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Abstract: The vast amounts of mobile communication data collected by mobile operators can provide
important insights regarding epidemic transmission or traffic patterns. By analyzing historical data
and extracting user location information, various methods can be used to predict the mobility of
mobile users. However, existing prediction algorithms are mainly based on the historical data of
all users at an aggregated level and ignore the heterogeneity of individual behavior patterns. To
improve prediction accuracy, this paper proposes a weighted Markov prediction model based on
mobile user classification. The trajectory information of a user is extracted first by analyzing real
mobile communication data, where the complexity of a user’s trajectory is measured using the mobile
trajectory entropy. Second, classification criteria are proposed based on different user behavior
patterns, and all users are classified with machine learning algorithms. Finally, according to the
characteristics of each user classification, the step threshold and the weighting coefficients of the
weighted Markov prediction model are optimized, and mobility prediction is performed for each
user classification. Our results show that the optimized weighting coefficients can improve the
performance of the weighted Markov prediction model.

Keywords: mobility prediction; weighted Markov model; mobile user; user classification; mobile
communication

1. Introduction

Mobile cellular networks transport massive amounts of data. By systemically col-
lecting and mining these data, valuable insights can be gained [1]. Such insights can
help service providers to better design operating solutions and improve the mobile user
experience [2]. By extracting user location information and service preference information
contained in mobile communication data, a spatiotemporal mobile user behavior model
can be established so that user behavior patterns can be predicted [3,4]. Effective mobility
prediction enables service providers to predict user needs in advance, thereby optimizing
network resources and reducing network congestion [5,6]. As a result, mobile users can
obtain the information they need faster and enjoy a better service experience [7].

The results of user mobility prediction can be applied to various fields, such as early
warning of congestion trends and urban traffic planning [8]. By analyzing and mining a
large amount of user mobile data, user crowd portraits can be established according to user
interests and preferences, which can be applied to personalized advertising push services to
reduce the consumption of advertising services and prevent users from receiving excessive
irrelevant information [9]. More importantly, user mobility prediction also contains research
significance in the management and prevention of epidemic transmission [10] and smart
tourism [11].
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Commonly used mobility prediction models include association rule mining-based
models [12–14], Markov chain-based models [15–19], and neural network-based mod-
els [20,21]. Association rule mining is based on the regularity and periodicity of the user
itineraries, and location prediction is performed by mining the key stops and frequent
routes of mobile users [12]. Markov chain-based models, on the other hand, use the previ-
ous state or additional past states to predict the next state. Each location of a user is treated
as a state, and the Markov transition matrix is established by counting the transition proba-
bility between different locations in the time series. The effect of the historical trajectory on
the next location can be mined through the transfer matrix. The Markov chain-based mo-
bility prediction models have been widely used in location and mobility prediction [15,16].
In contrast, neural network-based models predict the user’s next location by mining the
contextual correlation between user trajectory sequences [20]. A potential variable model
based on historical mobility attention is proposed to predict the mobility of users. The
variational encoding can capture the potential features in the user’s history trajectories
and greatly improve the efficiency and prediction performance compared with recurrent
networks [22]. Moreover, the mobile entropy has been used to measure the uncertainty of
mobile users’ mobility pattern, and the mobile entropy can be used to assist the prediction
model [23].

However, these methods are based on the data of all mobile users at an aggregated
level. Due to the diversity of user behaviors, prediction algorithms based on all user data
will affect the accuracy of predictions for specific groups of users and individual users.

To address the above challenges, this paper establishes user classification models
based on different behavior patterns from real mobile communications data and uses
machine learning techniques to classify users into four types. Then, by analyzing the
characteristics of different user classifications, the optimal step threshold and weighting
coefficients of the weighted Markov model for each user classification are determined.
Finally, the weighted Markov model is used to predict the trajectories of different user
classifications. Our contributions are threefold:

We analyze real mobile communications data and extract mobile user trajectories. The
user’s mobility is represented by calculating their mobility trajectory entropy (MTE). We
propose and develop a classification method based on user behavior patterns. Based on the
features extracted from the user trajectories, users are classified into four classes by using
machine learning methods.

We employ a weighted Markov model to separately predict the trajectory for four user
classes. We propose a new method for determining weighting coefficients of the weighted
Markov model by analyzing the characteristics of different types of users.

The rest of the paper is organized as follows: Section 2 discusses related work on
different mobile user mobility prediction methods. In Section 3, we first analyze the key
fields of real mobile communication data and extract the user trajectories. The mobile
trajectory entropy is also introduced to conduct a preliminary analysis of the trajectory
complexity of all users. In Section 4, we propose a user classification model and use machine
learning algorithms to classify all users. Section 5 introduces the basic principles and
corresponding algorithms of a Markov prediction method. By analyzing the characteristics
of each type of user, the optimal step threshold and the weighting coefficients of weighted
Markov models are proposed. Hence, user mobility is predicted by using the weighted
Markov model. In addition, a detailed analysis of the prediction results is performed.
Section 6 concludes the paper.

