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Abstract: Noise Radar technology is the general term used to describe radar systems that employ
realizations of a given stochastic process as transmit waveforms. Originally, carriers modulated
in amplitude by a Gaussian random signal, derived from a hardware noise source, were taken
into consideration, justifying the adopted nomenclature. With the advances made in hardware
as well as the rise of the software defined noise radar concept, waveform design emerges as an
important research area related to such systems. The possibility of generating signals with varied
stochastic properties increased the potential in achieving systems with enhanced performances. The
characterization of random phase and frequency modulated waveforms (more suitable for several
applications) has then gained considerable notoriety within the radar community as well. Several
optimization algorithms have been proposed in order to conveniently shape both the autocorrelation
function of the random samples that comprise the transmit signal, as well as their power spectrum
density. Nevertheless, little attention has been driven to properly characterize the stochastic properties
of those signals through closed form expressions, jeopardizing the effectiveness of the aforementioned
algorithms as well as their reproducibility. Within this context, this paper investigates the performance
of several random phase and frequency modulated waveforms, varying the stochastic properties of
their modulating signals.

Keywords: noise radar; random waveform; phase/frequency modulation; ambiguity function;
real-time implementation; randomness

1. Introduction

Noise Radars are electromagnetic systems that use random signals to detect and
locate reflecting objects [1]. Even though such concept had been defined in the early
post WWII days [2,3], random transmit waveforms were left aside for a long time due
to their high generation complexity, often requiring a controlled hardware noise source.
The advances made in hardware enabled the generation of stochastic processes with varied
probabilistic properties. Therefore, signals of that nature started gaining attention, giving
rise to the software defined noise radar concept. As a consequence, the investigation of
the most suitable stochastic properties of the transmit waveforms, as well as the proper
characterization of the signals throughout the receiver’s processing chain emerged as
important research areas related to such systems.

The stochastic nature of the transmit waveforms make them intuitively attractive
for applications that require high performance against external interferences (intentional
or not) and low probability of interception (LPI). In addition, if system parameters are
properly chosen, several other features can be achieved as well. This is the case of high
electromagnetic compatibility, with low cross-correlation properties between pulses trans-
mitted at different time. The latter can lead both to the suppression of range ambiguity as
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well as an efficient spectrum sharing with other systems. Good range and Doppler resolu-
tion, low range side lobes, and short blind zones (in pulsed radars) can also be achieved if
properly taken into consideration during the waveform and/or receiver processing chain
design procedures.

With respect to the receiver processing chain design, matched filtering followed by
pulse integration is the most traditional configuration employed in Noise Radar systems.
Nevertheless, mismatched filtering [4], apodization filtering [5], and other types of post
processing optimization algorithms like CLEAN [6,7] have also been proposed, especially
to minimize the side lobes levels at the pulse compression outputs. Aside from the higher
computational cost inherent to the aforementioned algorithms, they may also introduce un-
desired effects, like a decrease in the signal to noise ratio or a range resolution deterioration.

Waveform generation, in turn, is one of the most active research areas within the
Noise Radar community, and many different approaches have already been proposed,
e.g., [8–13]. Being relatively easy to model and generate, carriers modulated in amplitude
by a random signal are the most popular ones. Generally, noise sources that produce
signals with Gaussian amplitude and flat power spectral density are employed, justifying
the adopted nomenclature, “Noise Radar” [9,10,14]. Aside from having an elevated degree
of randomness, Gaussian processes’ properties are easy to work with and perform well in
a pulse compression radar architecture.

Nevertheless, phase and frequency modulated (PM/FM) signals suit better systems
that require high power efficiency, since the employment of constant envelope signals
result in a lower peak-to-average power ratio. Therefore, as an alternative to amplitude mo-
dulation, great effort has been spent in deriving closed form expressions of pseudo-random
PM/FM signals that better fulfill radar systems requirements. As examples, in [15,16], a hy-
brid approach is proposed, combining linear frequency modulation with a random phase
scaling factor, while in [17], the authors propose a waveform whose modulation function is
represented by a Fourier series expansion with coefficients generated using independent
identically distributed (i.i.d) Gaussian random variables. Several optimization algorithms
have also been proposed to generate constant modulus pseudo-random waveforms with
specific desired features, either by optimizing the Radar Ambiguity Function [18,19] or
properly shaping its spectral response [20–22].

A few drawbacks may arise with the employment of such waveforms. First, the au-
thors in [23] brought up the question about the degree of randomness and how modified
pseudo-random waveforms perform in electronic warfare environments. Since they all
significantly differ from realizations of a white Gaussian stochastic process, their LPI
intrinsic property may be considerably compromised. The cross correlation function of
such waveforms may also change during the optimization procedure, a subject seldom
addressed in the literature, but that may have significant impact in several applications.
Finally, the performance of the optimized waveforms, especially with respect to sidelobes,
may also be compromised by the target’s Doppler shift [24], limiting their employment.
In summary, when optimizing, no closed form expressions of the generated waveforms are
provided. Therefore, their correct characterization as well as their generation in real time
applications becomes difficult, jeopardizing the reproducibility of the results.

The work initiated by Axelsson [12], on the other hand, focused on deriving first
and second order moment closed form expressions describing the signals throughout
a PM/FM Noise Radar receiver processing chain, composed by matched filtering and
coherent integration. One of the main contributions of the aforementioned work was the
derivation of closed form expressions that describe the expected value of the matched filter
output power. The latter enabled a proper analytical analysis of, among other parameters,
the system’s range resolution and its stationary side lobes level. Nevertheless, in the
referred work, little attention was given to the particularities introduced by the stochastic
properties of the modulating signal. In [8] this study was extended, considering a special
type of Gaussian modulating signal with flat power spectral density. Considerations on its
bandwidth and variance were made, leading to simpler and easier expressions to work
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with, but still without properly addressing the stochastic nature of circular distributions
that characterize the phase of constant modulus random vectors, which are defined around
the unit circle.

Within this context, this paper focuses on the analysis of phase and frequency mod-
ulated waveforms, considering mainly, but not limited to Wrapped Normal modulating
signals with varied stochastic properties, that are, at most, windowed. It is important to
highlight that no optimization procedure is considered in the study. The comparison is
made by a detailed analysis of the closed form expressions characterizing the first and
second order moments of the ambiguity function. Formulations describing the main lobe,
the side lobes level at infinity (ISL), and the random peak side lobe (PSL) at the matched
filter output are then analyzed with different parameters, always considering a possible
Doppler shift introduced by moving targets. Unlike ISL, which can be estimated under
a stationary assumption, the analysis of PSL is not straightforward since, depending on
the modulating signal and on the modulation procedure, it will most likely occur in a
high variance transient region between a nearly zero variance region (main lobe) and a
stationary variance region (ISL).

Bench top experiments are also performed to evaluate the performance of such wave-
forms in band limited systems. Despite presenting high spectral efficiency with respect
to the spectrum sharing point of view, the side lobes level at the matched filter output are
highly dependent on the Power Spectral Density of the transmit signal. Since PM/FM
random waveforms do not present a perfect spectral containment, both the ISL as well
as the PSL at the matched filter output can be deteriorated if filtering operations, either
in hardware or in software (as in digital down converters), are not properly executed.
A discussion about the degree of randomness of PM/FM pseudorandom waveforms is
also presented, in an attempt to access their performance in electronic warfare environ-
ments. Finally, the feasibility of generating such transmit signals in real time applications
is addressed, considering a simple FPGA implementation based on Linear Feedback Shift
Registers.

The remainder of this paper is organized as follows. In Section 2, a discussion of
PM/FM Noise Radar transmit signal’s ambiguity function is addressed, in light of Direc-
tional Statistics principles. In Section 3, Wrapped Normal modulating signals with different
stochastic properties are presented as well as the corresponding expected matched filter
output powers. Simulation and bench top experiments results in accordance with the
analytical analysis performed are also presented. Section 3 also addresses the design and
details relative to the RTL synthesis and FPGA implementation of a few of the analyzed
waveforms. Finally, in Section 4 conclusions are drawn.

