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Abstract: Designing therapeutic and sensor materials to diagnose and eliminate bacterial infections
remains a significant challenge for active theragnostic nanoprobes. In the present work, fluores-
cent/electroactive poly(3-hexylthiophene) P3HT nanoparticles (NPs) stabilized with quaternary
ammonium salts using cetyltrimethylammonium bromide (CTAB), (CTAB-P3HT NPs) were prepared
using a simple mini-emulsion method. The morphology, spectroscopic properties and electronic
properties of CTAB-P3HT NPs were characterized by DLS, zeta potential, SEM, TEM, UV-vis spec-
trophotometry, fluorescence spectroscopy and electrochemical impedance spectroscopy (EIS). In
an aqueous solution, CTAB-P3HT NPs were revealed to be uniformly sized, highly fluorescent
and present a highly positively charged NP surface with good electroactivity. Dual detection was
demonstrated as the binding of the bacteria to NPs could be observed by fluorescence quenching as
well as by the changes in EIS. Binding of E. coli to CTAB-P3HT NPs was demonstrated and LODs
of 5 CFU/mL and 250 CFU/mL were obtained by relying on the fluorescence spectroscopy and
EIS, respectively. The antimicrobial activity of CTAB-P3HT NPs on bacteria and fungi was also
studied under dark and nutritive conditions. An MIC and an MBC of 2.5 µg/mL were obtained with
E. coli and with S. aureus, and of 0.312 µg/mL with C. albicans. Additionally a good biocompatibility
toward normal human cells (WI38) was observed, which opens the way to their possible use as a
therapeutic agent.

Keywords: cationic conjugated-polymers; nanoparticles; mini-emulsion; fluorescence; impedance;
detection; bacteria; fungi; antimicrobial; biocompatibility

1. Introduction

Concerns related to bacterial infections are often raised due to major outbreaks that
have a high overall mortality rate [1]. Moreover, the emergence of drug-resistant bacterial
strains as a cause of intensive use of antibiotics makes bacterial infections a major global
health crisis [2–4]. Thus, the timely diagnosis and efficient alternative antimicrobial treat-
ment of pathogenic infections are of great importance in dealing with such a crisis [5].
To address this issue, many researcher efforts’ have been devoted to the design the next
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generation of detection probes with antimicrobial activity, serving both diagnostic and
therapeutic purposes at one time (theragnostic antimicrobial) [5,6].

In this regard, fluorescence sensing is a promising approach for quick and easy medical
diagnosis. This is because of the availability of many fluorescent probes with easy readout,
non-destructive operation, rapid signal generation and sensitive detection [7,8]. Besides
their use as fluorescent probes, many advanced fluorescent materials have been reported
as smart multi-tasking probes for biomedical applications including bacterial identification,
discrimination and killing.

Additionally, there are many reports on the antibacterial effects of various nano-
structured materials and nanoparticles (NPs), including antibiotics coated NPs [9], Ag-
coated Au NPs [10], antimicrobial peptides conjugated with Gd3+ [11] and hydrogels [12].
Among the fluorescent materials, conjugated polymer nanoparticles (CPNs) have emerged
as excellent probes for fluorescence imaging, photoacoustic imaging and photothermal
therapy for microbial infections [13] and cancer [14]. The great interest in using CPNs is
motivated by their outstanding photophysical properties, excellent photostability, high
quantum efficiency, super sensitivity and amplified fluorescent quenching effect [15–17]
with high biocompatibility and biodegradability [18]. In biosensing and biomedical applica-
tions CPNs need to be functionalized for subsequent bioconjugation. Such functionalization
may be achieved by following two approaches. The first approach is the direct function-
alization of conjugated polymers which involves covalent grafting of functional groups
to monomers followed by polymerization, and the post-polymerization functionalization
strategy [19]. The second approach is an affinity-driven binding of secondary capping
layers which relies on interactions, usually hydrophobic, between the conjugated chains
and a secondary capping agent [20]. For example Wu et al. reported CPNs modified by
amphiphilic polymers such as polyethylene glycol and poly (styrene maleic anhydride)
that were adsorbed on the surface of NPs to increase hydrophilicity and to anchor sites for
subsequent use for biosensing, imaging and therapy [21].