2. Related Work

The study of human mobility and movements has been investigated extensively.
Based on mobile communication data, related studies have shown that the prediction
accuracy of human behavior can reach 93%, which provides a theoretical basis for mobility
prediction [24]. Common positioning methods include global positioning system (GPS)
data-based positioning [25,26] and wireless fidelity (Wi-Fi) data-based positioning [27].
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In addition to the data used in these positioning methods, mobile communication data
are available at service providers’ data centers and cover a wide range, which are highly
suitable for research on the mobility of a large range of people. With the rapid development
of big data technologies and data mining in recent years, it has become possible to use
mobile communication data to mine people’s movement patterns [28]. Many scholars
have researched the characteristics of people’s mobile behavior from different perspectives.
For example, mobile behavior prediction can be used to solve network traffic congestion
problems. Predicting traffic flow through mobile big data analysis can be exploited in
a wide range of potential applications to make a city smarter and safer and can help
reduce congestion and pollution [29,30]. In addition, the prediction of user mobility and
the content request model can help to transfer and cache mobile content that users need
in advance using wireless edge caches close to the users, thereby improving the user
experience [31]. From epidemic modelling to self-driving vehicles and urban planning, we
also need to build prediction models of human mobility [32,33]. A prediction model based
on aggregated mobile phone call data can be well used in urban planning and disaster
management [34,35].

Among different user location prediction methods, one of the basic methods predicts
a user’s future location based on association rule mining. A trajectory prediction method
based on frequent location patterns has been proposed. By creating a location pattern tree
to store the sequence of regions that users frequently visit, this method greatly reduces
the search space [12]. In addition, location prediction based on neural networks is also a
commonly used method. Neural networks based on the Bayesian principle can integrate
complex output distributions to achieve complex trajectory predictions. Bayesian recurrent
neural network (RNN) models are typically used to ensure the long-term stability of
autonomous driving and the flexibility of physical location predictions [21]. Relevant
studies have shown that applying the long-term short-term memory (LSTM) network
to key components of specific deep learning network can improve the generalization
ability of the network and effectively reduce the error accumulation effect for multi-step
prediction [36].

In addition to the above two methods, the most commonly used models are Markov
chain-based prediction models because the Markov model can better represent human
movements in time series. It constructs a crowd density prediction model and then realizes
the prediction of user mobility patterns [15,16]. Based on the general Markov model, many
studies have effectively improved the Markov model, which has greatly improved its
prediction performance. A mobility prediction method that combines the user’s long-term
and short-term trajectories has been proposed. The method uses a long-term trajectory
to train a Markov process and uses the short-term trajectory to predict the user’s current
possible random behavior. The accuracy of the next location prediction based on this
model has been proven to reach more than 70% [37]. Another location prediction method
combining a variable-order Markov model and the spatiotemporal law of the user has been
proposed [17]. The Markov order is determined based on the matching between the current
trajectory and the historical trajectories. This model improves the accuracy of location
prediction, and it is especially suitable for cases where the user’s historical trajectory
data are small [17]. Due to the increase in time and space complexity of higher-order
Markov models, other variable-order Markov models have been proposed [18]. In addition,
to improve the prediction accuracy of non-Gaussian mobility data, a hybrid Markov-
based model has been proposed [19], and a weighted Markov model has been trained
for near-term driving direction prediction [38]. To solve the problem of data sparsity in
Markov chain-based prediction model, a sparsity trajectory prediction algorithm based on
multiple entropy measures was proposed and the algorithm obtained a gain in prediction
accuracy [39].

Trajectory prediction models based on mobile communication data have received a
lot of attention. For example, the mobile patterns of users can be inferred from aggregated
mobile phone call data to predict human mobility patterns [34]. Some researchers have
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established a framework of personal mobile pattern mining based on mobile phone location
information [35]. In addition, to solve the sparsity problem of mobile communication
data, a second-order Markov model with time dimension is used to predict the sparse
trajectory [39]. However, most of the current user behavior analysis and mobility prediction
algorithms based on cellular networks have been proposed based on the general mobile
characteristics of all users. These methods usually ignore individual behavior differences
between users and result in ineffective prediction methods and a certain waste of resources.
To further improve the accuracy of trajectory prediction, unlike these existing works,
we first analyze real mobile user data and classify mobile users into different categories
based on the behavior characteristics of these users. Based on user classification using
machine learning algorithms, different prediction methods are adopted for different user
classifications, thereby achieving higher prediction accuracy.

3. Trajectory Extraction and Complexity Analysis

In daily life, most people carry mobile phones with them most of the time. Mobile
communication data basically include the location information of all users, and the rapid
increase in the number of mobile devices has also greatly improved the coverage ratio.
When a mobile device is connected to the mobile network, it needs to access the correspond-
ing cellular base station. Therefore, by collecting and analyzing mobile communication
data, it is possible to locate the mobile user and extract the movement trajectory. The
positioning accuracy based on mobile communication data depends on the size of the cell
radius, continuity of user reports, etc., and the inter-dependency between them has been
investigated in detail in the minimization of drive test (MDT)-based location estimation
method [40,41].

