proposed approach, Livox-LOAM and the ground truth.
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6.3. Evaluation by Mapping Result

Experiments were conducted around the Monash University campus to further in-
vestigate the proposed system’s performance compared with the Livox-LOAM. These
experiments were designed in scenarios that could potentially receive different results from
the two algorithms.

Figure 12 demonstrates the experiment results of the testing platform travelling
through an automated glass door. While the robot was approaching the door, both side
of the door opens towards the mapping system. Using Livox-LOAM, even the algorithm
is able to receive the majority of the readings through the glass, the moving door still
caused significant mismatches, which results in the mapping error on Figure 12a. In the
same test, the mapping result from the proposed system (Figure 12b) shows a noticeable
improvement as no significant errors are recorded on the map.

A pair of sharp hook turn tests were conducted to investigate the performance of the
proposed system, especially its odometry stability. From the results illustrated in Figure 13,
it can observed that the improvement of the proposed method over the Livox-LOAM is
significant. From observation, single SSL mapping is vulnerable to sizeable obstacles which
occupying a large proportion of its FOV. In the test, while the robot is turning, it moves
towards a large and featureless wall, which introduces error to the matching function.

(a) Mapping result from Livox-LOAM

(b) Mapping result from the proposed system
Figure 12. Mapping through an automated glass door.

(a) Mapping result from Livox-LOAM

Figure 13. Cont.
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(b) Mapping result from the proposed system
Figure 13. Mapping results of a sharp hook turn action.

7. Conclusions and Discussion

This paper described a hybrid LiDAR mapping model which uses a 2D spinning
LiDAR and a 3D SSL to perform six DOF pose estimation and mapping tasks. The proposed
system features a point cloud preprocessing mechanism and a three DOF interpolated six
DOF odometry. The system developed in this work inherits the structure of LOAM and
Livox-LOAM algorithms. In addition, the developed approach strengthen the robustness
of the inherited methods with a supplemental 2D LiDAR. With the conducted experiments,
this work proves its capability to improve the stability of a SSL mapping system by utilising
12 times more corner feature points. The proposed algorithm only recorded an APE of
5.64 in the experiment, which is significantly improved compare with the Livox-LOAM
system. However, this comparison is limited as the proposed system uses an extra 2D
LiDAR than the Livox-LOAM system. In addition, enhancing the corner feature selection
through FOV segmentation restricted the system’s capability of selecting plane features.
Moreover, the system developed in this work takes advantage of urban terrain features.
The effectiveness of applying this system to other terrains is still unstudied. Furthermore,
the implemented dual-LiDAR pose estimation methodology does not take into account the
motions in the z-axis, pitch or roll. Improving the system performance in these three axes
requires further study.
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