Cationic conjugated polymers (CCPs) have been extensively used as a novel antibacte-
rial material with remarkable activity and are considered promising candidates to overcome
bacterial resistance [22–25]. These cationic polymers have a broad spectrum of activity,
killing or inhibiting the growth of both wild-type and antibiotic-resistant bacteria with
remarkable efficacy by two different modes of activity: under light illumination and in the
dark. The dark mode activity includes membrane disruption and the light-activated mode
activity involves the generation of reactive oxygen species (ROS) [26–28]. Thus, cationic
functional groups and π-conjugated hydrophobic systems of CCPs are both essential for
antimicrobial performances [28]. Furthermore, the ability of CCPs to bind to the mem-
brane of bacteria by electrostatic and hydrophobic interactions has been explored as a
driving force for the detection of pathogens. Yuan et al. developed a CCP, poly(phenylene
vinylene) (PPVNMe3+) derivative which displayed specific interactions with different
components of microbial cell envelopes. They demonstrated that only through varying
the ion strengths of the buffer solution a single chain of the polymer could discriminate
fungi, Gram-positive and Gram-negative bacteria by using fluorescence measurements.
Isothermal titration microcalorimetry and zeta potential measurement suggested different
interaction mechanisms including electrostatic and hydrophobic interactions [29].

In the last few years, biocidal poly(thiophene) functionalized with quaternary am-
monium groups via flexible alkyl chains have gained much attention. This is due to their
ability to strongly absorb visible light and to their outstanding fluorescence properties with
a high yield of triplet state formation, and consequently a high yield of singlet oxygen and
ROS. Yuang et al. reported an imidazolium-functionalized poly(hexylthiophene) which
exhibited remarkably high biocidal efficiency to both Gram-positive and Gram-negative
bacteria at sub-µg/mL concentrations while leaving mammalian cells unaffected. This
polymer was shown able to produce ROS which endowed it with the ability to inacti-
vate bacteria under visible light [30]. Another group reported the effect of the molecular
weight and the nature of the functional group of cationic poly(3-hexylthiophene) polymer
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on killing various bacteria. The biocidal activity was investigated both in the dark and
under irradiation and showed high rates of cell death after photoactivation at polymer
concentrations of 10 µg/mL for both gram-positive and gram-negative bacteria (E. coli and
B. atrophaeus). The effect of the molecular weight of the polymer is minimal. However, the
functional groups’ effect on the bacteria membrane, and polymer modified with tertiary
amine, demonstrated more damage to bacteria [31]. The same group developed a series
of antimicrobial materials with positive charge including modified P3HT and evaluates
the speed of the antibacterial activity against a panel of laboratory strains of Pseudomonas
aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis in the dark and upon irradi-
ation [32]. They demonstrate that the modified P3HT polymers, at 10 µg/mL and during
10 min, kill a panel of all the pathogenic bacteria with more than four log reductions in the
concentration in the dark and under UV irradiation.

Poly(3-hexylthiophene) (P3HT) is the most studied and commercially available conju-
gated polymer due to its good electrical conductivity, chemical stability, low redox potential
and its optical properties in the semiconducting state [33,34]. Despite its vast potential ap-
plications in the field of bioelectronics, there are no reports available on its biocompatibility
and cytotoxicity. Most of the reported studies on P3HT have been on the chemical modifi-
cation of the conjugate backbone with positively charged groups. However, these chemical
modifications destroy some of its intrinsic properties. In this work, cationic fluorescent
cetyltrimethylammonium bromide (CTAB) P3HT NPs (CTAB-P3HT NPs) were prepared
and their antimicrobial properties and toxicity were investigated. CTAB-P3HT NPs were
produced by a mini-emulsion method, where the π-conjugated P3HT system forms the
core by hydrophobic interactions, and the CTAB groups wrapped around the conjugated
core to form a positively charged shell layer on the nanoparticle’s surface (Scheme 1).
The CTAB groups on the NP facilitate the binding to anionic bacterial cell membranes by
electrostatic interactions, thus causing fluorescence quenching. Electrochemical studies
were performed to support and corroborate the fluorescence results. Cellular viability
experiments were carried out to assess the cytotoxicity effect of CTAB-P3HT NPs. To the
best of our knowledge, this is the first time that this simple technique was used for the
production of cationic conjugated polymer nanoparticles (CCPNs) with a highly promising
dual diagnostic and theragnostic NPs-tool.
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2. Materials and Methods
2.1. Materials

P3HT (MW = 22 kDa D = 2.13 and RR = 90–93%), Cetyltrimethylammonium bromide
(CTAB) and chloroform were purchased from Sigma-Aldrich. Nutrient agar, LB broth, agar-
agar, peptone, yeast extract and glucose were supplied by HiMedia. Escherichia coli, Staphy-
lococcus aureus and Candida albicans were obtained from the microbiology lab, Beni-Suef
University. WI-38 cell line was purchased from American Type Culture Collection (ATCC).
Dulbecco’s Modified Eagle’s medium (DMEM) was purchased from Invitrogen/Life Tech-
nologies, Fetal bovine serum (FBS) from Hyclone, insulin and penicillin-streptomycin from
Sigma-Aldrich.