3.1. Data Acquisition and Data Format

Deep packet inspection (DPI) is the main signaling acquisition interface of the long-
term evolution (LTE) core network. By detecting traffic and message content and filtering
the traffic according to relevant rules, DPI devices can implement functions such as busi-
ness traffic analysis, business traffic percentage statistics, and service identification of the
associated link [42]. The data collected by the DPI collection system is called external data
recording (XDR), which is developed from traditional call detail record (CDR) data. The
XDR data are a detailed record of the signaling and services generated by processing all
data [42]. The CDR log records various call information of the user, including the mobile
phone number, the person called, the start and end times, the cell identification (ID) that
provides the call service, and whether the caller is roaming. The XDR usually refers to the
information recorded in data traffic from the mobile network. Each time a user conducts a
session, an XDR record is generated [2].

We use real communications XDR data from China Mobile, which includes all net-
working data of 5000 users in three consecutive weeks. These XDR data are collected from
the DPI device of Gn interface of China Mobile core network and include multiple fields
such as mobile user ID, recording time, location area code (LAC), cell ID code, service type,
and uplink and downlink traffic [42]. To protect the privacy of our users, the data we get is
encrypted in advance. For example, the user ID in XDR data is not a real phone number,
but rather a series of virtual numbers for every user. The LAC is the internationally unique
identifier for each public land mobile network used for location updating of mobile sub-
scribers, and the cell ID code represents the identification code of the connected cell within
the base station. Combining the two codes, the user’s current location can be determined.
The fields related to time and location are mainly used in our mobility prediction model.

3.2. Trajectory Extraction

From the perspective of trajectory modeling, the trajectory of a mobile user is the user’s
location information, which changes over time and should include specific spatial and
temporal information. Spatial information is a geographic attribute, such as a mobile base
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station, that a user has passed through during their movements, and temporal information
can be represented by the time when the user arrives in or leaves an area, represented by
the connection and disconnection of a user’s mobile device to the base station. Both spatial
and temporal information can be represented by numerical features.

The user trajectory based on mobile network data records the location information
of the base station to which the user is connected. Therefore, the real-time location of the
user can be determined by the base station number in the record, which is a stop point in
the user trajectory. In the XDR data, the location information of the base station to which
the mobile user is connected is represented by the location area code, LAC, and the cell
identification number, Cell_ID [2]. Since the longest digit of Cell_ID is 4 digits, the following
equation can combine these two fields to uniquely indicates the user’s stay point, S:

S = LAC× 10000 + Cell_ID, (1)

The XDR data records of each user are processed on a daily basis, and the time of a
day is divided into 288 time periods with a 5-min time window, which is the default setting
in the XDR data collecting system. The cell location with the longest stay time within
every 5-min time window is selected as the user’s current stay point information. If two
successive stop points are the same, they are combined into one stop point. In the daily
record, the user will have multiple stop points, and the multiple stop points are connected
to form a user’s movement trajectory consisting of a series of stop points, as indicated by:

Trajd = {S1, S2, · · ·, Si, · · ·, Sn}, (2)

where Trajd is the user’s movement trajectory in the selected day, d (1 ≤ d ≤ 21), and Si is a
stop point in the trajectory at time window ti. For a selected user Uj, the complete set of
trajectories in 21 days can be expressed as:

Traj(Uj) = { Traj1, Traj2, · · ·, Trajd, · · ·, Traj21}, (3)

3.3. Trajectory Complexity Analysis

In information theory, statistical physics and other disciplines, entropy is often used
to measure the inherent chaos of a system. When studying the spatial movement behavior
of users, the concept of entropy is adopted to measure the complexity of user trajectories,
which is called MTE [43]. A larger MTE indicates that the user’s next location is very
uncertain, that is, the trajectory is more complicated. A smaller MTE indicates that the
user’s mobile behavior is more regular and has a more fixed behavior pattern.

The specific calculation steps of MTE are as follows:

• Divide the day into 24 periods in hours, ti, i = 1, 2, 3, · · ·, 24, and count all cell sites
visited by users in each hour, Cellij, j = 1, 2, 3, · · ·, n.

• Calculate the prior probability of users visiting different cell sites pij during the period
ti using the following equation:

pij =
Tij

Ti
, (4)

where Ti is the total duration of the time period, and Tij indicates the length of time
the user stays at the cell site Cellij during the time period ti.