2. PM/FM Noise Radar and Directional Statistics

In the present section, the basic principles of PM/FM Noise Radar systems are ad-
dressed, introducing relevant concepts related to Directional Statistics used in the initial
formulation of the problem. In Noise Radar systems, the transmit signal is characterized by
a stochastic process, s(t), i.e., different sample functions of s(t) are transmitted in distinct
intervals. As a consequence, the corresponding matched filter outputs, relative to pulse
compression architectures, are all characterized by complex random processes. It is then
mandatory that the proper analysis of Noise Radars involves the use of probabilistic tools,
as is the case with the derivation of a random signal’s ambiguity function, that describes
the matched filter output as a function of a presumable Doppler shift caused by the target
radial velocity [25]. It’s expected value is given by

E[χs̃(τ, fd)] = E
[∫ ∞

−∞
s̃(t)s̃∗(t− τ)ej2π fdtdt

]
(1)

where s̃(t) is the complex envelope of s(t), fd is the Doppler frequency, τ is the time delay
and j is the imaginary unity.
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In pulsed radars, the transmit signal is time limited with duration τs, characteristic
that is mathematically represented by the rectangular function rectτs(t), in order to assure
that the process s̃(t) remains stationary. Furthermore, assuming that fd is deterministic,
the expectation in (1) is over the distribution of s̃(t), therefore, (1) can be rewritten as

E[χs̃(τ, fd)] =
∫ ∞

−∞
E[s̃(t)s̃∗(t− τ)]rectτs(t)e

j2π fdtdt, (2)

Assuming s̃(t) to be stationary, (2) can be further simplified as

E[χs̃(τ, fd)] = τsRs̃(τ)sinc( fdτs), (3)

where Rs̃(τ) = E[s̃(t)s̃∗(t− τ)] is the autocorrelation function of the complex stochastic
process s̃(t) [26]. Despite being relatively intuitive, the near thumbtack format depicted
in (3) shows that that the expected range and Doppler profiles in Noise Radar systems
are independent functions; therefore, no range-Doppler coupling is expected in Noise
Radars [27].

Let us now consider that the transmitted signals are time limited carriers, modulated in
phase or frequency, with complex envelopes, with respect to the central transmit frequency,
s̃(t) =

√
2P ej[θ(t)+φ] , 0 < t < τs, where 2P is the signal’s complex envelope mean power,

φ is a random phase, assumed to be uniformly distributed in (0, 2π], and θ(t) represents the
carrier modulated phase, the latter being a function of the stochastic process characterizing
the modulating signal a(t), written as

θ(t) =


a(t) , for phase modulation (PM);

t∫
−∞

a(α)dα , for frequency modulation (FM).
(4)

In classical radars (that employ deterministic signals), waveform design involves
selecting an appropriate type of biphase/polyphase code, under the PM assumption, or the
most suitable frequency function of time, either linear or nonlinear (generally based on the
principal of stationary phase [28]), when FM is employed. Analogously, in Noise Radars,
properly choosing the stochastic properties of the modulating signal will directly affect the
system’s overall performance. For example, the PM/FM transmit signal’s autocorrelation
function in (3) is defined as

Rs̃(t1, t2) = 2PE
[
ej(θ(t1)−θ(t2))

]
(5)

Note from (3) and (5) that the first mandatory stochastic property that the transmit
signal complex envelope, s̃(t), has to present is that it has to be wide sense stationary,
implying that its autocorrelation function depends on the difference τ = t1− t2. A sufficient
condition to meet the later is that the process θ(t) in (4) is 2nd order stationary [26], which
is assumed to be true throughout the derivation.

Let us now consider the random variable ψτ = θ(t1)− θ(t2). If ψτ has a probability
density function p(ψτ), its characteristic function is given by the Fourier transform of the
latter, i.e.,

Mψτ (v) = E[ejvψτ ] =
∫
R

ejvψτ p(ψτ)dψτ (6)

The autocorrelation function of the transmit signal in (5) can then be rewritten as

Rs̃(τ) = 2PMψτ (1) (7)

Considering (3) and (7), it becomes evident the substantial role of the modulating
signal in Noise Radar systems, especially in obtaining transmit signals with narrow and
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bell-shaped autocorrelation functions, with low side lobe levels. Furthermore, according to
the Wiener–Kintchine theorem, the transmit signal’s power spectral density, Ss̃( f ), is given
by the Fourier transform of Rs̃(τ). Therefore, the modulating signal has also direct influence
on the system spectral efficiency/containment, a parameter whose importance is rapidly
increasing due to the scarcity of the RF spectrum and the harder constraints on coexisting
systems in the context of multi application spectrum sharing [28]. Within this context, (7)
can be considered the basis of PM/FM Noise Radar waveform design. Nevertheless, little
attention has been given in exploiting both its constraints as well as its features under the
assumption of varied stochastic properties of the modulating signals.

First it is worth mentioning that ψ(τ), being the phase of a random vector is char-
acterized by a continuous (with respect to the Lebesgue measure on a circumference)
random variable with a circular distribution, i.e., its total probability is concentrated on
the circumference of a unit circle [29–31]. Its probability density function p(ψτ) is positive,
and periodic, i.e., p(ψτ) = p(ψτ + 2kπ), for any k ∈ Z and when v in (6) equals 1, it reduces
to [29]

Mψτ (1) = ρejm (8)

where ρ is a function of the concentration of the ψτ angle and m its mean direction. When
ψτ is characterized by an uniform distribution in (0, 2π], for example, ρ = 0, and therefore
this distribution has no well defined mean, being referred to as simply isotropic.

Defining stochastic processes θ(t) that result in distributions to characterize ψτ that
better fulfill radar systems requirements, including their feasibility of generation, is not
a simple task. Furthermore, depending on the chosen distribution, standard statistical
methods and rules, defined for data in the Euclidean space, may not apply as expected,
leading to incorrect modeling.

The research area related to Directional Statistic is very active, e.g., [29–31], just to
cite a few. One of the most popular models for directional data is the Von Mises [30]
distribution, whose probability density function for a circular random variable θ ∈ [0, 2π)
is given by [29]

p(θ) =
1

2π I0(k)
ek cos(θ−m) (9)

where I0(k) = ∑∞
r=0(k/2)2r(1/r!)2 is the modified Bessel function of the first kind and order

zero, 0 ≤ m ≤ 2π is the mean direction and 0 ≤ k measures the concentration around m.
Due to its similarities to the Normal distribution on the real line and importance in

modeling several circular data in most real life problems, the Von Mises distribution is
also often called Circular Normal. It is symmetric about m, unimodal (presents a preferred
direction), it presents a maximum likelihood estimator of m and is the circular distribution
with maximum entropy. When ψ(τ) is characterized by a Von Mises distribution, (8) is
written by

Mψτ (1) =
I1(k)
I0(k)

ejm , with I1(k) =
k
2

∞

∑
r=0

(k2/4)r

r! Γ(r + 2)
(10)

where Γ(z) is the gamma function.
Furthermore, for large values of k, (9) approaches the linear Normal distribution with

zero mean and unit variance [29]. Despite the aforementioned features, in Noise Radar
applications it is desired that the random process characterizing the modulating signal of
the transmit waveforms is easy to generate and retains the additive property, related to
the convolution, of two random variables belonging to the same distribution, which the
Von Mises distribution do not present. The Wrapped Normal distribution, on the other
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hand, can be obtained by wrapping a linear Normal distribution around 2π, having a pdf
defined by [29]

p(θ) =
1

σ
√

2π

∞

∑
m=−∞

exp
[
−(θ −m− 2πm)2

2σ2

]
(11)

where m and σ are the mean and standard deviation of the linear Normal distribution.
Evaluation of (11) is not trivial, since it involves an infinite series; nevertheless,

the Wrapped Normal distribution is not only easy to generate but it is also associated
to the central limit theorem of circular random variables and is closed under convolution
(presents the additive property), i.e., if θ1 ∼ WN(m1, σ1) and θ2 ∼ WN(m2, σ2), then
θ1 + θ2 ∼WN(m1 + m2, σ1σ2).

As stated in [32], the similarities between the Wrapped Normal distributions and
Circular Normal distributions can be used in a complementary fashion, since there are
statistical contexts where each one can be more convenient than the other. We believe that
this is the case for FM/PM Noise Radar applications.