2.2. Preparation of P3HT-NPs

CTAB-P3HT NPs were formed in water by the mini-emulsion method using CTAB
as the cationic surfactant. In a typical synthesis, 5 mg P3HT were dissolved in 1 mL of
chloroform (Solution 1). The obtained bright orange Solution 1 was slightly warmed to
ensure the complete solubility of the P3HT polymer. CTAB solution was prepared in its
critical micelle concentration (CMC) (1 mM = 0.36 mg/mL) using purified water, then
warmed and sonicated to ensure complete solubility (Solution 2). 250 µL of Solution 1 was
immediately injected into 5 mL of Solution 2 to create an oil-in-water emulsion system.
The emulsion was stirred at 1000 rpm for 60 min at room temperature forming a macro-
emulsion. It was then transferred to an ultrasonic bath and sonicated for 60 min at room
temperature to form a mini-emulsion. The mini-emulsion was stirred (1000 rpm) at 70 ◦C
for 30 min to remove solvents. Anionic P3HT nanoparticles were synthesized in a similar
manner using an anionic surfactant, sodium dodecyl sulfate (SDS) at its CMC of 8.3 mM.

2.3. Bacterial Cell Biosensing Assay
2.3.1. Fluorescence Detection

For fluorescence detection, bacterial cells (E. coli) were cultured in LB broth, collected
by centrifugation and washed with a PBS buffer solution pH 7.2 three times to rinse away
any residual medium. Subsequently, bacterial cells concentrations were calibrated using a
spectrophotometer with optical density of 1 at OD 600 nm, then diluted to the concentration
ranged between 101 to 107 CFU/mL (CFU, colony-forming units). A 100 µL of E. coli
suspension with different serial dilution concentrations ranged from 101 to 107 CFU/mL
were added to 100 µL CCP in the final volume of 200 µL (Final concentration of CTAB-P3HT
NPs was 5 µg/mL). The sample was incubated in the dark at room temperature, and then
fluorescence spectra were measured. To verify the reproducibility, each measurement was
repeated three times on the same day with the same suspension of bacteria. The optimum
excitation wavelength was found to be 500 nm with an emission range between 550 and
850 nm. The optical cell was maintained at 22 ◦C during the measurement.

2.3.2. Electrochemical Detection

CTAB-P3HT NPs modified electrodes were prepared by drop-casting 8 µL of a solution
of CTAB-P3HT NPs on a glassy carbon electrode (GCE). The electrodes were dried at 50 ◦C
for 2 h. Modified CTAB-P3HT /electrodes were incubated with various concentrations
of bacteria from 102 to 107 CFU/mL at room temperature for 1 h. Detection of E. coli was
carried out through EIS measurements at −0.4 V using an alternating potential of 10 mV of
amplitude in the frequency range of 0.1 Hz to 100 kHz in a sterilized 10 mM PBS buffer
solution at pH 7.2, as a label-free electrolyte.

2.4. Antimicrobial Activity of CTAB-P3HT NPs

Dynamic interaction with microorganisms, minimum inhibitory concentration (MIC),
minimum bactericidal concentration (MBC), minimum fungicidal concentration (MFC),
and time-killing assay were assessed to evaluate the antimicrobial activity of CTAB-P3HT
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NPs. E. coli and S. aureus were selected as representative Gram-negative and Gram-positive
bacterial models for the antibacterial assays and C. albicans for the antifungal activity.

2.4.1. Minimum Inhibitory Concentration (MIC)

MIC was determined using the broth macro dilution technique [35]. LB broth was used
for bacteria and Peptone Yeast extract Dextrose (PYD) broth was used for fungi. Concisely,
different concentrations (0.312, 0.625, 1.25, 2.5, 5, 10, 15 and 20 µg/mL) of synthesized CTAB-
P3HT NPs were prepared in broth. A 20 µL overnight culture of each tested microorganism
was added to 2 mL of the nutrient broth to obtain starting inoculums of approximately
4–6 × 106 CFU/mL. A positive tested control which included the microorganisms and
the nutrients and a negative control which consisted of the nutrients broth were used as
references. MIC was defined as the minimum concentration of the tested material that
achieves complete microbial inhibition compared with the positive control after incubation
for 24 h at 37 ◦C.