(1) The user’s MTE during period ti can be calculated as:

H(ti) =
n

∑
j=1

pij log(pij), (5)
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(2) Add the MTEs of all time periods to obtain the total MTE of the user for one day:

Hday =
24

∑
i=1

H(ti), (6)

Using the above method, the MTEs of all users are calculated using MATLAB R2016a,
and the statistical result is shown in Figure 1. Figure 1a shows the average daily MTE
distribution of all users. It is observed that the daily MTEs of most users are relatively small
and are mainly concentrated between 1 and 50. These users account for approximately
87.42% of the total number of users. This percentage shows that most users usually have
relatively small ranges of activity and relatively simple movement trajectories. However,
a small number of users have high mobile entropy, up to approximately 90. This value
indicates that there are no regular patterns in the movements of these users and that their
trajectories are relatively complicated. Figure 1b shows the average MTE of all users in
different time periods within a day. It is observed that the distribution of user MTE per hour
is similar to that of the user’s daily mobility. The peaks are concentrated in the morning and
evening rush hours. This concentration shows that there is a positive correlation between
the user’s movement intensity and the trajectory complexity.
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4. Classification of Mobile Users Based on Behavior Patterns

The XDR data contain not only information on the cell sites that the user accesses but
also the service information and traffic information the user accesses. The mobile users can
thus be classified according to different criteria. For example, users can be divided into
video preference users, social applications preference users, and web page preference users
according to the analysis of service patterns. Users can also be divided into low traffic
users and high traffic users based on traffic information. Here, to facilitate the prediction of
user trajectories, we divide the users into four classifications according to user movement
patterns and trajectory complexity.

4.1. User Classification Criteria

In daily life, some people spend most of their time at home, such as retired people
and housewives. The data will show that they do not move much. Apart from these
groups of mobile users, most other groups of mobile users will have to commute to work.
Therefore, users can be simply divided into resident and nonresident categories. Among
the nonresident category, due to different working patterns, their mobility characteristics
also vary greatly. Some mobile users commute to work by public transportation every day,
so their movement trajectory is more regular. However, some mobile users have more
flexible work styles and therefore do not need to go to work every day or move around
during work, such as postmen. Therefore, nonresident users can be divided into two types:
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regular commuters and irregular commuters. There are also some nonresidents whose
work styles are different, such as night workers. These people are defined as other types of
nonresidents. Table 1 shows the types of users and their characteristics. Since the data we
obtained only covers the business district of a city in geographical scope, users are simply
divided into the above four categories according to their mobile characteristics. It should
be noted that there are different classification criteria in different application scenarios.

Table 1. User types and characteristics.

User Type Description

Residents People who do not move or move very little. They often visit only
a few fixed locations. For example, retirees, housewives, etc.

Regular commuters

They have regular movement patterns of office workers on
weekdays. They have strong mobility in the morning and

evening hours, weak mobility during the day and night, and have
fixed working and living places.

Irregular commuters They have strong mobility during the day and have no obvious
regularity, but they have weak mobility at night.

Others People who do not meet the three characteristics above. For
example, people with high mobility at night.

The user trajectory information extracted above is composed of the locations of the cell
sites with time stamps. To analyze the movement patterns of different types of users from
the trajectory information, it is necessary to extract the behavior characteristics hidden in the
trajectory information as comprehensively and accurately as possible. The characteristics
of different dimensions are defined to build a machine learning data set. Some contextual
information that represents time and user location is used to determine the type of user.
The parameters and corresponding descriptions extracted from the user data set are shown
in Table 2.

Table 2. Parameter name and corresponding description.

Parameter Name Description

cellNum The number of unique cell sites visited in one day.

cellNum_amPeak The average number of unique cell sites is included in the
trajectory during the morning peak (7:00–10:00) every day.

cellNum_pmPeak The average number of unique cell sites is included in the
trajectory during the evening peak (17:00–21:00) every day.

cellNum_dayPeakoff The average number of unique cell sites is included in the
trajectory during the working time (10:00–17:00) every day.

cellNum_nightPeakoff The average number of unique cell sites is included in the
trajectory during the evening time (21:00–23:00) every day.

cellNum_sleep The average number of unique cell sites is included in the
trajectory during the night sleeping time (23:00–7:00) every day.

residLen_dayPeakoff
The average length of resident time during the working time

(10:00–17:00) every day. This is measured by the dwell time of a
fixed cell.

residLen_night The average length of resident time during the night (0:00–7:00)
every day. This is measured by the dwell time of a fixed cell.

The user type is mainly determined by the number of cell sites and the dwell time
that the user trajectory contains over different time periods. The number of cell sites in
different time periods reflects the activity pattern of a user to a certain extent. For example,
if a user is a regular commuter, then he should work in a fixed location during working
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hours, so the number of cell sites (which reflects the movement) in working hours should
be small. In addition, the length of dwell time also represents the mobility pattern of the
user. If a user is continuously fixed at a cell site for more than 1 h, it is counted as a dwell,
and the dwell time of each unique cell site is the sum of the lengths of each single dwell
period at this cell site. For example, the length of resident time during the working time is
the maximum of the dwell time of all unique cell sites in the corresponding period.

When extracting the contextual information, the trajectory information in the working
day is selected and divided into different groups with 5 time periods in a day, such
as morning peak (7:00–10:00), working hours (10:00–17:00), evening peak (17:00–21:00),
evening activity time (21:00–23:00), and night-time (23:00–7:00). Then, the number of
unique cell sites and the dwell time in each period are counted, and the average number
within a week is used as the final value of the corresponding parameter. To label the
selected users into categories so that they can be classified by machine learning methods,
certain classification criteria need to be established. Based on the preliminary analysis and
statistics of the real mobile data, we developed corresponding classification criteria, as
shown in Table 3. There are no general principles for the classification criteria in the table.
These values are set based on experience and can be adjusted according to the classification
accuracy of machine learning methods.

