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Abstract: This work addresses the problem of target localization in three-dimensional wireless sensor
networks (WSNs). The proposed algorithm is based on a hybrid system that employs angle of
arrival (AOA) and received signal strength (RSS) measurements, where the target’s transmit power
is considered as an unknown parameter. Although both cases of a known and unknown target’s
transmit power have been addressed in the literature, most of the existing approaches for unknown
transmit power are either carried out recursively, or require a high computational cost. This results
in an increased execution time of these algorithms, which we avoid in this work by proposing a
single-iteration solution with moderate computational complexity. By exploiting the measurement
models, a non-convex least squares (LS) estimator is derived first. Then, to tackle its nonconvexity, we
resort to second-order cone programming (SOCP) relaxation techniques to transform the non-convex
estimator into a convex one. Additionally, to make the estimator tighter, we exploit the angle between
two vectors by using the definition of their inner product, which arises naturally from the derivation
steps that are taken. The proposed method not only matches the performance of a computationally
more complex state-of-the-art method, but it outperforms it for small N. This result is of a significant
value in practice, since one desires to localize the target using the least number of anchor nodes as
possible due to network costs.

Keywords: wireless sensor networks; target localization; optimization; Received Signal Strength
(RSS); Angle of Arrival (AOA)

1. Introduction

Recent increased interest in wireless sensor networks (WSNs) in many fields is due to
their ease of implementation, ability to operate in harsh environments, and relatively low
cost [1,2]. Mainly for these reasons, many researchers gave rise to various investigation
projects [3–6]. However, in many applications, the data acquired by sensors are only rele-
vant if they can be associated with physical locations of the sensors, which can also enable
self-configuration and autonomous operation of WSNs. Thus, our aim is to determine the
locations of low-cost and low-power sensors that are deployed over a certain area in order
to sense the information of interest. Perhaps the easiest way of localization is to equip
sensors with global positioning system (GPS) receivers. However, this would increase the
implementation cost, size, and energy consumption of the sensors. Besides, the use of GPS
is not feasible in indoor or dense urban areas, nor in canyons and forests. Hence, different
approaches are often required.

Typically, sensors are divided into two types: (1) target nodes—sensors whose loca-
tions are unknown, and (2) anchor nodes—sensors whose locations are known and used
as reference points to localize the target nodes. Here, it is assumed that both types of
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nodes are capable of transmission, reception, and data-processing in order to execute the
localization process.

In general, localization systems are based on (in)direct distance/direction observa-
tions, which can be obtained through radio measurements, such as received signal strength
(RSS) [7,8], angle of arrival (AOA) [9–11], and so forth. Localization based on these two
radio measurements is very important for future technologies, since RSS is practically
available on all devices, while AOA is expected to be broadly available in the fifth gen-
eration of networks, due to the use of massive antenna arrays. Recently, measurement
integration, such as AOA and RSS, has gained popularity [12–15], and will be the main
focus of this work. Even though these hybrid techniques can enhance localization accuracy,
they come at a certain cost, since additional equipment might be necessary in order to
acquire the desired radio measurements [1]. The main problem of radio measurements
is the non-linearity of the measurement models, which aggravates the process of solving
the localization problem. A non-linear, that is, non-convex problem may have several
locally optimal solutions and saddle points, and it is generally difficult to identify whether
a solution is global or not. Therefore, various sub-optimal estimators have been proposed
recently—see, for instance, [16–20].