2.4.2. MBC and MFC Determination

Minimal bactericidal and fungicidal concentrations (MBC and MFC) were determined
according to Lemos et al. [36]. Briefly, 0.1 mL from all clear MIC wells (no growth seen
in macro-dilution trays) were transferred onto LB agar plates for bacteria and PYD agar
plates for fungi. MBCs and MFCs were evaluated by plate colonies counts corresponding
to the total viable cells.

2.4.3. Time-Killing Assay

A time-killing test is used to study the dynamic interaction between the antimicrobial
agent and the microbial strain [36,37]. For bacteria, this test has been well standardized
and described in the M26-A document of the Clinical and Laboratory Standard Institute
(CLSI) [38]. It was performed in a broth culture medium using three tubes containing either
5 × 105 CFU/mL of bacterial suspension or 5 × 104 CFU/mL of fungal suspension. The
first and second tubes were used to test CTAB-P3HT at the final concentration of 0.25 MIC
and 1 MIC compared to the normal growth behavior at the third tube (positive control).
The incubation was done under suitable conditions and the number of cells was measured
at time intervals (0, 1, 2, 3, 4, 6 and 8 h) for bacteria and (0, 1, 2, 3, 4, 6 8, 12 and 20 h)
for fungi. The number of total living cells (CFU/mL) of each tube at different times was
calculated using the agar plate count method.

2.4.4. Cytotoxicity to Mammalian Cells

The WI-38 cell line was cultured using DMEM supplemented with 10% FBS, 10 µg/mL
of insulin and 1% penicillin-streptomycin in 100 µL in a 96-well plate reaching a cell density
of 1.2–1.8 × 10,000 cells/well. Cells were placed in the presence of 100 µL of an aqueous
solution of CTAB-P3HT NPs per well for 48 h at 37 ◦C before toxicity evaluation by the MTT
assay. The absorbance for MTT analysis was evaluated at a wavelength of 570 nm. The
background absorbance of multi-well plates was also measured at 690 nm and subtracted
from the 450 nm measurement.

2.5. Instrumentation

The average size of NPs was measured in 18 megohm-cm deionized water by dy-
namic light scattering (DLS). Zeta potentials and size measurements were performed at
25 ◦C using a Zetasizer Nano ZS 90 from Malvern Zies sigma 500. The morphology of
the synthesized CTAB-P3HT NPs was recorded using a Field emission scanning electron
microscope (FE-SEM) with JEOL JEM-2100 and an internal charge coupled device (CCD)
camera. High resolution Transmission electron microscope (HR-TEM). Ultraviolet-visible
(UV-vis) absorption spectra were carried out on a Carry 300 Bio spectrophotometer. Flu-
orescence measurements were taken on a spectrophotometer TECAN infinite M200 Pro.
The fluorescence images were taken by fluorescence microscopy Leica DMi8, RHOD LP
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excitation 540/45 nm, dichroic 580 nm, emission LP590 nm. Magnification of the object
lens was 40×. FT-IR measurement was performed with Bruker Vertex 70 equipped with
ATR pike and MCT detector. NMR spectra was collected on a Bruker ARX 400 NMR
spectrometer. EIS measurements were carried out in 10 mM PBS buffer solution pH 7.2
using a Metrohm Autolab PGSTAT12 Potentiostat. A three-electrode system was used with
a Pt wire as the counter electrode, Ag/AgCl as a reference electrode and GCE as a working
electrode. For MTT assay measurements, microplate Bioline ELISA reader was used.

3. Results and Discussion
3.1. Preparation of CTAB-P3HT NPs

The mini-emulsion method is a versatile approach to produce stable, water-dispersible
nanoparticles [39,40]. In such NPs, the polymer chains are typically wrapped by a shell of
surfactant, which allows their controlled dispersion in an aqueous environment. CTAB-
stabilized CPNs possess a positive surface charge due to the cationic head groups facing
the solvent [41]. In such NPs, the hydrophobic chains of the polymers are entwined with
the hydrophobic chains of CTAB to form the nucleus, and the hydrophilic quaternary
ammonium groups form shells on the surface (Scheme 1a). The preparation of CCPNs
by mini-emulsion is outlined in (Scheme 1b). In a typical preparation procedure P3HT
dissolved in chloroform (oil phase) was injected in the aqueous phase in the presence
of the CTAB at its CMC, followed by ultrasonication and finally removal of the organic
solvent by heating, which could be followed by observing the color change from orange to
red-pink [40]. CTAB functional groups wrapped on the surface of nanoparticles provide
positive charges to bind and detect bacteria or cells via electrostatic interaction. Addition-
ally, the combination with the hydrophobic character of P3HT enhances the antimicrobial
effect against pathogens.