3. Wrapped Normal Modulating Signals

As discussed in the previous section, the Wrapped Normal (WN) distribution poses as
a good model to characterize random variables from the stochastic process that defines an
FM/PM Noise Radar modulating signal. The Wrapped Normal distribution is a particular
case of the Symmetric Wrapped α-Stable family of circular densities, that share all the
previously mentioned properties of WN distributions. The probability density function of
such family, as a function of the parameter α is given by

p(θ) =
1

2π
+

1
π

∞

∑
k=1

exp(σα) cos[k(θ −m)] (12)

Symmetric Wrapped Stable distributions also present an important property related
to their characteristic functions since, for any integer value, they correspond to the charac-
teristic function of their unwrapped versions [29]. Therefore, and considering their above
mentioned additive property, without loss of generality, (7) can be derived assuming a(t) to
be linear, Gaussian and wide sense stationary [33], and, consequently, θ(t) in (4) to be also
linear, Gaussian, and wide sense stationary. The latter holds both when phase modulation
is assumed as well as when frequency modulation is taken into consideration, since the
integrator is a linear time invariant filter.

Noting that Gaussian processes that are wide sense stationary are also strict sense
stationary and, therefore, are 2nd order stationary, it is guaranteed that the complex
envelope s̃(t) is wide sense stationary. Furthermore, when the time limited signal, s̃(t), is
modulated in phase or frequency by a Gaussian wide sense stationary random process,

Mψτ (1) = ejme
−σ2

2 (13)

where m and σ2 are the mean and variance of ψτ , respectively. Hence, the transmit signal’s
autocorrelation function reduces to [12]

Rs̃(τ) = 2Pe−[Rθ(0)−Rθ(τ)] (14)

where Rθ(τ) is the autocorrelation of the θ(t) angle.
The ambiguity function first order moment in (3) is a good indicator of the waveform’s

performance. Nevertheless, to properly analyze both the system’s range resolution as well
as its side lobe levels, it is necessary to investigate the second order moment of the stochastic
process that describe the signal at the matched filter output. Let us then investigate the
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second order moment of the ambiguity function of Noise Radars transmit waveforms,
given by [26]

E
[
| χs̃(τ, fd) |2

]
= E[χs̃(τ, fd)χ

∗
s̃ (τ, fd)] (15)

Expanding (15) yields

E
[
| χs̃(τ, fd) |2

]
=
∫ ∞

−∞

∫ ∞

−∞
E[s̃i(β + τ) s̃∗i (β) ej2π fd βrectτs(β)· s̃∗i (α + τ) s̃i(α) e−j2π fdαrectτs(α)]dα dβ (16)

Assuming that the complex envelope s̃i(t) is phase or frequency modulated, it is
possible to write

E
[
| χs̃(τ, fd) |2

]
=
∫ ∞

−∞

∫ ∞

−∞
E
[
ejz(α,β)

]
ej2π fd βrectτs(β)e−j2π fdαrectτs(α)] dα dβ (17)

with z(α, β) being the random variable defined as

z(α, β)= θ(β+τ)−θ(β)−θ(α+τ) +θ(α) (18)

Since θ(t) is a zero mean Gaussian random process, the random variable z(α, β) is
also Gaussian with zero mean. At this point it is important to remember that, as previously
discussed, throughout the present work, the linear Normal model is being used instead of
the Wrapped Normal one, with no loss of generality. After some mathematical manipu-
lations, analogous to what has been done for the zero Doppler particular case in [8], it is
possible to obtain

E
[
| χs̃(τ, fd) |2

]
= 4P2

∫ ∞

−∞

∫ ∞

−∞
exp{−2Rθ(0) + 2Rθ(τ)+

+ 2Rθ(α− β)− Rθ(α− β+τ)− Rθ(α− β−τ)}rectτs(α)rectτs(β)e−j2π fd(α−β)dαdβ (19)

Noting that the integrator in (19) is a function of the difference γ = α− β and that
Rθ(x) is an even function of x, it is possible to reduce the double integral in (19) to a single
integral, obtaining

E
[
| χs̃(τ, fd) |2

]
= 4P2τs

∫ ∞

−∞
tri(γ/τs) ·

· exp{−2Rθ(0) + 2Rθ(τ) + 2Rθ(γ)− Rθ(γ+τ)− Rθ(γ−τ)}e−j2π fdγdγ (20)

where tri(γ/τs) is the triangular function with duration 2τs, given by

tri(γ/τs) =

{
1− |γ/τs| ; |γ| ≤ τs
0 ; |γ| > τs.

(21)

Analogous to previous analysis [8,12], two regions can be identified in (20), that
provide good approximations for both the main lobe as well as the stationary side lobe
level. First, note that, if τ is close to 0, except for values of γ close to zero, 2Rθ(γ) ≈
Rθ(γ+τ) + Rθ(γ−τ), which leads to

E
[
| χs̃(τ, fd) |2

]
ML

= 4P2τs

∫ ∞

−∞
tri(γ/τs) exp{−2Rθ(0) + 2Rθ(τ)}e−j2π fdγdγ (22)

The integral in (22) becomes the Fourier transform of the aforementioned triangle
function and hence

E
[
| χs̃(τ, fd) |2

]
ML

= τs
2R2

s (τ)sinc2( fdτs) (23)



Sensors 2021, 21, 1727 8 of 27

We refer to this result as the main lobe characterization. The importance of this
result is unquestionable since target detection is directly obtained from the maximum of
this function as well as the range and Doppler resolution from the 3 dB widths in both
dimensions. Note the small Doppler tolerance of such type of waveforms, which is not
suitable for search radars (when matched filtering is employed).

Now, let us address the behavior of what can be considered the side lobes levels
characterization, i.e., the behavior of what can be considered an upper bound to the side
lobes levels [34]. For large values of τ, (20) presents a stationary nature and, after some
mathematical manipulations, it can be shown that the expected value of the stationary side
lobe level power (SSL) or, the equivalent side lobe level in the infinity (ISL), is independent
of τ and is given by

E
[
| χs̃(τ, fd) |2

]
ISL

= 4P2τs

∫ ∞

−∞
tri(γ/τs) exp{−2Rθ(0) + 2Rθ(γ)}e−j2π fdγdγ (24)

Simplifying, it is possible to write

E
[
| χs̃(τ, fd) |2

]
ISL

= τs

∫ ∞

−∞
tri(γ/τs)R2

s (γ)e
−j2π fdγdγ (25)

Equation (25) dictates the noise floor, or random fluctuation level, that arises from the
stochastic side lobes of the matched filter output. Many works have been proposed in the
literature to either reduce or minimize the referred fluctuations, since they can completely
mask other targets, e.g., [35–37]. Filter design, both during the generation of the transmit
waveforms [13] as well as combined with the pulse compression operation (mismatched
filter [4]), have also been subject of many studies, generally based on recursive optimization
procedures. Nevertheless, such type of algorithms not only insert an amount of complexity
that some systems may not cope with but also change the stochastic properties of the
transmit signals. Therefore, in order to better propose optimization algorithms it is first
necessary to correctly describe the mathematical formulation of the referred noise floor as
a function of the transmit signal’s parameters.

The rule of thumb, widely spread within the Noise Radar community, is that the
peak to stationary side lobe level (or side lobe at infinity) ratio (PISL) is given by the
transmit signal’s time × bandwidth product [1]. Such concept can be associated to the
Central Limit Theorem which states that the sum of N independent random variables tends
toward a Gaussian distribution with variance N times smaller than the original samples
variance, independently of their distribution. Therefore, assuming that for large values of
τ, the correlation procedure can be interpreted as a sum of N = Bs̃τs̃ independent random
variables [12], and that the variance of the transmit signal’s samples is given by their power,
2P, it is possible to write PISL = Bs̃τs̃.