Many advances related to RSS-AOA-based localization have been made recently,
in both non-cooperative [21–28] (where targets are allowed to communicate with anchors
exclusively) and cooperative networks [22,29] (where targets can communicate with any
sensor within their communication range). In [21], the authors employed an unbiased
constant which takes advantage of the link quality through the path loss and angle noise
variance to solve the non-cooperative problem by means of weighted linear least squares.
In [22], the authors considered both cases where the target’s transmit power is known
and unknown. For the non-cooperative case, a squared-range approach was employed
in order to convert the problem into a generalized trust region sub-problem and solve
it via bisection, whereas in the cooperative case, semi-definite relaxation was used to
convexify the problem. The authors in [23] proposed a Cartesian to spherical coordinates
conversion approach in order to linearize the measurement models. Then, based on a
weighted least squares (WLS) criterion, where weights were designed in such a way that
they favor nearby links, a solution to the problem was derived. More recently, another
linear estimator similar to the previously described approach was proposed in [24], where
a different weighing strategy was introduced. The authors in [24] first obtained an initial
solution to the problem by solving a LS problem (with no weights), after which this solution
was exploited to calculate an approximate error covariance (EC) used to weigh the impact
of each link. The downside of the works presented in [21–24] is that they are derived
based on the assumption that the noise power is low, which might not hold in practice.
Hence, these methods could suffer a great deterioration in their performance in noisy
environments. It is also worth mentioning that both [21] and [24] were designed for the
case where the target’s transmit power is perfectly known, and their generalization to the
case of unknown transmit power is not straightforward.

In [25], the authors addressed the problem of optimal sensor placement strategy for
single static target localization using the hybrid RSS, AOA, and time of arrival measure-
ments in two-dimensional sensor networks. The authors in [12] presented a novel survival
scheme for life detection after huge disaster situations based on portable cell phone detec-
tion system in a two-dimensional space. They considered two simulation settings in which
they showed that their scheme based on RSS-AOA measurements works well, as long as
certain variables are calibrated correctly. The work in [15] studied a target localization
problem in three-dimensional networks using coupled RSS and AOA observations with
unknown transmit power. The authors in [15] first derived a set of pseudo-linear equations
from distance and angle equations, which (under the condition that the noise power is low)
they successfully linearized by employing the first-order Taylor series expansion, resulting
in a WLS estimator. Another WLS estimator for an unknown transmit power and path loss
exponent is presented in [26]. The authors employed quantized values of analogue RSS
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measurements to jointly estimate the location of the target and the two aforementioned
channel components, by first setting the two parameters to fixed values and estimating
the location, after which an update of the parameters was performed. In [27], the authors
took two different approaches based on a range-based least squares (RLS) and a squared
range-based least squares (SRLS) to derive two distinct estimators based on semidefinite
programming (SDP) relaxation for both cases of known and unknown transmit power.
Although the proposed SDP estimators work well even in noisy environments, their com-
putation complexity is very high, and for the case of unknown transmit power, the authors
actually solve two SDP problems, which results in an increased execution time of the
algorithms. In [28], the authors started by deriving pseudo-linear equations for the RSS
and AOA measurement models. Based on a least squares (LS) criterion, a novel objective
function was derived, which gave rise to a non-convex problem. In order to approximate
it into a convex problem, the authors employed a combination of SDP and second-order
cone programming (SOCP) relaxations, for both known and unknown transmit power
cases. In [30], the authors used polarized identity to transform AOA measurements into
squared-norm form, after which they employed the first-order Taylor series approximation
and SOCP relaxation technique to derive their localization estimator. They considered both
cases of known and unknown transmit power cases, where a three-step procedure was
established for the latter one: solving the SOCP problem for unknown transmit power,
estimating the value of the transmit power based on the obtained localization solution,
and using the estimated transmit power to enhance the localization problem by solving
the proposed SOCP problem as if transmit power was known. Lastly, in [29], the authors
generalized their idea from [23] to the case of cooperative networks.

The works in [12,15,21–24,26–28,30] considered angle measurement noise to be a
Gaussian random variable. However, the von Mises distribution is a more appropriate
distribution to model angular noise [31]. Moreover, although most of the described meth-
ods show good localization accuracy, their computation complexity is still burdensome
and not very suitable for real-time applications. Therefore, it will be shown here that the
performance of the state-of-the-art method in terms of localization accuracy can be matched
(or even surpassed) by a lighter estimator in terms of computational complexity. More pre-
cisely, in this work, we take a different approach to efficiently solve the localization problem
in three-dimensional non-cooperative networks, where the target’s transmit power is not
known. Unlike some of the existing methods that simply disregard the measurement noise
from the derivation process, this work considers it as a residual error and tries to minimize
it instead. To this extent, we derive the new estimator by applying SOCP relaxations, which
arise naturally from simple manipulations of the measurement models. The proposed
estimator outperforms the existing ones in terms of localization accuracy, especially in the
case where anchor nodes are scarce. Hence, this result can be seen as a new lower bound
on the achievable performance on the localization accuracy.