3.2. Characterization of CTAB-P3HT NPs
3.2.1. Morphological Characterization

The size and size-dispersity of the NPs were determined using DLS in an aqueous
solution. The DLS analysis (Figure 1a) shows that P3HT NPs have an average diameter
of 55.32 ± 7.3 nm and exhibit monomodal distributions, with a particle dispersion index
(PDI) of 0.4. The morphology of CTAB-P3HT NPs was also investigated by SEM and TEM
imaging. As shown in SEM images (Figure 1b), CTAB-P3HT NPs appear as spherical
particles with a uniform shape which affirms the formation of a stable water-based NP
dispersion with no aggregation. TEM images of CTAB-P3HT NPs (Figure 1c) also display
uniform and spherical morphology. The particle size and size distribution in TEM are
consistent with the DLS data. These results are in good agreement with those reported in
the literature for the synthesis of P3HT NPs through the mini-emulsion process, where the
oil phase and surfactant influenced the nature of P3HT aggregates. Therefore, the polymer
chain rigidity and chain length had a role in the obtained sizes and shapes. The rigidity
could be related to the persistence length of the polymer, since with a chain length shorter
than the persistence length, the polymer mainly behaves as a rod, while longer chains
and higher molecular weights allow more bending and give more spherical shapes [42].
Zeta potential measurements (Table 1) show that CTAB-P3HT NPs have a positive charge
of 44.1 ± 5.07 mV that confirms the presence of the CTAB on the surface of the NPs [41].
The P3HT is a hydrophobic polymer and needs to be surrounded by the CTAB surfactant
to have stability in water. In fact, it gives the NPs a highly positive potential and offers
superb colloidal stability in water. All-purpose NPs present positive charges leading to a
strong electrostatic interaction between CCPNs and the membrane of bacteria can occur,
which provides an important basis for CCPNs to detect the presence of microbial cells and
further break their membranes [22]. The stability of NPs CTAB/P3HT NPs dispersion in
an aqueous solution was checked after six months of the fabrication and the same behavior,
regarding the shape and size of NPs, was obtained, demonstrating the high stability of
the NPs.
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Figure 1. Size distribution intensity (a), SEM image (b), and TEM images (c) of CTAB-P3HT NPs.

Table 1. Zeta potential measurements of CTAB-P3HT NPs and microorganisms (E. coli, S. aureus, and
C. albicans).

Name Zeta Potential (mv) SD

CTAB-P3HT NPs +44.1 mv ±5.07 mv
E. coli −45.5 mv ±5.59 mv

S. aureus −39.3 mv ±4.81 mv
C. albicans −32.8 mv ±4.54 mv

3.2.2. Optical and Electrochemical Characterization

CTAB-P3HT NPs were characterized by UV/vis absorption and fluorescence spectro-
scopies. Figure 2a (dashed curve) shows the normalized absorption of P3HT in solution
in chloroform with a maximum absorption at 448 nm. The curve of CTAB-P3HT NPs
(black line) shows an absorption maximum at 520 nm, followed by shoulders at 560 nm
and 610 nm with a tail extending up to 700 nm. The absorption of CTAB-P3HT NPs is
red-shifted, ∆λ = 72 nm compared to the P3HT, the maximum wavelength of absorption
(λmax) of the nanoparticles is 520 nm, which is red-shifted for to the value determined in
solution (λmax) 448 nm. Such an effect is well-known from studies in both thin-film and
solid-state P3HT. The absorption spectra of CTAB-P3HT NPs are formed of two parts: a
high energy absorption attributed to the amorphous phase of P3HT and a low energy
region that carries the vibronic structure of P3HT aggregated within NPs [39]. This eluci-
dates that P3HT chains cannot be dissolved in an aqueous solution and are encapsulated
into a droplet in the aqueous surfactant solution which means that the absorption of the
amorphous phase is due to un-aggregated chains within the nanoparticles and not from
free P3HT chains in the suspension. When excited at their respective absorption peak
wavelengths, strong fluorescence from the P3HT was observed with their emission maxima
around 750 nm (red line) which should have a modest fluorescence quantum yield of
Φ = 0.07 [43]. Electrochemical characterization was performed using EIS in a PBS solution
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without any additional external redox probe, to investigate the electrical properties of the
electroactive layer. The potential investigated was −0.4 V vs. Ag/AgCl where the polymer
was accordingly in its semiconducting state and a semicircle was obtained. Figure 2b
shows the recorded Nyquist plots for films of P3HT/GCE and of CTAB-P3HT/GCE, the
semicircle diameter is related to the charge transfer resistance of the electronic transfer
from the polymer to the electrode. The fitting data (Table 2) from the equivalent circuit
model illustrate the electronic properties of the layers and are represented by a charge
transfer resistance (Rct) in parallel with a constant phase element (CPE), in series with
the resistance of the solution (Rs). A Warburg impedance is observed in the case of the
CTAB-P3HT NPs/GCE which is related to the diffusion of ions and demonstrates that the
coating film from aqueous suspensions of CTAB-P3HT facilitates ionic insertion into the
solution. The Rct value of the CTAB-P3HT film decreases compared to that of P3HT, which
proves the improvement of ionic and electronic transfers.
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Figure 2. (a) Normalized absorption of P3HT (dashed line) and P3HT-CTAB NPs (black line), and
emission spectra of P3HT-CTAB NPs (red line), (b) EIS of P3HT/GCE (black line) and CTAB-P3HT
NPs/GCE (red line) obtained at potential of −0.4 V with DC of 10 mV and frequency range of
100 kHz to 0.1 Hz.