Despite serving as a good approximation, the previous statement can be questioned
under two aspects. First, the number of summed samples is only N = Bs̃τs̃ when the
sampling frequency is equal to the transmit signal’s bandwidth. Second, the independence
between the summed samples is only guaranteed if they are Gaussian with rectangular
power spectral density. With respect to the former, the authors in [13] introduced the
number of effective uncorrelated samples concept to justify the referred approximation.
Nevertheless, with respect to the samples independence, it may be necessary to consider a
Central Limit Theorem for dependent random variables [38], introducing a higher amount
of complexity in the analysis. In the present work, the aforementioned approximation is
not considered. Instead, closed form expressions characterizing the PISL are derived and
analyzed. Let us then investigate (25) more carefully. First, note that, according to the
Chebyshev integral inequality, it is possible to write∫ ∞

−∞
tri(γ/τs)R2

s (γ)e
−j2π fdγdγ ≥

∫ ∞

−∞
R2

s (γ)dγ ·
∫ ∞

−∞
tri(γ/τs)e−j2π fdγdγ (26)
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In turn, using the Cauchy–Schwarz inequality for integrals,

∫ ∞

−∞
R2

s (γ)dγ ≥
[∫ ∞

−∞
Rs(γ)dγ

]2
(27)

Since, according to the Wiener–Khinchine theorem, the signal’s autocorrelation func-
tion is the Fourier transform of its power spectral density S( f ), replacing (26) and (27) in
(25), it is finally possible to write the lower bound for the ISL as

E
[
| χs̃(τ, fd) |2

]
ISL
≥ τsS(0)2sinc2( fdτs) (28)

Now, let us reexamine (25) from a different perspective. Note that (25) is the Fourier
transform of a product between two functions, which results in the convolution of their
individual Fourier transform as

E
[
| χs̃(τ, fd) |2

]
ISL

= τsF [R2
s ]
∣∣

fd
∗ sinc2( fdτs) (29)

where ∗ and F [·] are the convolution and Fourier transform operator, respectively. Since
the Fourier transform of the squared autocorrelation function as a function of fd has a
much slower decay than sinc2( fdτs), (29) approaches [24]

E
[
| χs̃(τ, fd) |2

]
ISL
≈ τsπF

[
R2

s

]∣∣
fd=0 (30)

Therefore, under the assumptions made, the Doppler shift does not influence the
stationary sidelobe level at the matched filter output when random phase or frequency
modulated waveforms are employed. This result is particularly interesting, since the
main lobe of the PM/FM Noise Radar ambiguity function (see (23)) decreases with the
increase of the Doppler frequency while the stationary side lobes level remains the same
and independent of τ, i.e., spread in the entire range-Doppler spectrum.

It is important to highlight that the expressions derived in (23) and (30) are valid
despite of the stochastic properties of the modulating signal, as long as it is Wrapped
Normal. Generally, the mean side lobe level quickly converges to (30), but depending
on the latter, a third region appears in (20), which in the present work we characterize
as a transient region, similar to the one addressed in [14]. Such transient region, if it
exists, presents the higher variance of (20), and, unlike in [14], where it was defined as
a “deterministic” region, in the present work it also presents a stochastic nature, being
responsible for the random peak side lobe (PSL) and not being treatable with windows
functions.

When the stationary side lobes level, or the peak side lobe level are unbearable for
the specific radar application, optimization procedures are employed to reduce either of
them, e.g., [19]. Optimization procedures change the modulating signal properties, in order
to reduce this transient region below (30), reducing the integrated side lobes level of the
system. Deriving closed form expressions for this specific region under this assumption is
not an easy task to perform, being very dependent on the optimization approach adopted.
Nevertheless, it is possible to infer the influence of the Doppler shift on it. Let us rewrite
(20) as

E
[
| χs̃(τ, fd) |2

]
=
∫ ∞

−∞
tri(γ/τs)g(τ, γ)e−j2π fdγdγ (31)

Then, as previously done, (31) can also be rewritten as

E
[
| χs̃(τ, fd) |2

]
TR

= G(τ, fd) ∗ sinc2( fdτs) (32)
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where G(τ, fd) is the Fourier transform of g(τ, γ). When optimizing random waveforms
for null Doppler shifts, (32) indicates that targets with velocity will present higher sidelobes
at the output of the matched filter and that the latter is more critical for long pulses.

Figure 1 respectively illustrates the Doppler profile and range profile cuts (considering
different values of Doppler shifts— fd = 0, fd = 0.5/τs and fd = 1/τs) of the Ambiguity
Function for a single pulse realization of s̃(t), considering a transmit signal with a bell
shaped autocorrelation function. Note that the main lobe behavior is precisely the one
described by (23), vanishing for fd = 1/τs, while the side lobes, even though exhibiting a
random behavior, present their mean value according to (30), invariant with the Doppler
shift [27]. In obtaining the referred images, it was considered τs = 10 µs and Bs̃ = 10 MHz,
but the same behavior is expected despite the parameters used.
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Figure 1. (a) Doppler profile (range cut) and (b) range profile (Doppler cut).

Since the Doppler tolerance of PM/FM Noise waveforms are independent of their
range profile, the remainder of this paper addresses only the latter. The system’s perfor-
mance, being a function of Rs̃(τ), is also function of Rθ(τ). The autocorrelation function
of the random process characterizing the phase of the transmit signal, according to the
Wiener–Khintchine theorem, is obtained by the Fourier transform of its Power Spectral
Density, Sθ( f ), which, in turn, is given by

Sθ( f ) = |H( f )|2Sa( f ) (33)

where H( f ) is a given filter transfer function and Sa( f ) is the modulating signal power
spectral density. Therefore, both the modulating signal power spectral density as well as
the transfer function of a given filtering operation performed on the latter are extremely
important to the Noise Radar performance. In the following sections, the aforementioned
parameters are addressed in more depth. The outcome of (20) is closely investigated under
different assumptions of the stochastic properties of the modulating signal and filtering
operation. More precisely, the power spectral density and variance of the modulating signal
are varied and the expected values of the corresponding matched filter output powers are
compared. With respect to the filtering operation, only phase and frequency modulation
are taken into consideration. More complex filtering operations are out of the scope of the
present work.
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3.1. Random Frequency Modulated Signal

In [8,39], the outcome of (20) was analyzed in detail, considering a modulating random
process a(t) with flat power spectral density over a frequency range of 2Ba, Sa( f ) =
rectBa( f ), and frequency modulation, i.e.,

H( f ) =
[

1
2

δ( f ) +
1

j2π f

]
(34)

The frequency modulated transmit signal autocorrelation function is thus given consi-
dering (14), (33) and (34) by

Rs̃(τ) = 2Pe
−
[

σ2
a

1
4π2Ba

Ba∫
0

1−cos(2π f τ)

f 2 d f

]
(35)

where σa is the standard deviation of the random samples that characterize the modula-
ting signal.

When σa � Ba, it has been shown in [8] that Rs̃(τ) does not depend on the modulating
signal’s bandwidth and (35) approaches the Gaussian shape

Rs̃(τ)
∣∣
NBFM rect = 2Pe−σ2

a τ2/2 (36)

For the sake of completeness the matched filter output 3 dB width, the power spectral
density and the 90% bandwidth relative to the aforementioned transmit waveform, derived
in [8] are presented hereafter. The 3 dB width of the matched filter output (see (23)), that
leads to the system range resolution is given by

∆τ3dB
∣∣
NBFM rect =

2
√

ln 2
σa

(37)

As previously mentioned, according to the Wiener–Kintchine theorem, the power
spectral density Ss̃( f ) of the transmit signal’s complex envelope is given by the Fourier
transform of its autocorrelation function, which results in

Ss̃( f )
∣∣
NBFM rect =

2P
√

2π

σa
e
−
[

2π2 f 2

σ2
a

]
(38)

The analysis of the transmit signal’s power spectral density allows the evaluation of
its spectral containment as well as the derivation of closed form expressions describing
its bandwidth. In the present work, two widespread procedures to evaluate a signal’s
bandwidth are considered, the 3 dB bandwidth and the portion of the spectrum where p %
of total power is concentrated. The latter is proved to be

Bs̃−p%
∣∣
NBFM rect = Q−1

(
1− p

2

)
σa

π
(39)

where Q−1(x) is the inverse of the Q-function [26]. The 3 dB bandwidth, in turn, is given by

Bs̃−3dB
∣∣
NBFM rect = 2

√
2 ln 2

σa

2π
(40)

Considering (23), (29) and (36), for the zero Doppler special case, the peak to stationary
side lobe (or side lobe at infinity—ISL) ratio is evaluated as

PISL
∣∣
NBFM rect =

τsσa√
π

(41)
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Note that (41) can be rewritten in terms both of Bs̃−p%, as well as Bs̃−3dB (see (39) and
(40)). Therefore, despite serving as a good approximation, the peak to stationary side lobe
level ratio is not simply given by the transmit signal’s time × bandwidth product.