This paper is organized as follows. Section 2 introduces the measurement models
and formalizes the localization problem. Section 3 provides a detailed derivation proce-
dure of the proposed solution. Sections 4 and 5 present and validate the performance of
the proposed solution in terms of computational complexity and localization accuracy,
respectively. Finally, Section 6 summarizes the main findings of this work.

2. Problem Formulation

Let us consider a 3D, non-cooperative WSN, where a single target node, x ∈ R3,
is located at a time by the help of a set of anchor nodes whose known locations are
denoted by si ∈ R3 for i = 1, ..., N. Figure 1 illustrates the considered localization scenario.
The coordinates of the i-th anchor and the target are denoted by si = (six, siy, siz)

T and
x = (xx, xy, xz)T , respectively, while di, φi, αi represent the true values of distance, azimuth,
and elevation angles between the i-th anchor and the target, respectively. The goal of this
work is to determine the unknown location of the target by resorting to a set of (indirect)
distance and angle observations, together with the reference anchor’s location. These data
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are usually extracted from two different sensing modalities (e.g., distance is estimated in
the time/frequency domain, while angle is estimated in the spatial/phase domain), which
is why a common assumption in the existing literature is that the two measurement noises
are uncorrelated [32,33], which was confirmed experimentally in [34].

x y

z

di

φφii

xi

si ααii

Figure 1. Illustration of a target and anchor in three-dimensional space, and the distance and bearing
information between them.

According to [35], the path-loss Li = 10 log10
PT
Pi

, defined between the target and the
i-th anchor, can replace the RSS model, where PT and Pi represent the target’s transmit
power and the RSS at the i-th anchor, respectively, as:

Li = L0 + 10γ log10
di
d0

+ ni, (1)

where di = ‖x− si‖, L0 denotes the path loss value at a short reference distance d0 (di ≥ d0),
γ is the path loss exponent (PLE) which represents the rate at which the signal strength
decays with distance, and ni is the noise term modeled as a zero-mean Gaussian random
variable with variance σ2

ni
, i.e., ni ∼ N (0, σ2

ni
). Notice that not knowing PT in the RSS

model translates to now knowing L0 in the path loss model.
According to Figure 1 and simple geometry, the azimuth and the elevation angles

between the target and the i-th anchor (measured at the anchor) can be modeled, as

φi = arctan
( xy − siy

xx − six

)
+ mi, (2a)

αi = arctan

(
xz − siz

(xx − six) cos(φi) + (xy − siy) sin(φi)

)
+ vi, (2b)

with φi ∈ (−π, π), αi =
(
−π

2 , π
2

)
, where mi and vi in (2) represent the measurement

error of the azimuth angle and the measurement error of the elevation angle. The two
terms are modeled as von Mises random variables with zero-mean, whose concentration
parameters are respectively denoted by κmi , κvi ∈ [0, ∞), that is, mi ∼ VM(0, κmi ) and
vi ∼ VM(0, κvi ). This is different than in most of the existing approaches described in
Section 1, where the angle measurement errors are assumed to be zero-mean Gaussian
random variables. However, the Gaussian distribution is not generally appropriate for
modelling AOA errors, because it has an infinite support instead of a periodic one (2π)
across the angular domain [31]. Hence, it might not model the angle error reliably, and it is
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more appropriate to employ the von Mises distribution instead [31,36], which corresponds
to a circular analogue counterpart of the Gaussian one. Nonetheless, one should note
that there is a closed-form relationship between the mean direction and the concentration
parameter of the von Mises distribution and the mean and variance of the Gaussian
distribution [31,36]. With no loss of generality, and for the sake of notation simplicity, we
assume that κmi = κvi = κi.