Table 3. Classification criteria of each user type.

User Type Classification Criteria

Residents cellNum ≤ 5

Regular commuters
cellNum > 5 & cellNum_amPeak ≥ 2 & cellNum_pmPeak
≥ 2 & cellNum_dayPeakoff < 3 & cellNum_sleep ≤ 3 &

residLen_dayPeakoff ≥ 300 & residLen_night ≥ 360

Irregular commuters
cellNum > 5 & cellNum_dayPeakoff ≥ 3 &

cellNum_nightPeakoff ≥ 2 cellNum_sleep > 3 &
residLen_night < 360

Others Others

4.2. Classification Method Evaluation

According to the classification criteria shown in Table 3, some users are classified by
manual analysis. To evaluate the performance of user classification using different machine
learning algorithms, a total of 200 user machine learning datasets are first constructed, with
60% of the labeled users selected as the training set and the remaining 40% used as the
test set, and then the trained model is used to classify all other users. The naïve Bayes,
decision tree and K-nearest neighbor (KNN) algorithms in the scikit-learn toolkit [44] are
used as machine learning classification models, and the training set is used to train the
classification models. The parameters use in our experiment are set to default values in the
scikit-learn toolkit [44]. For examplene, in the naïve Bayes method, the prior probabilities
of each category are not given, but statistics are carried out according to the actual situation
of training data. The maximum number of features in the decision tree uses the number
of all features. To compare the performance of different machine learning algorithms, the
precision, recall, F1-score and overall accuracy of the different classification models are
calculated. The experimental results are shown in Table 4.
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Table 4. Comparison of evaluation indicators based on different classification models.

Machine
Learning

Algorithms

Evaluation
Indicators Residents Regular

Commuters
Irregular

Commuters Others

Naive Bayes

Precision 88.24% 84.00% 79.17% 78.57%
Recall 93.75% 87.50% 79.17% 68.75%

F1-score 90.91% 85.71% 79.17% 73.33%
Accuracy 82.50%

Decision Tree

Precision 100% 92.00% 87.50% 100%
Recall 100% 95.83% 87.50% 85.71%

F1-score 100% 93.88% 87.50% 92.31%
Accuracy 92.50%

KNN

Precision 100% 92.00% 91.67% 100%
Recall 100% 95.83% 91.67% 93.75%

F1-score 100% 93.88% 91.67% 96.77%
Accuracy 95.00%

The classification results in Table 4 show that the overall accuracy of the naive Bayes
model is the lowest: 82.5%. The performances of the irregular commuters and others are
relatively low, and the precision and recall are both below 80%. The overall classification
accuracy based on the decision tree is higher than that of the naive Bayes model, reaching
92.5%. From the classification results of each type of user, its precision, recall and F1-score
are relatively high. Because the KNN model is suitable for classification problems and is
good at classifying rare events, the KNN model has better performance in user behavior
feature classification compared to naive Bayes and decision tree models. It is also observed
that the KNN model has the highest overall classification accuracy, as high as 95%. The
classification precision, recall and F1-score of each user classification of the KNN model are
above 90%. Therefore, the KNN classification model is selected to classify all users.

4.3. Classification Result

The results of KNN user classification are shown in Table 5. It is observed that regular
commuters account for the highest proportion among all user classifications, i.e., approxi-
mately one-third of all users. The proportions of other types of users are above 20%. The
classification results show that the distribution of each type of user is relatively uniform.

Table 5. User classification results.

User Type Number of Users Proportion

Residents 1092 22.21%
Regular commuters 1671 33.98%
Irregular commuters 1075 21.86%

Others 1079 21.95%

To further verify the classification effect and understand the complexity of the move-
ment trajectory of various types of users, the average MTEs in every hour of the four types
of users are calculated using the method introduced in the previous chapter. The results are
shown in Figure 2. It is observed that there are obvious differences in the mobility behavior
of various types of users. Residents have lower MTE throughout the day, indicating that
these users rarely move throughout the day. The MTE value of regular commuters presents
a distinct double-peak characteristic, which indicates that these users commute to work
on time every day, and they move very little during working hours. The MTE value of
irregular commuters shows that their trajectories are more complicated in the daytime, and
there will be more movements during working hours. Compared to the other three types
of users, the category of others has higher entropy values at night, indicating that they
move more frequently at night. The obvious differences in mobile features between each
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type of user also verify the rationality of the classification criteria and the effectiveness of
the classification algorithm.
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It should be noted that unsupervised learning algorithms have been applied to mobile
user clustering in many existing studies [45–47], and their classification performance has
been verified. Since the focus of this paper is the Markov prediction algorithm, we have
not analyzed the effect of unsupervised learning algorithms at this stage.