As an alternative to the narrowband frequency modulation described, wideband
frequency modulation is obtained when high values of Ba are considered. In such case, (35)
approaches

Rs̃(τ)
∣∣
WBFM rect = 2Pe

−
[

σ2
a |τ|
4Ba

]
(42)

The 3 dB width of the matched filter output (see (23)) is given by

∆τ3dB
∣∣
WBFM rect =

4Ba ln 2
σ2

a
(43)

The power spectral density, in turn, is the Fourier transform of a two-sided decaying
exponential, which results in a Lorentzian function written as

Ss̃( f )
∣∣
WBFM rect =

2Pσ2
a

2Ba

σ4
a

16B2
a
+ (2π f )2

(44)

Similarly to what has been previously done, two calculations of bandwidth are con-
sidered. First, the p% bandwidth is calculated as

Bs̃
∣∣
WBFM rect - p % =

tan
(

p π
2
)

π

σ2
a

4Ba
(45)

The 3 dB bandwidth is then given by

Bs̃
∣∣
WBFM rect - 3dB =

1
π

σ2
a

4Ba
(46)

Again, considering (23), (29) and (42), for the zero Doppler special case, the peak to
stationary side lobe ratio is evaluated as

PISL
∣∣
WBFM rect =

τsσ2
a

4Ba
(47)

Note that, similarly to the narrowband frequency modulation, (47) can also be rewrit-
ten in terms both of Bs̃−p%, as well as Bs̃−3dB. Nevertheless, unlike the former, where the
transmit signal’s 3 dB bandwidth and 90% bandwidth are closely related (see (39) and
(40)), when considering wideband frequency modulated signals, such relation differs con-
siderably (see (45) and (46)). Therefore, the relation of both the 3 dB width of the matched
filter output as well as the peak to stationary side lobe ratio will have significantly distinct
values depending on the standardization employed.

Figures 2 and 3 respectively illustrate the power spectral density and the matched
filter output power of narrowband and wideband frequency modulated signals with
10 µs duration, considering different combinations of σa and Ba, that result in bandwidths
Bs̃ = 10 MHz under the aforementioned definition criterion. The matched filter output
power 3 dB widths are brought on focus, where the x-axis are converted from time τ to
range R = cτ/2, with c being the vacuum light speed.

Note that the requirements relative to the transmit signal’s spectral containment
directly impacts the system’s range resolution and peak to stationary side lobe level.
Therefore, properly defining the former can lead to systems with enhanced performance. It
is important to highlight that the transmit signal’s bandwidth definition has also to take
into consideration the radar transmitter limitations. Spectral leakage and attenuation of
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frequency components outside the specified bandwidth are examples of side effects that
appear in systems that do not properly address such issue [17]. More specifically to the
latter, frequency component attenuation introduces amplitude modulation effects to the
signals involved (transmitted and received), possibly distorting the matched filter output
as well, as will be shown later on.
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Figure 2. Power spectral density of narrowband (NBFM) and wideband (WBFM) frequency modulated signals with 10 µs
duration, plotted (a) in dB and (b) in linear scale, considering different combinations of σa and Ba that result in bandwidths
Bs̃ = 10 MHz under different criterion.
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Figure 3. (a) Matched filter output powers and (b) their corresponding 3 dB widths brought on focus of narrowband
(NBFM) and wideband (WBFM) frequency modulated signals with 10 µs duration, considering different combinations of σa

and Ba that result in bandwidths Bs̃ = 10 MHz under different criterion.

In general, when Gaussian modulating signals are taken into consideration, FM
Noise Radar system performance is ruled by relatively simple closed form expressions.
Nevertheless, frequency modulation, if performed in real time, requires a specific amount
of resources that may not always be available. Therefore, phase modulation may sometimes
be preferred. In the following section such subject is addressed in more depth.

3.2. Random Phase Modulated Signal

In the present section, we extend the performed study considering phase modulation,
i.e., H( f ) = 1 (see (33)) and varied modulating signal’s properties. First, let us assume
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that the modulating process a(t) also presents flat power spectral density over a frequency
range of 2Ba. Then, Rs̃(τ) is given by

Rs̃(τ)
∣∣
PM rect = 2Pe−σ2

a (1−sinc(π2Baτ)) (48)

The following modulating signal we address presents triangular power spectral
density over a frequency range of 2Ba. The transmit signal’s autocorrelation function is thus

Rs̃(τ)
∣∣
PM tri = 2Pe−σ2

a (1−sinc(π2Baτ)2) (49)

Finally, the last modulating signal taken into consideration in the current analysis
presents a Gaussian shaped power spectral density over a frequency range of 2Ba, given by

Sa( f ) =

 1
Ba
√

π
e
− f 2

B2
a ; | f | ≤ |Ba|

0 ; | f | > |Ba|.
(50)

The transmit signal’s autocorrelation function is thus

Rs̃(τ)
∣∣
PM gauss = 2Pe−σ2

a (1−e−(πBaτ)2/2) (51)

The derivation of closed form expressions relative to the matched filter output power
(20) for each of the aforementioned PM signals is out of the scope of the present work.
Nevertheless, it is possible to note that all modulating signals addressed will lead to PM
transmit signals with bell shaped autocorrelation functions. Ideally, according to (3), they
should then present similar behavior when employed in Noise Radar systems, but instead,
they present considerably different outcomes of (20), that should be properly compared in
order to define the most appropriate waveform generation method for radar applications.

Figure 4a presents the power spectral density of each transmit signal, considering
the aforementioned modulating signals and phase modulation. In order to perform an
unbiased analysis, Ba and σa, for each modulating signal, were chosen in such a way as
to ensure that all corresponding transmit signals had the same bandwidth. In obtaining
the following results, it was considered τs = 10 µs and Bs̃ = 10 MHz. For comparison
purposes, narrowband and wideband frequency modulation were also introduced in the
analysis, considering the 90% bandwidth concept (see (39) and (45)). Note that all PM
transmit signal’s power spectral densities present a very similar bell shape. The outcomes
of (20), considering each of the described modulating signal, are presented in Figure 4b,
where their 3 dB width are brought on focus, with the x-axis converted from time τ to
range R = cτ/2, with c being the vacuum light speed.

(a) (b)
Figure 4. (a) Power spectral density and (b) Matched filter output power of different transmit signals obtained varying the
modulating signal’s properties and the modulation procedure.
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Note that they all present a bell shape and the main lobe characterization is nearly
the same for all. Such behavior leads to the conclusion that, if the transmit signals present
similar bandwidth, they will also present similar range resolutions, independently of the
modulating signal. The same remark is valid for the stationary side lobe level. Nevertheless,
as previously mentioned, a third region appear in (20), which in the present work we
characterize as a transient region. Figure 5a presents the variance of the matched filter
output, or the equivalent variance of the ambiguity function, given by

σ2 = E
[
| χs̃(τ, fd) |2

]
− E[| χs̃(τ, fd) |]2 (52)

where E
[
| χs̃(τ, fd) |2

]
is given according to (20) and E[| χs̃(τ, fd) |] is defined by (3).

Figure 5a shows that such transient region presents the higher variance of the matched
filter output, i.e., it is the region with the greater dispersion of (20), or, equivalently,
the region with the higher squared deviation from its mean value (3) and, therefore,
responsible for the random peak side lobe (PSL). Unlike what has been done in [14],
where deterministic sidelobes are reduced with the employment of window functions that
conveniently shape the Power Spectral Density (PSD) of amplitude modulated random
transmit signals, the PSL that arises from the transient region under study in the present
work is random and not related to the PSD shape.

This transient region is dependent on the modulating signal’s properties and can
significantly compromise the system performance, if not properly taken into consideration.
The narrowband frequency modulated signal is the one that presents a smaller (sharper)
transient region and thus, smaller peak side lobe levels are expected. On the other hand,
the considered phase modulated signal with rectangular power spectral density is the
one that presents a higher (and longer) transient region and hence higher peak side levels
are expected. Nevertheless, such transient region is not only a function of the shape
of the modulating signal’s power spectral density, but it is also a function of Ba and σa.
Figure 5b presents the matched filter output power, considering phase modulation and
modulating signals with rectangular power spectral density, for different Ba and σa. Note
that the transient region increases as the variance of the modulating signal’ random samples
decreases.
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Figure 5. (a) Variance of the matched filter output power relative to different transmit signals obtained varying the
modulating signal’s properties and the modulation procedure and (b) expected value of the matched filter output power of
different transmit signals obtained varying the modulating signal’s random samples standard deviation and bandwidth,
considering a rectangular power spectral density and phase modulation.