From (1), the conditional probability density function (PDF) of the path loss is given by

fLi (Li|x)=
1√

2πσ2
ni

exp

−
(

Li − L0 − log10
di
d0

)2

2σ2
ni

, (3)

where exp{•} denotes the exponential function.
Similarly, from (2), the conditional PDF of the azimuth and elevation angles can be

written as

fφi

(
φi|x
)
=

1
2π I0(κi)

exp
{
κicos(φi − φ̂i)

}
, (4a)

fαi

(
αi|x

)
=

1
2π I0(κi)

exp
{
κicos(αi − α̂i)

}
, (4b)

where Ik(•) is the modified Bessel function of first kind of order k [31,36], while φ̂i and α̂i
denote the true azimuth and elevation angles between the target and the i-th anchor.

From (3) and (4), one can formulate a joint maximum likelihood (ML) estimator for the
considered localization problem, by maximizing the conditional PDFs. Nevertheless, the
ML estimator is non-convex, with no closed-form solution; thus, it will not be tackled di-
rectly here, but rather circumvented by deriving a convex estimator from the measurement
models by the help of SOCP relaxation techniques.

3. The Proposed SOCP Estimator

This section describes the derivation process of the proposed SOCP estimator, for the
case where the target’s transmit power is considered unknown.

First, by rearranging (1), one gets

||x− si||εi = λiη, (5)

where εi = 10
ni

10γ , λi = 10
Li

10γ , and η = d010
−L0
10γ . Note that, since L0 is assumed unknown, η

is also unknown in (5). By slightly abusing strict mathematical formality, one can rewrite
(5) as

εi =
λiη

‖x− si‖
. (6)

Similarly, from (2), it follows that

sin (φi + mi)(xx − six) = cos (φi + mi)(xy − siy), (7a)

sin (αi + vi)[(xx − six) cos φi + (xy − siy) sin φi]

= cos (αi + vi)(xz − siz). (7b)

By assuming that the noise power is small and applying small-angle first-order ap-
proximations of the trigonometric function, that is, cos ϕ ≈ 1 and sin ϕ ≈ ϕ, (7) can be
rearranged as follows:
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ρi(x− si) ≈ mi||x− si|| cos αi, (8a)

νi(x− si) ≈ vi||x− si||, (8b)

where ρi = [− sin φi, cos φi, 0]T and νi = [− sin αi cos φi,− sin αi sin φi, cos αi]
T . Similarly,

as for the path loss case, (8) can be reformulated as

mi ≈
ρT

i (x− si)

||x− si|| cos αi
, (9a)

vi ≈
νT

i (x− si)

||x− si||
. (9b)

Then, the target location can be estimated by solving the following problem, derived
according to the LS principal applied to (6) and (9), as

minimize
x,η

N

∑
i=1

(
λiη

‖x− si‖

)2
+

N

∑
i=1

(
ρT

i (x− si)

‖x− si‖ cos αi

)2

+
N

∑
i=1

(
νT

i (x− si)

‖x− si‖

)2

.

(10)

The problem in (10) is non-convex, but it can be transformed into an SOCP as follows.
First, introduce epigraph variables g, h, t, (g, h, t ∈ RN) and define an auxiliary variable
y = ‖x‖2. Then, apply second-order cone relaxation of the form

ω =

(
β

τ

)2
⇔
∥∥∥∥∥
[

2β
τ2 −ω

]∥∥∥∥∥ ≤ τ2 + ω,

and relax y = ‖x‖2 into a convex constraint, that is, y ≥ ‖x‖2.
What has gone unnoticed so far in the literature is that ρ, ν and (x−si)

‖x−si‖
are all unitary

vectors and, according to the definition of their dot products, we know that these actually
represent a cosine of the angle between the respective pair of vectors, as illustrated in
Figure 2. This means that the square of the cosines of the respective angles has to be
between 0 and 1. Hence, this fact can help us tighten the restrictions of the proposed
estimator, whose final form is given as the following SOCP problem.