5. Mobility Prediction Based on Weighted Markov Model

As described in the previous sections, the Markov model is widely used in location
prediction. It uses the historical visit location sequence of the user to mine its transfer rule
between each visit location, thereby predicting the user’s next location. The basic Markov
model is a first-order Markov model, that is, the next location is determined only by the
current location. This model does not actually conform to the basic laws of the moving
process of moving objects. The high-order Markov model considers that the state of the
next moment is related not only to the state of the current moment but also to the state of
previous k-1 moments. The next location of the mobile user is related to the locations at
multiple previous moments. This assumption can improve the accuracy of the prediction
model to a certain extent. However, the Markov model’s order cannot be as high as possible
because the user’s mobile behavior does not have complete periodicity [48]. When the
order exceeds a certain value, the computational complexity will increase significantly.

5.1. Markov Chain

The Markov prediction model is based on the Markov chain, which is a kind of
memory-free discrete-time random process [15,48]. Under the condition of a given moment,
the state of the future at any moment is only related to the state of the current moment and
has nothing to do with all states before the current moment. The definition of a Markov
chain is as follows: for a discrete random process with Markov properties, let the state
space {Xn : n = 0, 1, 2, · · ·} be finite; then, Xn = i indicates that the object is in state I at
time n. If for any positive integer n, the following equation is true:

P(Xn+1 = x|X 1 = x1, · · ·, Xn = xn) = P(Xn+1 = x|Xn = xn ), (7)

Then, such a stochastic process is called a Markov chain [15,16].
The core part of the Markov prediction model is the establishment of the transition

probability matrix. Transition probability refers to the probability of the current state
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transitioning to the next state in the Markov chain. A matrix composed of transition
probability is called a transition probability matrix. The number of transition steps is
divided into one step or multiple steps. Similarly, the transition probability matrix is also
divided into a one-step transition probability matrix and a k-step transition probability
matrix. The one-step transition probability can be expressed as Equation (8), and the k-step
transition probability can be expressed as Equation (9):

Pi,j = P(Xn+1 = xj|Xn = xi ), (8)

P(k)
i,j = P(Xk = xj|X0 = xi ), (9)

The one-step transition probability is arranged in a matrix form, and the one-step
transition probability matrix is obtained. The one-step transition probability matrix is
expressed as follows:

P =



P1,1 · · · P1,j · · · P1,m
...

. . .
...

...
Pi,1 · · · Pi,j · · · Pi,m

...
...

. . .
...

Pm,1 · · · Pm,j · · · Pm,m

, (10)

In the probability transition matrix P, the column element represents the possible next
location of the moving object, and the row element represents the probability that it may
be transferred to the location of the column element. When predicting the next location,
we can query the corresponding column elements in the probability transition matrix and
use the location with the highest probability as the prediction result.

Correspondingly, the k-step transition probability is arranged in a matrix form to
obtain the k-step transition probability matrix, which is expressed as:

P(k) =



P(k)
1,1 · · · P(k)

1,j · · · P(k)
1,m

...
. . .

...
...

P(k)
i,1 · · · P(k)

i,j · · · P(k)
i,m

...
...

. . .
...

P(k)
m,1 · · · P(k)

m,j · · · P(k)
m,m


, (11)

The k-step transition probability matrix can be obtained from the one-step transition
probability matrix. The relationship between the two can be expressed as:

P(k) = Pk, (12)

Hence, we can find the k-step transition probability matrix through matrix multiplica-
tion. If k is large, it may be more convenient to compute P(k) via eigendecomposition [49].

5.2. Weighted Markov Prediction Model Based on Different User Types

The weighted Markov model is a hybrid Markov model. It uses weights to represent
the impact of different order Markov models on the prediction results and then determines
the final prediction result by weighted summation [38].

The key step in the weighted Markov model is the determination of the weighting
coefficients. In general, for a user’s location prediction, the location closer to the current
location has a greater degree of influence on the next location. Therefore, related studies
have pointed out that low-order Markov models should have higher weights, and the
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weighting coefficients from step 1 to step k decrease in order [38]. A simple weighting
coefficient calculation method is proposed as follows:

ωi =
k− i + 1

k
∑

m=1
m

, i = 1, 2, · · ·, k, (13)

where
k
∑

m=1
m is the sum of steps from 1 to k. Although this method is more reasonable,

it does not take into account the actual mobility patterns of different scenes. In practical
applications, appropriate weight determination methods should be formulated for different
sample data so that the prediction accuracy will be higher.

By analyzing the characteristics of different types of users, this paper proposes a new
method for determining weighting coefficients. In this method, the transition probability
for different steps is directly proportional to the weighting coefficient, thereby highlighting
the impact of the high transition probability on the prediction result. The specific calculation
steps are as follows:

• Calculate the transition probability pi of each location in the historical trajectory to the
next location: From the user’s historical trajectory, the one-step transition probability
matrix P is established, and then the transition probability matrix P(2), · · ·, P(k) from
2 to k steps is obtained by Equation (12). We then use each transition probability
matrix to predict the next location of the user and obtain the transition probability,
pi(1 ≤ i ≤ k), from the previous k-1 location to the next location after k steps.