Sensors 2021, 21, 1727 16 of 27

3.3. Simulation

In the present section, software simulations were performed to verify the robustness
of the analytical conclusions drawn in the previous section. It was considered modula-
ting signals, a(t), with flat power spectral density over a frequency range of 2Ba, both
phase modulated as well as frequency modulated (narrowband and wideband). Figure 6
presents a comparison between the matched filter output power when PM, narrowband
FM, and wideband FM transmit signals, considering the 3 dB Bandwidth concept described
in the previous section, are employed. In obtaining Figure 6, np = 1000 realizations of
a(t) and, as a consequence, s̃(t), were evaluated and their corresponding matched filter
outputs, for each generation procedure, were summed, in an attempt to better characterize
their expected values. Due to the stochastic nature of the matched filter outputs, their side
lobes may vary for each realization, but their mean values are given according to the closed
form expressions derived throughout the present work.
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Figure 6. Comparison between matched filter output powers, considering both PM, narrowband,
and wideband FM (3 dB Bandwidth) random modulated signals and Gaussian modulating signals
with rectangular power spectral density—Bs̃ = 10 MHz, τs = 10 µs, np = 1000.

The matched filter outputs main lobe present a relative small variance; therefore,
its behavior remains nearly the same despite the modulating signal realization (given
according to (23)). Stationary side lobes of the matched filter outputs, due to their higher
variance, are different for distinct transmit signal realizations, i.e., they randomly oscillate
around their expected mean value (given according to (30)). Finally, note that the peak
side lobe also presents a random behavior; nevertheless, in accordance to the analysis
performed in the previous section, it is considerably higher for the phase modulated signal.
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3.4. Evaluation of Randomness

Now, let us address the degree of randomness of PM/FM Noise Radar transmit signals,
considering Wrapped Normal modulating signals. It is a known fact within the Noise
Radar community that one of the major advantages of such systems is their low probability
of intercept (LPI), introduced by the employment of pseudo-random waveforms. At this
point, it is important to highlight that Noise Radars are still susceptible of being detected by
Electronic Intelligence (ELINT) systems using traditional methods, such as the analysis of
coherency (in multiple inputs systems) and time (specially for pulsed radars) and frequency
thresholding [40]. Furthermore, they may also suffer electronic attacks by systems able to
generate deception jamming in real time, just as classical radars that employ deterministic
transmit waveforms. Therefore, classical electronic countermeasures such as frequency
agility, varied pulse repetition frequencies (in pulsed radar), and low transmit power
remain as good design practices in Noise Radars.

Thus, what enhances the LPI characteristic of a Noise Radar system is their ability to
pose as thermal noise for less sophisticated ELINT systems, remaining covert, and most
importantly, their ability to generate varied sample functions of the same stochastic process,
inhibiting the action of deception systems that do not operate in real time. Such features are
related to the transmit waveforms degree of randomness, that should be properly analyzed.
In [23], the authors investigated the Mutual Information Rate (MIR) of each transmit signal
considered, stating that the analysis of the waveform’s additional information obtained
when one more sample is observed is fundamental to define its Low Probability of Intercept
(LPI) characteristic. In the referred work, the authors evaluated both the Spectral Flatness
Measure (SFM) of such waveforms, as well as the MIR, which is related to the entropy
rate of complex stochastic processes [41,42], and measures the information increase as a
function of time. For Gaussian processes [43], the SFM is directly related to the MIR, and is
given, by

SFM =
exp

[∫ ∞
−∞ ln[S( f )]d f

]
∫ ∞
−∞ S( f )d f

(53)

Values of SFM close to 1 indicate a random signal, while values close to 0 evidence a
well structured signal. Despite serving as a good measure of randomness, (53) can lead
towards incorrect conclusions when the waveform under study presents several frequencies
with null or approximately null components [44], or when non-Gaussian processes are
under study [43], inciting the search for other measures that can contribute for the analysis.

In [14], it is reported an ongoing work that is being developed by the same group of
authors to evaluate the degree of randomness of amplitude modulated pseudorandom
waveforms for Noise Radar application, which had not been published by the time of
submission of the present work. Therefore, and in the absence of a common sense of the sci-
entific community on how the randomness of transmit waveforms should be evaluated for
Noise Radar applications, in the present work we evaluate the SFM of different narrowband
frequency modulated signals addressed and also compare their performance, with respect
to randomness, to what can be considered a true random signal. The latter is achieved by
using the Statistical Test Suite for Random and Pseudorandom Number Generators for
Cryptographic Applications [45] from the National Institute of Standards and Technology
(NIST) of the U.S. Department of Commerce. The narrowband FM signal was chosen for
the analysis because it presents the better tradeoff between spectral confinement and side
lobe level, and due to its similar properties obtained when considering a 3 dB bandwidth
and a 90% power bandwidth.

The Noise waveforms were generated over a sampling frequency of 100 MHz, conside-
ring 3 dB bandwidths Bs̃ = [3, 10, 20, 50] MHz and τs = 20.48 µs duration. This procedure
generates a vector of 2048 samples, each one of them 16 bits long. Others 255 were also
produced in order to acquire a bigger set for the randomness test. The True Random Noise
was generated by the use of the python library rdrand [46] that uses the thermal noise of
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the computer’s processor in order to output a true random bit. The generator used was
RdRandom() and it was produced the same amount of bits as the noise waveform, that is,
223 bits. All the standard configurations of the test suite were kept the same. All the tests
were run for the 5 datasets for bitstreams of 32,768 bits for 256 runs.

The test suite is composed by several tests, with little redundancy between them,
i.e., each test is able to detect specific pattern behaviors. In the present work, and conside-
ring a Noise Radar application, we evaluate the described FM pseudo-random waveforms
with respect to the number of occurrences of “1” s and “0” s in their binary representation
(Frequency test), which should be nearly the same, the linear dependence among fixed sub-
samples of the original datasets (Rank test) and the presence of periodic features (repetitive
patterns) within the datasets (FFT test, Entropy test and Serial test). A detailed description
of the performed tests is out of the scope of the present work, for that purpose, the reader
is advised to go to [45].

Figure 7 presents the statistical results of the aforementioned tests along with the Spec-
tral Flatness Measure for the previous described narrowband FM pseudo-random signals
as a function of their 3 dB bandwidth. Note that, contrary to the SFM that presents a nearly
constant behavior, indicating a good degree of randomness, the statistical tests from NIST
show a high dependency on the FM transmit signal’s bandwidth. A convergence behavior
can also be observed, from the tests, indicating that signals with 10 MHz bandwidth and
above already present a performance with respect to randomness close to the one obtained
by true random numbers generators.
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Figure 7. Statistical test results considering 4 pseudorandom narrowband frequency modulated
signals (NBFM3dB) as a function of their 3 dB bandwidth—3 MHz, 10 MHz, 20 MHz, and 50 MHz.

Once again, it is important to highlight that good performance with respect to sta-
tistical tests for randomness do not necessarily implicate that the next sample of a given
pseudo-random waveform is unpredictable, given their previous values (forward unpre-
dictability) [45], nor that the signals are undetected by ELINT systems. To achieve the
former, more complex analyses on both the pseudorandom generator, as well as on the
statistics of the datasets need to be performed, while for the latter, there is a need to fully
cover detectors based on the statistics of the transmit signals, like the ones proposed in [47].
Both studies are out of the scope of the present work.

3.5. Spectral Containment—Hardware Evaluation

The previous sections highlighted the importance in properly defining the stochastic
properties of the modulating signal in order to obtain transmit signals with desired power
spectral densities and corresponding autocorrelation functions. Nevertheless, the choice of
the aforementioned parameters has also to take into consideration the system’s hardware
constraints. As previously shown, bell shaped autocorrelation functions lead to bell
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shaped power spectral densities, which are not well contained, i.e., a considerable portion
of the spectrum may lay outside of the specified bandwidth. Therefore, the hardware
components in the transceiver chain may introduce distortions to the received signals,
leading to unavoidable undesired effects.