θ = arccos ( )z
||z||

r
||r||

z

r

Figure 2. Geometric interpretation of the angle between two vectors using a dot product.
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minimize
x,η,g,h,t,y

(1T
N g + 1T

Nh + 1T
Nt) (11a)

s.t∥∥∥∥∥
[

2λiη

y− 2sT
i x +‖si‖2 − gi

]∥∥∥∥∥ ≤ y− 2sT
i x +‖si‖2 + gi, (11b)

∥∥∥∥∥∥∥
 2 ρT

i (x−si)
cos αi

(y− 2sT
i x +‖si‖2)− hi


∥∥∥∥∥∥∥ ≤

(
y− 2sT

i x +‖si‖2
)
+ hi, (11c)

∥∥∥∥∥
[

2νT
i (x− si)

(y− 2sT
i x +‖si‖2)− ti

]∥∥∥∥∥ ≤ (y− 2sT
i x +‖si‖2

)
+ ti, (11d)

0 ≤ hi ≤
1

cos2(αi)
, 0 ≤ ti ≤ 1, for i = 1,...,N (11e)∥∥∥∥∥

[
2x

y− 1

]∥∥∥∥∥ ≤ y + 1, (11f)

where 1N denotes a column vector with all entries equal to 1 of size N, and the last constraint
in (11) is an equivalent of the constraint y ≥ ‖x‖2. Note that the restriction hi ≤ 1

cos2(αi)
is

troublesome when αi ≈ ±π
2 , since we cannot divide by zero. Hence, we take this restriction

into consideration only if αi ∈ [−80, 80] × π
180 . We will refer to (11) as “SOCP” in the

remaining text of this work.

4. Complexity Analysis

This section assesses the computation complexity of the proposed algorithm. The for-
mula to calculate the worst-case computational complexity of an SDP/SOCP estimator is
based on [37], and is given by

O

√Q

p
Tsd

∑
i=1

lsd
i + p2

Tsd

∑
i=1

lsd2

i + p2
Tsoc

∑
i=1

lsoc
i +

Tsoc

∑
i=1

lsoc2

i + p3


,

where Q represents the iteration complexity of the algorithm, p represents the number of
equality constraints, Tsoc and Tsd are, respectively, the number of second-order cone and
semidefinite constraints, and lsoc

i and lsd
i represent, respectively, the dimension of the i-th

second-order cone and the i-th semidefinite.
Table 1 summarizes the complexity analysis for the considered methods. It is worth

mentioning that the estimators in [24,27] are composed of two iterations, and therefore, their
complexities double, which also affects their execution time. Note that the ECWLS method
is included here for comparison since it is considered here as the state-of-the-art method
for the problem of interest in the case of known transmit power, but its generalization to
the case where the transmit power is unknown is not straightforward.

Table 1 shows that the proposed estimator is the second least-complex method,
which might have a positive impact on the lifetime of sensor batteries. Nevertheless, since in-
tegrated measurements are employed here, the localization process requires a very small
number of anchors, and for these cases, the difference in the computational complexity is
not dramatic. As we will see in the following section, the decreased computation complex-
ity of the proposed estimator in comparison with the convex-based methods does not lead
to a drop in localization accuracy. On the contrary, the new estimator not only matches the
performance of the existing methods, but it outperforms them, especially for low N.
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Table 1. Worst-case computational complexity of the considered methods.

Algorithm Complexity

SOCP in (11) O(N3.5)
ECWLS in [24] 2O(N)

RLS-SDP in [27] 2O(N4.5)
SRLS-SDP in [27] 2O(N4.5)
SD-SOCP in [28] O(N3.5)

SOCP1 in [30] O(N3.5)

5. Numerical Results

This section assesses the performance of the considered methods in Table 1 in terms of
localization accuracy summarized through Monte Carlo (MC) simulations. The simulations
disclose the results for N randomly positioned anchors and one target within a three-
dimensional space with an edge length of B = 25 m. The received path loss at a reference
distance d0 = 1 m is set to L0 = 40 dB, and the PLE is fixed to γ = 2.5. However, it is not
realistic that the value of the PLE is perfectly known in practice, since PLE can differ from
link to link and it can vary in time. Hence, to account for a more realistic case, we define
the true value of the PLE for each link, γi, as a uniform random variable on the interval
[2.2, 2.8], that is, γi ∼ U [2.2, 2.8], i = 1, ..., N in each MC run. The root mean square error