• Determine the maximum number of steps k of the weighted Markov model: For
different types of users, different historical positions have different degrees of influ-
ence on the next position. This paper defines a probability threshold Pth and a step
threshold Lth to jointly determine the value of k. The probability threshold Pth is
used to filter out the impact of higher-order Markov models with lower prediction
probability on location prediction. As k increases, the k-step transition probability
gradually decreases. When the transition probability is less than Pth, no more steps
are considered. The step threshold Lth is used to eliminate the effect of higher steps
on the prediction. In the weighted Markov model, the number of steps greater than
Lth is no longer considered. The specific values of Pth and Lth are set according to the
actual situation. The maximum number of steps i used in the actual weighted Markov
model should be less than or equal to Lth, and the i-step transition probability pi is
greater than or equal to Pth. The maximum number of steps k is the maximum value
of all i that meet the requirements, which is expressed as follows:

k = max(i), (i ≤ Lth)&(pi ≥ Pth), (14)

• Calculate the weighting coefficient ωi: After k is determined, the weighting coefficients
of different orders of Markov models are determined by the transition probability of
the corresponding number of steps. The higher the transition probability is, the larger
the weighting coefficient. The weighting coefficient can be calculated as:

ωi = pi/
k

∑
m=1

pm , i = 1, 2, · · ·, k, (15)

• Calculate the probability of moving to all possible next positions: Assuming the
current location is S1 and the previous k-1 locations are S2, S3, · · ·, Sk, the probability
PS1,Sn of each possible next position Sn can be calculated by using the weighted
Markov model:

PS1,Sn =
k

∑
j=1

(ωjP
(j)
Sj ,Sn

), (16)
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where P(j)
Sj ,Sn

represents the transition probability of the user from location Sj through j
steps to Sn, and ω1, ω2, · · ·, ωk are the weighting coefficients of different steps.

• Predicting the user’s next location: The probabilities of all possible locations are
compared. Sn, which corresponds to the maximum probability, is the predicted
location of the user at the next moment.

5.3. Parameter Optimization of the Weighted Markov Prediction Model

To evaluate the proposed weighted Markov prediction model based on different user
classifications, corresponding tests and analyses are performed in this paper. First, the
optimal number of steps k and the weighting coefficient of each step need to be determined.
The value of k is determined according to the step threshold Lth and the probability
threshold, Pth, and the weighting coefficient of each step is determined according to the
single step transition probability. The step threshold Lth is set to 8 in our experiment. To
determine an optimal probability threshold, the prediction accuracy of each step to the
next location is calculated based on the 1- to 8-step probability transition matrices. The
accuracy can explain the influence degree of different locations on the next location. The
results are shown in Figure 3.
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From Figure 3, we observe that the accuracy of the prediction of the next location
decreases as the step size increases. That is, the location closer to the prediction time has
a greater degree of influence on the prediction. Based on the actual situation and the
evaluation of the computational complexity, the probability threshold Pth is set to 30%.

In addition, to determine the optimal number of steps, this paper selects 50 users
in each classification and calculates the prediction accuracy under different numbers of
steps. The results are shown in Figure 4. It is observed that with the increase in the number
of steps, the prediction accuracies of various types of users will first increase and then
decrease. This observation shows that the first few locations before the prediction moment
will have more important effects on the prediction. Moreover, for different types of users,
the peak value of prediction accuracy appears at different steps. The variation in the
prediction accuracy of residents is minimal, and the peak value of accuracy appears at a
step threshold of 2. The regular and irregular commuters have similar trends in prediction
accuracy, with peaks at step thresholds of 5 and 4, respectively. The peak value of the
prediction accuracy of others appears at a step threshold of 3.
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Therefore, according to the prediction accuracy of different steps, different weighting
coefficients are taken for different types of users. Table 6 shows the optimal step sizes of
weighted Markov models for various user types. It is observed that the maximum step
of regular commuters is 5, which means that the corresponding Markov order is also 5.
Although this is a relatively high order, the overall complexity of the algorithm does not
increase significantly because this type of users only account for about one-third of all users,
while the orders of other types of users are relatively low. After the optimal step number
is determined, the weighting coefficients of different steps can be calculated according to
Equation (15), and the results are shown in Table 7.

Table 6. Maximum steps for different types of users.

User Type Maximum Step (k)

Residents 2
Regular commuters 5
Irregular commuters 4

Others 3

Table 7. Weighting coefficients of different steps for different types of users.