There are two main reasons for that: the shape of the Power Spectral Density (PSD)
and its randomness. As previously discussed, the PSD is usually designed to be bell shaped
(due to its relation to the autocorrelation function); therefore, a considerable portion of
the spectrum can be outside the RF filters pass band. Regarding the latter, due to the
stochastic nature of the signals involved, the received signal’s PSD, likewise the side lobes
of the matched filter output, also present a random behavior. Therefore, even though
their expected values are properly characterized, variations between transmit signals
are expected, and, unavoidably, some of them will present a higher bandwidth than the
specified, being more susceptible to distortions.

In the present section, we take into consideration a 48 channel S-band phased array
prototype (PO1) to evaluate possible impacts of hardware distortion on the previously ana-
lyzed waveforms and verify the robustness of the analytical conclusions drawn throughout
the present work. The PO1, is a radar developed for research and development by the
Brazilian Army, with very traditional RF chains, consisting in digital to analog (DAC)
converters, filters, mixers, transmit amplifiers, low noise amplifiers, and analog to digital
converters (ADC). The signal processing of the received signal is also classic, consisting in
Digital Down Converters (DDC) with digital filtering, matched filtering, pulse integration,
and a CFAR detector, all performed on a proprietary board split between two Virtex 5
FPGAs. Since we did not want to introduce undesired variables to the analysis, we used
a simple setup with a loopback connection prior to the T/R modules, instead of a trans-
mission and capture of real echos, which would invariably come with a huge amount of
clutter and interferences added.

As in the previous section, the bench top test was performed using the narrowband
frequency modulated signal, since it presents the best tradeoff between spectral confine-
ment and side lobes level and due to its similar properties obtained when considering a
3 dB bandwidth and a 90% power bandwidth. The duration of the transmit signal was
set to τs = 20.48 µs, and the bandwidth (considering the corresponding criterion) was
established at Bs̃ = 3 MHz.

The power spectral density and matched filter output power of the above mentioned
waveform, prior to digital to analog conversion, are presented in Figure 8a,b, respectively.
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Figure 8. Power Spectral Density (a) and matched filter output power (b) of a pseudorandom narrowband frequency
modulated signal realization (NBFM3dB)—Bs̃ = 3 MHz, τs = 20.48 µs.
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Note that the theoretical values of bandwidth, resolution, and peak to stationary side
lobe value (PISL) are in accordance to the ones derived in Section 3.1. In Figure 8b, the Peak
to Peak Side Lobe value (PSL) is also presented. The power spectral density of the received
signal (loopback connection), prior to pulse compression, and the corresponding matched
filter output power are depicted in Figure 9a,b, respectively.
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Figure 9. (a) Power Spectral Density (PSD) and (b) matched filter output power of the loopback signal, considering a
narrowband frequency modulated random transmit signal (NBFM3dB).

The transmit and receive paths introduce distortions to the received signals, as noted
from their power spectral densities analysis. The attenuation of frequency components
outside the specified bandwidth (3 MHz) is evident, which causes not only an unavoidable
mismatch loss but also distortions to the matched filter output inducing not only lower
values of PISL but also higher values of peak side lobe level and a wider matched filter
output 3 dB width, resulting in worse resolution. All three drawbacks can compromise the
system’s overall performance; nevertheless, the higher side lobes, especially in the vicinity
of the main lobe (PSL), are specially critical, since they are not foreseen in the theoretical
formulation for this type of waveform. It is possible to conclude that the attenuation of
frequency components outside the specified bandwidth may be critical to Noise radar
systems, introducing different distortions that can impact the matched filter performance.

3.6. FPGA Design and Implementation

Another important characteristic of pseudo-random waveforms for Noise Radar appli-
cations that has started attracting the attention of the scientific community in the past few
years is their feasibility of real time generation, without the usage of an external hardware
source, while retaining the properties specified by their model. The latter increases the
LPI performance of such radars and suits better cognitive systems. The computational
burden to implement optimization algorithms in real time applications is seldom bearable,
i.e., optimized waveforms are generally created offline and stored in on board memories,
limiting their range of applications. Furthermore, modern radar systems that require
real-time signal processing, including waveform generation, generally make use of Field
Programmable Gate Arrays (FPGAs), which, unlike application specific integrated circuit
(ASIC) that are generally designed for a single purpose, are programmable integrated
circuits, that add flexibility, scalability, low power consumption and reliability to the design.
In [48], for example, a linear congruential algorithm implemented in FPGA is taken into
consideration to generate pseudo-random sequence samples for Noise Radars. Despite
being a real time approach, the solution proposed in [48] generates amplitude modulated
waveforms, which do not present high power efficiency, as previously mentioned.
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Gaussian distributed, band limited pseudo-random modulating signals are the basis
to all derivations considered in the present work. A simple way to generate such type of
signals is with the Box–Muller transform, considering two uniformly distributed random
numbers, u1(t) and u2(t) [49], i.e.,

aBM(t) =
√
−2 ln(u1(t)) cos(2πu2(t)) (54)

Pseudo-random sequence samples that present a distribution close to uniform can,
in turn, be generated with Linear Feedback Shift Registers (LFSR). LFSRs are electronic
circuits, composed by X-OR operations and shift registers that generate linear recurring
sequences. Being fast and easy to implement both in software as well as in hardware,
LFSR have been successfully employed in cryptography, error correcting codes, and spread
spectrum communication [50]. Assuming that two LFSR, with different seeds, are generat-
ing the pseudo-random sequences u1(t) and u2(t), it is possible to approximate them to
uniformly distributed random numbers.

The Box–Muller transform requires natural logarithm, square root and cosine oper-
ations being very resource consuming when implemented in hardware, especially consi-
dering that Digital Signal Processing blocks (DSPs) are scarce and also widely used in the
receiver processing chain. A simpler approach relies on the summation of different LFSRs
pseudorandom sequences. Assuming they are uniformly distributed, their summation
presents an Irwin–Hall distribution, that can be approximated to a Gaussian distribution
when the number of summed sequences tends to infinity. Therefore, within the present
work we also consider the modulating signals a2(t) = u1(t) + u2(t) and a4(t) = ∑4

i=1 ui(t)
in the analysis, where u3(t) and u4(t) are also pseudo-random sequences generated by
other two LFSR, with different seeds.

After generating the above mentioned modulating signals, a FIR filter is still employed,
prior to the frequency modulation operation that is performed using the Direct Digital
Synthesizer (DDS) compiler IP from Xilinx. The FM pseudo-random waveform generation
architectures described are first validated in Xilinx® System Generator [51], a design
tool that enables the use of Xilinx’s IPs inside MathWorks model-based Simulink® design
environment for purposes of integration and simulation alongside Matlab® capabilities for
an optimized FPGA implementation. Figure 10 presents the block diagram of a typical
implementation for generating the random modulating signals considering the Box–Muller
transform approach, used in the present analysis. The frequency modulation procedure
has also been implemented in Xilinx® System Generator, but its diagram is omitted.

Figure 10. Block diagram of the pseudorandom waveform generation method considering the Box–Muller transform
approach in Xilinx® System Generator.

The block diagram in Figure 10 is composed by generic IPs from Xilinx®, e.g., Linear
Frequency Shift Registers, Natural Logarithm and Square root, blocks versioned by Xilinx®,
i.e., DDS Compiler 6.0 and FIR Compiler 7.2 and lastly, data preparation blocks to the
incoming operation (“Truncation” and “Data Type Formatting”). The approximated overall
system’s latency is hence a sum of each individual blocks combined with their needs for
data. In the present work we are using a 25 MHz system clock, resulting in a 61 clock cycles
latency. Finally, it is important to highlight that the proposed architecture is synchronous,
i.e., all the logic is encapsuled between registers. Therefore, there is a need to use additional
registers to reduce critical paths, assuring that all transitions are stable before the next
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rising edge of the clock, meeting all the timing constraints. The generated pseudorandom
modulating signals as well as the corresponding frequency modulated transmit signals
are captured by specific Xilinx® System Generator “Gateway Out” blocks and analysed in
Matlab®.

Figure 11a presents the distributions of the modulating signals aBM(t), a2(t) and a4(t).
As expected, the modulating signal generated using the Box–Muller approach presents a
distribution that is closer to the Gaussian. The measured Kurtosis for each dataset was
2.9303 (Box-Muller), 2.7721 (Sum, n = 2) and 2.8130 (Sum, n = 4), while the measured
Spectral Flatness Measure (see (53)) was 0.5751(Box-Muller), 0.5698 (Sum, n = 2) and 0.5663
(Sum, n = 4). Figure 11b presents the distributions of the corresponding transmit signals
generated using each of the modulating signals described. Note that they present nearly
the same distributions.