Table 2. Values obtained from equivalent circuit elements by fitting the EIS experimental data.

Element Rs (Ω) Rct (KΩ) CPE (µF) N W1 X2

P3HT 172 79.2 4.2 0.85 —- 0.019
CTAB-P3HT NPs 123 51.3 2.64 0.86 0.00014 0.012

3.3. Microbial Cell Biosensing
3.3.1. Fluorescence Detection

As briefly mentioned in the introduction, the cationic conjugated polymer could elec-
trostatically attract negatively charged particles [22,30] and lead to a decrease or chromic
shift of its initial fluorescence [44]. Fluorescence sensing experiments were conducted at dif-
ferent concentrations of E. coli (0.5 × 102–0.5 × 107 CFU/mL) at a temperature of 22 ◦C. As
shown in Figure 3a, the interactions between CTAB-P3HT NPs and intact microbial particles
do not induce a fluorescence wavelength shift but rather a decrease in fluorescence intensity.
The fluorescence quenching can be explained by the agglomeration of CTAB-P3HT NPs on
E. coli due to the electrostatic interactions between cationic groups of CTAB-P3HT NPs and
a highly negatively charged bacterial cell wall. This assay benefits from the simple “mix
and detect” protocol and thus the fluorescence quenching strategy with a low signal from
the background. Figure 3a shows the fluorescence spectra of CTAB-P3HT NPs for various
E. coli concentrations. In pure water, a fluorescence peak maximum at 725 nm is observed.
A significant decrease in fluorescence intensity was observed with a small concentration
of 50 CFU/mL of E. coli. The drop in the fluorescence emission intensity continues with
increasing E. coli concentration until 0.5 × 106 CFU/mL was reached and after the signal
stays stable for the higher concentration E. coli suggesting that all CATB-P3HT-NPs do
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not bind to bacteria. The calibration curve (Figure 3b) presents a relation between log
concentration of bacterial cells and absolute change in fluorescence intensity (∆F/F0) and
results in a concentration-dependent quenching of the polymer fluorescence with a limit
of detection (LOD) less than 5 CFU/mL. Since CATB-P3HT- are fluorescent NPs, fluores-
cence imagines were performed after incubation with model bacteria, E. coli. As shown
in Figure 3d, the bacteria emit bright red fluorescence, indicating that NPs with positive
charge agglomerate and bind tightly to bacteria via electrostatic interactions. Moreover,
the zeta potential of E. coli was measured after incubation with CATB-P3HT-NPs. The zeta
potential of E. coli was remarkably increased from −45.5 ± 5.59 mV to −16.5 ± 3.81 mV.
These results agree with our assumption that CATB-P3HT-NPs are positively charged and
agglomerate with bacteria through electrostatic interactions. The conventional fluorescence
sensing approach of microbial pathogens involves ligand-receptor interactions. For ex-
ample, Disney et al. reported carbohydrate functionalized CPs which recognize E. coli by
multivalent interactions [45]. Nonetheless, non-specific detection based on electrostatic and
hydrophobic interactions has been used to detect pathogens. Plante et al. [44] and Panda
et al. [46] have reported fluorescence quenching upon binding of a cationic polythiophene
derivative and gold nanoparticle-polythiophene composite to the cell surface of bacteria.
However, the decrease in fluorescence intensity did not appear as significant as what we
observed. To ensure that the fluorescence quenching is due to the electrostatic interaction
between CTAB-P3HT NPs and the cell wall of E. coli, we prepared anionic P3HT NPs (SDS-
P3HT NPs) which we used as a negative control. As shown in Figure S3, the fluorescence
spectrum intensity of SDS-P3HT NPs did not show any change upon the addition of E. coli.
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incubated with CTAB-P3HT NPs, magnification of objective lens is X40.