User Type
Weighting Coefficient

One-Step 2-Step 3-Step 4-Step 5-Step

Residents 0.535 0.465 - - -
Regular

commuters 0.292 0.240 0.178 0.154 0.136

Irregular
commuters 0.333 0.284 0.178 0.154 -

Others 0.414 0.328 0.257 - -

5.4. Analysis of Prediction Results

Based on the user classification results, 1000 users are randomly selected from each
type of user. The first 14 days of the trajectory data of the users are selected as training
samples, and the trajectory data of the next 7 days are selected as prediction samples.
Location prediction is performed for each user, and the prediction results are compared
with the actual record to determine the prediction accuracy.
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Based on the optimal step threshold and weighting coefficients determined in the
previous section, the weighted Markov model is used to predict the next location of four
types of users, and the prediction accuracy is calculated in units of one hour. The prediction
accuracy of the weighted Markov model based on different user types proposed in this
paper is compared with the prediction accuracy of traditional weighted Markov models and
first- and second-order Markov prediction models. Among them, the traditional weighted
Markov model does not perform classification processing for all users. The highest order of
the traditional Markov model is set to 4, and the weighting coefficients are calculated in a
decreasing manner as given in Equation (13). In the second-order Markov model, the effect
of the two locations before the current location on the transition probability is considered.
The test results are shown in Figure 5.
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Figure 5 shows that the proposed model based on user classification has the highest
prediction accuracy, reaching an average of 70.4%. The first-order Markov model has
the lowest prediction accuracy, with an average of only 52.7%, which indicates that it is
insufficient to consider only the current position when predicting the next location. The
accuracies of the traditional weighted Markov and second-order Markov models are greater
than the prediction accuracy of the first-order Markov model, which indicates that it is
beneficial to the prediction to fully consider the past locations. However, the prediction
accuracy of the traditional weighted model is lower than the prediction accuracy of the
proposed weighted Markov model, and it uses a higher order for all users to predict, which
requires more computing resources.

In addition, Figure 6 shows the distribution of the weighted Markov prediction
accuracy for each type of user against different times of the day. Figure 6 shows that
the prediction accuracy has a negative correlation with user mobility. Residents have the
lowest mobility, so their prediction accuracy is the highest. For regular commuters, their
prediction accuracy during the morning and evening peak periods is relatively low. For
irregular commuters, the accuracy of their working hours during the day is relatively low.
The prediction accuracy of the category of others is very low overall. Even during the night,
the category of others is still much lower than other types of users. These are due to that
higher mobility resulting in more states in the Markov transition matrix, which scatter the
influence of historical trajectories on the prediction of the next location. For example, for
a user category that includes couriers or truck drivers, the nature of their work leads to
irregular mobility, which makes the next location almost impossible to predict. Therefore,
the more the user moves, the higher the uncertainty in the user mobility, which leads to a
lower prediction accuracy.
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5.5. Discussion and Future Work

The complexity of Markov models is an important parameter in measuring the per-
formance, which usually affects the practical application of the algorithm. Therefore, we
assessed the average running time of each model, as shown in Figure 7. It should be
noted that these data are calculated by using MATLAB R2016a on the personal computer
equipped with Intel i5-7200u CPU and 8G memory. Figure 7 shows that the average
running time of the proposed model is slightly lower than that of the traditional weighted
Markov model because it adopts lower orders in some specific user types. The average
running time of the first- and second-order Markov models is much lower because of the
lower order.
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Figure 7. Prediction results of the weighted Markov model based on different user classifications.

Although the weighted Markov model proposed in this paper improves the trajectory
prediction accuracy of users to a certain extent, the magnitude of the improvement is not
obvious. Especially in the period of high mobility or for users with irregular mobility, the
prediction accuracy has a significant decline. To further improve the prediction accuracy, in
the future, we will mainly improve the research from the following aspects. First, different
classification criteria can be tested, or users can be clustered using an unsupervised model.
Second, to evaluate the classification accuracy of mobile users by different machine learning
algorithms, more machine learning algorithms can be tested and the parameters of the
algorithms can be optimized to obtain more accurate classification. Last, the Markov
chain-based prediction methods can be compared with the dynamic time warping (DTW)
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algorithms and neural network-based prediction methods, so as to reveal the difference
between different types of prediction algorithms.

6. Conclusions

Smartphones have become an essential part of daily life for billions of people. Together
with the continuous advancement of mobile communication technology, mobile user
trajectory information mining has attracted increasing attention in the field of data mining.
At present, location prediction technology is still immature, with problems such as low
accuracy and a large amount of processing requirements, and it is challenging to design
useful applications that can help service providers gain value. To address the problems of
traditional Markov models in location prediction, a weighted Markov location prediction
model based on different user classifications is proposed in this paper. This model uses
different weighted Markov models with different parameters for different types of users,
and it achieves higher prediction accuracy than traditional models.

The data collected from mobile networks regarding the cell sites accessed by mobile
users are used to predict the location of these users. The cell sites are densely distributed
in cities but sparsely distributed in less densely populated scenes such as suburbs and
rural areas. Therefore, the proposed location prediction method is more suitable for urban
users, and the prediction accuracy for users in remote suburbs and counties is expected
to be lower than that of urban users. However, with the subsequent deployment and
commercialization of 5G networks, the deployment of cellular base stations in various
places will become denser. This outcome will enable our proposed model to be widely
used in the 5G era. In addition, the classification method proposed in this paper based on
mobile characteristics could be extended to include other features in future work, such as
service preferences, browsing web content, and traffic characteristics. This future research
can then be used to further explore the similarities and differences between different users.
As a result, we show that a more accurate user classification model can be constructed,
and more accurate predictions of user mobility and network resource requirements can
be achieved.
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