Figure 11c presents the Power Spectral Densities of the narrowband FM noise wave-
forms generated considering each of the above mentioned modulating signals, a FIR filter
with 200 KHz pass band, σa = 2× 106, and τs = 1 ms. Note that they all present a shape
close to (38) and 90% energy bandwidth given by (39), which in the present analysis is
Bs̃−90%

∣∣
NBFM rect = 1 MHz. Finally, Figure 11d presents the respective matched filter out-

puts along with the Stationary Side Lobes (or side lobes level at infinity—ISL) levels and
the Peak Side Lobe levels (PSL). Once again, note that the results are all in agreement with
the closed form expressions derived in the previous section. With respect to the main lobe
and 3 dB resolution, they all follow (23), (36) and (37), respectively. Peak to stationary
side lobe levels are also in accordance to (41), i.e., nearly 30 dB. In Figure 11d, the Peak to
Peak Side Lobe value (PSL) is also presented for each type of waveform. Being random
waveforms, characterized by a stochastic process, side lobes, due to their also random
behavior (higher variance), are different between transmit signals, despite presenting the
same expected mean value (as derived in Section 3.1). Therefore, the peak value of the side
lobes is a quantity difficult to model through closed form expressions. Nevertheless, they
pose as interesting features to evaluate when comparing random waveforms performance,
since they directly impact the overall system performance.

Figure 11c,d indicate that the modulating signal generation method is not critical,
since the resultant FM pseudo-noise waveforms present similar performance under a
matched filter based receptor. Therefore, the choice of which strategy to use can be done
based on the hardware area and timing constraints of each architecture. The next step then
consists in integrating the resultant model into a larger project in Vivado® Design Suite,
a Xilinx® development environment for system-level integration and implementation [51],
and then building it (place and routing and generating the bitstream). It is important to
highlight that the maximum operating frequency, hardware area occupied, resources and
power consumption are functions not only of the signal processing design but also of the
target device.

In the present work, a Xilinx® Zynq UltraScale+ MPSoC (ZU15EG) is selected as the
target device. The latter is mounted on a proprietary board that also has high speed analog
to digital (ADC) and digital to analog (DAC) converters, blocks of DDR4 memories and a set
of other peripherals not relevant to the present analysis. Within this context, despite being
out of the scope of the present work to describe all the connections needed in the vhdl top
level design, it is worth mentioning that the interface with the signal processing digital block
is made via the AXI4 interface (defined and controlled by ARM®) which also contributes
to the amount of resources needed. Table 1 lists the main resources consumed from the
ZU15EG device. It is important to notice that the resources’ consumption presented also
include the infrastructure demanded for the FPGA to communicate to the software inside
the MPSoC. Unfortunately, due to the smaller hardware area of an older version of FPGA,
the waveform generation designs could not be implemented in a Virtex 5 Integrated Circuit,
and, as a consequence, could not be employed with the experimental radar PO1, described
in the previous section.
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Figure 11. (a) Modulating signal’s distributions, (b) Transmit signal’s distributions, (c) Power Spectral Densities and (d) FM
Noise pseudo-random waveforms matched filter output (ISL in dashed line and PSL in dot dashed line).

Table 1. FPGA implementation—consumed resources.

Site Type
Frequency Modulation

Box–Muller Sum, n = 2 Sum, n = 4

Flip-Flops 53,880 53,473 53,537

LUTs 39,015 36,817 36,870

Block RAM Tile 163 155.50 155.50

DSPs 31 24 24

Note that the Box–Muller approach consumes more hardware area, especially DSPs
blocks, that are highly consumed by the receivers signal processing chain. Nevertheless, it
is possible to say based on the results shown in Table 1 that the resources consumption is
not a limiting factor to the generation of FM pseudo-random waveforms based on LFSR,
evidencing its high feasibility for real-time Noise Radar applications.

Performance parameters such as the overall system’s latency and data throughput
were respectively estimated as 62 clock cycles, 16× fs bits for all approaches, since the
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most responsible for that are the FIR filter and the DDS blocks, present in all architec-
tures. With respect to timing constraints, the Worst Negative Slack of each design was
0.410 ns (Box–Muller), 0.250 ns (Sum, n = 2) and 0.450 ns (Sum, n = 4). Regarding the
total on chip power, they all presented a similar 5.4 W power consumption and 30.3 ◦C
junction temperature.

4. Conclusions

This paper focused on investigating the performance of several random phase and
frequency modulated waveforms, varying the stochastic properties of their modulating sig-
nals. An initial discussion over the basic properties of circular distributions that model the
phase of a random vector with constant modulus was performed, highlighting the particu-
larities with respect to Noise Radar applications. Widespread parameters such as Doppler
tolerance, spectral efficiency, range resolution, mutual information rate, and stationary
side lobes levels at the matched filter output were addressed in the analysis, considering
random modulating signals characterized by Wrapped Normal distributions. Additionally,
an untapped parameter was also introduced in the study, the concept of expected peak
side lobe level (PSL) at the matched filter output.

Second order moment closed form expressions were derived, characterizing the ex-
pected value of the transmit signals ambiguity function. The latter revealed that the
Doppler shift does not influence the stationary side lobe level (or side lobe level at infinity—
ISL). This result is particularly interesting, since the main lobe peak power of the PM/FM
Noise Radar ambiguity function decreases with the increase of the Doppler frequency,
while the stationary side lobe level remains the same and independent of the time shift,
i.e., spread in the entire range-Doppler spectrum.

With respect to the system’s range profile, the analysis evidenced that it can be
separated in three well defined regions: the main lobe, the stationary side lobes and a
transient region. It was shown that, as long as the resultant transmit signals present
the same bandwidth, the derived expressions describing the mainlobe and ISL are valid
despite of the stochastic properties of the modulating signal. With respect to the transient
region, on the other hand, it was shown that it is dependent both on the properties of the
modulating signal as well as on the modulation procedure (phase or frequency).

Transmit signals with similar autocorrelation function and Power Spectral Density
(first order moments) present transient regions at the matched filter output with varied
duration, function of the matched filter output variance (second order moment). Unlike the
ISL, which can be estimated under a stationary assumption, depending on the modulation
signal stochastic parameters, it is likely that the random peak side lobe (PSL) will occur in
the aforementioned transient region, between a nearly zero variance region (main lobe)
and a stationary variance region (ISL).

It was shown that frequency modulated signals with rectangular power spectral
density presented the smaller transient region, indicating lower peak side lobe levels, while
phase modulated signals with rectangular power spectral density, presented a higher and
longer transient region, indicating higher peak side lobe levels. If not properly taken
into consideration, PSLs can severely deteriorate a radar system performance. Therefore,
frequency modulation is more suitable than phase modulation for generating constant
modulus random waveforms and should provide a system with better performance.

Closed form expressions characterizing the transmit signal’s bandwidth and the sys-
tem’s range resolution were also derived. It was shown that, despite serving as a good
approximation, the peak to stationary side lobe level ratio is not simply given by the trans-
mit signal’s time × bandwidth product. Moreover, it was highlighted that, depending on
the properties of the modulating signals, there is a considerable difference on system’s per-
formance when considering its 3 dB bandwidth or its 90% power bandwidth. The derived
closed form expressions may not only serve as solid ground for more efficient optimization
algorithms, but also support the proper specification of the system’s spectral confinement
requirements. Finally, practical aspects of the analyzed PM/FM pseudo-random wave-
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forms were addressed, such as real time implementation, degree of randomness, and the
effects caused by hardware distortion.

Wrapped Normal random processes, as the ones analyzed in the present work, are
good sources of Noise Radar modulating signals, since, as shown, they are relatively easy
to generate and provide closed form expressions characterizing the signals throughout
the receiver processing chain. Nevertheless, other type of circular distributions can serve
this purpose as well, leading to systems with varied performances. Circular distribu-
tions characterization have already been subject of many studies in several engineering
fields [29–31], as well as the statistics of Complex Signals in general [52–54], knowledge
that can be inherited by the Noise Radar community to help design systems with enhanced
performance. The feasibility as well as the suitability of employing samples of different
distributions of the same Symmetric Wrapped α-Stable family as modulating signals are
thus good alternatives for future works possibilities.
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