3.3.2. Electrochemical Detection

The detection of E. coli via electrostatic interaction with CTAB-P3HT NPs-deposited
on glassy carbon electrode (GCE) was investigated by EIS. In our previous study, we
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reported the detection and evaluation of E. coli by using EIS methods [47]. The sensing
approach involved mannose E. coli pili protein recognition with a detection range from
103 to 107 CFU/mL, and high selectivity. Herein, we explore the use of the electrostatic
interaction between CTAB-P3HT NPs and cell membranes without using any external
redox indicator, thus the detection is directly proportional to the change in the electrical
properties of the P3HT. Figure 4a shows the Nyquist plots of EIS for the GCE with different
concentrations of E. coli, from103 CFU/mL to 107 CFU/mL. All modified electrodes show
a large increase in diameter of the semicircle, after bacteria attachment, compared to that of
the unmodified GCE, indicating much higher Rct values. This result highlights that the
electrical properties of the sensing layers, such as charge transfer, resistance and capacitance,
are affected by the attachment of bacteria. The Rct values after bacteria attachment were
obtained from the equivalent circuit model and used to generate the calibration curve. The
calibration curve shows a dynamic variation with the logarithm of bacterial concentration
(Figure 4b), with a detection limit of 250 CFU/mL.

Table S1 shows an overall comparison of our results with those previously reported
in the literature for the detection of foodborne bacteria [44,46,48]. These results show that
CTAB-P3HT NPs have competitive sensing performance with an easy processability and
high stability.
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3.4. Antimicrobial Activity

Previous studies have reported dark mode antimicrobial activity of cationic NPs [41].
Consequently, exploring the role of the cationic group and hydrophobic π-conjugated
system of NP on its antimicrobial activity, MIC, MBC, MFC and time-killing assay were
studied in the dark against Gram-positive and Gram-negative bacteria as well as fungi.
As shown in Table 3, the MIC results of CTAB-P3HT NPs against the tested bacteria in
nutritive broth with a started concentration of 5 × 105 CFU/mL were 2.5 µg/mL for
both gram-positive and gram-negative bacteria. Simultaneously, an auspicious antifungal
activity was recorded with MIC at 0.312 µg/mL against C. albicans with a started inoculum
of 5 × 104 CFU/mL. CTAB-P3HT NPs show MBC/MFC activity at similar concentrations
as the observed MICs, which indicates that the NPs mainly have cidal activity and do
not only statically immobilize the microorganisms. The strong electrostatic attraction of
positively charged NPs to negatively charged microbes (see zeta potential measurements,
Table 1) allows the destruction of cell walls without light induction. This is due to the
synergistic activity of the conjugated polymer core combined with the cytotoxic effect of the
QA head of CTAB molecules as one functional unit. Moreover, these small CCPNs could
enter the bacterial cells and interact with the ionic contents of bacteria via electrostatic
interactions causing irreversible microbial damage [41].
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Table 3. MIC and MBC/MFC of CTAB-P3HT NPs against three microbe isolates.

Pathogen
CTAB-P3HT NPs

MIC (µg/mL) MBC/MFC(µg/mL)