(RMSE), RMSE =

√
∑Mc

i=1
‖xi−x(est)

i ‖2

Mc (m) and cumulative distribution function (CDF) of the

localization error (LE), defined as LEi = ‖xi − x(est)
i ‖ (m), are used as performance metrics,

where xi and x(est)
i are the true target location and the estimated target location in the i-th

MC run, respectively.
The localization performance of the proposed method is compared with the ones

summarized in Table 1. Moreover, we include the results for the Cramer-Rao lower
bond (CRLB) as the theoretical bound on the achievable performance of any unbiased
estimator [38].

It is worth mentioning that the method in [24] was developed for the case of known
L0, and its generalization to the case where L0 is not known is not straightforward. Hence,
ECWLS is given the true value of L0 in all simulations presented here. Figure 3 compares
the RMSE (m) versus N for different values of noise powers. We point out that Figure 3
shows only the results of SOCP in [30], that is, “SOCP1”, for known transmit power. The
main reason is that its performance for the case of unknown transmit power is even inferior;
hence, for the sake of clarity, only the results of SOCP1 for known transmit power are
included. One can observe from Figure 3 that the value of RMSE for all methods decreases
with the increase of N for any choice of noise powers, as anticipated. Similarly, natural
behavior is observed when the noise powers are increased, that is, the performance of all
methods deteriorates with the increase of noise powers. The figure also shows that the
proposed estimator matches the performance of SD-SOCP for N ≥ 3 and outperforms
all other considered ones for N = 2, for any choice of noise powers. This result is of a
significant value in practice, since one desires to localize the target using the least number
of anchor nodes as possible due to network costs.

Figure 4 illustrates a CDF versus LE (m) comparison for different values of noise
powers, for N = 6. The figure exhibits that the proposed estimator achieves LE ≤ 2 m
(Figure 4a), LE ≤ 3 m (Figure 4b), and LE ≤ 5 m (Figure 4c) in almost 80% of the cases.
This result is in concordance with results presented in Figure 3, where it was shown that
the new estimator matches the performance of SD-SOCP for N = 6.
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Figure 3. RMSE versus number of anchors, N, when γ = 2.5, γi ∼ U [2.2, 2.8], B = 25 m,
Mc = 5000. (a) σni = 4 dB, κi = 45.8447 (i.e., σmi = σvi = 6 deg); (b) σni = 5 dB,
κi = 25.9034 (i.e., σmi = σvi = 8 deg); (c) σni = 6 dB, κi = 16.6760 (i.e., σmi = σvi = 10 deg).
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Figure 4. CDF versus LE (m), when N = 6, γ = 2.5, γi ∼ U [2.2, 2.8], B = 25 m, Mc = 5000.
(a) σni = 4 dB, κi = 45.8447 (i.e., σmi = σvi = 6 deg). (b) σni = 5 dB, κi = 25.9034 (i.e.,
σmi = σvi = 8 deg). (c) σni = 6 dB, κi = 16.6760 (i.e., σmi = σvi = 10 deg).
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6. Conclusions

In this paper, we have proposed an algorithm for hybrid RSS/AOA localization in
three-dimensional, non-cooperative networks for unknown transmit power. This is a
pertinent problem for forthcoming fifth-generation networks, where large bandwidths and
highly directional communications are foreseen. We first derived a non-convex LS estimator
based on the AOA and RSS measurement models. By resorting to convex relaxation
techniques and exploiting the dot product definition, we were able to effortlessly transform
the non-convex problem into a convex one, more precisely, an SOCP. The simulation results
showed that the proposed approach outperformed the existing ones in general, even for
the case where they were given perfect knowledge about the transmit power. The proposed
estimator offers a new lower bound on the achievable RMSE performance, which was
accomplished with significantly decreased computation complexity. Nevertheless, in our
future work, we will focus on developing even less complex solutions to the problem,
while maintaining the same, or even enhancing the localization accuracy.
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