E. coli 2.5 2.5
S. aureus 2.5 2.5

C. albicans 0.312 0.312

To investigate the dynamic interaction between the antimicrobial CTAB-P3HT NPs and
the microbial strain, time-killing patterns were studied (Figure 5). As shown in Figure 5a,
2.5 µg/mL (MIC) of CTAB-P3HT NPs has a stasis effect on E. coli for the first 30 min then
kills 99% of E. coli in 1 h and 100% within 3 h. For 0.625 µg/mL (0.25 MIC), the stasis effect
was observed for the first 2 h, then bacteria continued to grow normally, while in the case of
S. aureus (Figure 5b), 2.5 µg/mL (MIC) of CTAB-P3HT NPs kill 99.9% in 30 min and 100%
within 1 h. For 0.625 µg/mL (0.25 MIC), killing activity was observed at the beginning
for CTAB-P3HT NPs then the survived bacteria revived, accommodated and continued to
grow but at a slower rate than normal growth. In the case of C. albicans (Figure 5c), different
effects are observed at a lower concentration. CTAB-P3HTNPs killed 100% of the fungi with
a concentration of 0.312 µg/mL within 12 h while 0.078 µg/mL slightly decreased the rate
of growth. This good effect on fungi at low concentration provides a powerful promising
antifungal material. These results indicate that this kind of CCPN needs time to penetrate
the cell wall and to cause destruction of the microbes, initially affecting the growth rate
behavior of the microbe. Thus, E. coli has a very rapid growth rate and is the most resistant
toward CCNPs, while S. aureus with a lower growth rate is less resistant and takes only 1 h
for a 100% killing effect. In the case of C. albicans, with its slow growth rate, it takes more
time to adapt showing a 4 h lag phase, which gives time for CCPNs to be attracted and to
cause damage to fungal cells at a very low concentration (0.312 µg/mL) but within a longer
time of about 12 h. Comparing these data to those previously reported in the literature
with CTAB [49], we observe that CTAB could kill bacteria at high concentrations, which
can produce severe cell cytotoxicity at that condition. Thus, combined CTAB-P3HT NPs
exhibit high antibacterial activities at such low concentration and avoid using CTAB with
high concentration that can damage normal cells and contaminate the environment.

3.5. Biocompatibility of CTAB-P3HT NPs

To evaluate the cytotoxic activity of CTAB-P3HT NPs against normal cells, a typical
MTT assay was used to study the biocompatibility of CCPNs at different doses (100 to
0.39 µg/mL) toward human diploid cell line (Wl38). Toxicity following 48 h of treatment
with CTAB-P3HT is shown in Figure 6 revealing that cell viability was 85.2 ± 0.68, 80 ± 0.76,
67.21 ± 0.58, 51.55 ± 1.76 and 41.48 ± 0.47% following treatment with 0.39, 1.56, 6.25, 25
and 100 µg/mL of CTAB-P3HT NPs, respectively. Despite the observation that CTAB-P3HT
NPs induced cell cytotoxicity in a concentration-dependent manner, the IC50 pattern of
CTAB-P3HT was 27.69 µg/mL, which is a relatively high concentration in comparison to
its bactericidal or its fungicidal activity. This suggests that CTAB-P3HT NPs are a novel
biocompatible antimicrobial agent.
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Figure 5. Time-killing curves for CTAB-P3HT NPs against (a) E. coli, (b) S. aureus and (c) C. albicans
isolates. black line = Growth control, red line = MIC and blue line = 1/4 MIC.
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The selectivity obtained between bacteria and the mammalian cell is due to the sig-
nificant differences in the superficial compositions and structures, including membrane
phospholipid types, ratios and the peculiar cell walls of bacteria. In this study, we demon-
strated that the CTAN-P3HT NPs target only pathogens such as bacteria and fungi but not
mammalian cells. This obviously appears in the MTT test with mammalian cells after 48 h
where biocompatibility is demonstrated compared to the cytotoxic effect obtained with
bacterial or fungi.
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4. Conclusions

We have described a facile and cost-effective approach for preparing water-based
cationic CP nanoparticles with high fluorescence and electrochemical properties. The
combination of cationic surfactant CTAB to neutral CP (P3HT) provides positively charged
nanoparticles that not only allow electrostatic interaction with bacteria and fungi for detec-
tion and quantification but also synergize the antimicrobial activity of conjugated polymers
in the dark. The prepared CCPNs showed a direct microbial sensing system in solution by
following the change in fluorescence properties and could be used as an active layer in elec-
trochemical detection using EIS. Hence, the dual approach of detection was demonstrated.
Furthermore, CTAB-P3HT NPs showed a broad spectrum of antibacterial and antifungal
activity and without the requirement of light with good biocompatibility towards normal
human cells. This work provides new biocompatible theragnostic nanoparticles for bacteria
detection as well as for therapeutic treatment.

Supplementary Materials: The following are available online at https://www.mdpi.com/1424-8
220/21/5/1715/s1, Figure S1: 1H NMR spectra of P3HT in CDCl3, Figure S2: Fourier-transform
infrared spectra of P3HT, and P3HT-CTAB NPs, Figure S3: The fluorescence spectra of P3HT-SDS
NPs with different E. coli concentrations, Figure S4: Broth dilution method for determining MIC of
P3HT-CTAB NPs with E. coli (a), S. aureus (b), and C. albicans (c), Table S1: Comparison of fluorescent
conjugated polymer biosensors for the targeted detection and quantification of bacteria.
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