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Abstract: We present a compact optical head design for wide-range and low noise displacement
sensing using deep frequency modulation interferometry (DFMI). The on-axis beam topology is
realised in a quasi-monolithic component and relies on cube beamsplitters and beam transmission
through perpendicular surfaces to keep angular alignment constant when operating in air or in a
vacuum, which leads to the generation of ghost beams that can limit the phase readout linearity. We
investigated the coupling of these beams into the non-linear phase readout scheme of DFMI and
implemented adjustments of the phase estimation algorithm to reduce this effect. This was done
through a combination of balanced detection and the inherent orthogonality of beat signals with
different relative time-delays in deep frequency modulation interferometry, which is a unique feature
not available for heterodyne, quadrature or homodyne interferometry.

Keywords: laser interferometry; displacement sensing; ghost beams

1. Introduction

Laser interferometric displacement sensing is a central tool in precision metrology,
inertial sensing, quantum technologies and prominently, gravitational wave detection
experiments [1]. Different flavours of such sensors are being studied, with dynamic
range, sensitivity, bandwidth and linearity as major characteristics. Displacement sensors
with multi-fringe dynamic and operational range and sensitivities below 10−12 m/

√
Hz

at frequencies from 100 Hz down to <1 mHz are being studied for future space-based
instruments, such as gradiometers [2] and gravitational wave detectors [3], and for the
readouts of low-frequency inertial sensors [4–7] and test masses in future ground-based
gravitational wave detectors [8,9]. Deep frequency modulation interferometry (DFMI) is
one of the techniques that is being developed and studied for these applications [10–13].

DFMI can be used to implement multiple displacement (and tilt) sensors with min-
imal complexity of the ultra stable optics, the so called optical heads. Its major feature
is the multi-fringe dynamic range phase readout with single-beam, unequal-arm-length
interferometer topologies, which are enabled by creating a deep phase-modulation-like
interferogram from which the desired phase information can be extracted in real time [14].
An important second feature is the ability to reduce the effect of in-band laser frequency
noise by using a fixed length, ultra-stable interferometer, or optical head, as a frequency ref-
erence to implement either an active stabilisation or a noise-subtraction algorithm [10–12].
The latter approach is made possible by a third feature, an additional readout of the macro-
scopic arm-length difference, or to be more precise, delay difference, from the interferogram
that provides absolute ranging information.

A schematic of a DFMI multi-sensor displacement and tilt readout system is shown in
Figure 1. Each optical head variant has an unequal arm length Mach–Zehnder or Michelson
interferometer topology with one of the nominal beams ES propagating through a stable,
short arm and another beam EL propagating towards the object of interest, or test mass,
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through a long arm. After beam recombination, the optical power sensed on the two
complementary photodetectors can be approximated as

P± ∝ (ES + EL)
2 =

E2
S

2
+

E2
L

2
± ELES cos (φ + m cos (ωmt + ψ)). (1)

The modulation index m = 2π∆ f τ depends on the differential delay between long and
short arm τ and on the depth of the frequency modulation ∆ f . The interferometric phase
encodes distance changes δL in the long arm φ = 2δL · (2π/λ) via the laser wavelength
λ. The underlying approximations are that the photodetector acts as a low-pass for the
sum-frequencies and that the differential delay τ is much smaller than the period Tm of
the modulation frequency. Typical values are a modulation frequency of fm = 1 kHz, a
frequency modulation depth of ∆ f = 3.3 GHz and an arm-length delay of τ = 0.1 m/c =
0.3 ns, leading to an effective modulation depth of m ≈ 7. To implement the phase
extraction the nominal signal from Equation (1) is rewritten using the Bessel functions of
the first kind:

P± ∝
E2

S
2

+
E2

L
2
± ELES

[
J0(m) cos (φ) + 2

∞

∑
n=1

Jn(m) cos
(

φ + n
π

2

)
cos (n(ωmt + ψ))

]
(2)
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Figure 1. Conceptual schematic of multiple displacement and tilt sensors implemented using deep frequency modulation
interferometry and the herein-discussed on-axis optical heads. The light from a laser, modulated sinusoidal in frequency,
is split into fibres that provide light to several optical heads and a single, stable reference interferometer (here we depict
an interferometer used in previous studies [12,15]). The currents from each photodiode or photodiode segment (when
using quadrant detectors to enable differential wavefront sensing [16]) are converted into voltages by trans-impedance
amplifiers, digitised and then fed into several demodulation pipelines that extract the complex amplitudes at N harmonics
of the modulation frequency fm [17,18]. Afterwards, these complex amplitudes are fed into a fit algorithm to extract four
parameters that should fully describe the interferogram.

As first demonstrated by Heinzel et al. [14], one can now decompose the measured
signal into a corresponding set of complex amplitudes using a discrete Fourier transform,
or an IQ-demodulation, and then apply a Levenberg–Marquardt fit to extract the desired
modulation parameters. The fit function is

Pfit(n) = Pf Jn(mf) cos
[
φf + n

π

2

]
(cos (nψf)− i sin (nψf)) for n = Nl, . . . , Nh (3)

with Pf, mf, φf and ψf being estimated parameters and Nl and Nh being lowest and highest
harmonics used for the analysis. Heinzel et al. found that for Nh = 10, one can achieve
reasonable small residuals when operating with modulation index values between m = 6
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and 9, and this approach has been used in various experimental demonstrations since. Real-
time implementations of both the IQ demodulation and the fit algorithm have so far been
demonstrated with estimation rates of up to 100 Hz [12,17]. Non-linearities in the phase
readout were found to be caused by: (1) amplitude noise, which can be partly suppressed
using fast feedback stabilisation, (2) non-linear laser frequency modulation in the laser [11],
(3) amplitude and frequency dependence of the photodiode current detection chain, which
can be accounted for by compensating the corresponding transfer function [14]. Active
stabilisation of the modulation phase to ψ ≈ 0 rad has also been implemented and can
reduce fit complexity by excluding the complex share of the harmonic amplitudes.

Related techniques using a similar laser modulation scheme with different readout
algorithms have also been developed, one prominently with an additional, range-resolved
multiplexing capability that is enabled by using stronger modulation indices and win-
dowed signal extraction [19]. Multiplexing is realised with strong laser frequency modula-
tions because the resulting beat signals become orthogonal for sufficiently large relative
delay, a similar principle to the pseudo-random noise phase modulations that are used in
digitally enhanced interferometer techniques to artificially reduce the coherence length [20].

DFMI is capable of performing displacement sensing with sub-picometer-level dis-
placement noise using small, single-component interferometers as optical heads [12], and
configurations that incorporate the reference interferometer into the same optic are also
being studied [13]. The use of single-component, off-axis optical heads in previous and
ongoing studies is in general motivated by the following advantages:

• Avoidance of ghost beams generated at points of transmission between inner and
outer medium.

• Avoidance of back-reflections into the fibre and resulting parasitic beams.
• Minimal assembly (bonding) efforts.
• Avoidance of polarisation optics and/or major optical power losses.

The presence of ghost beams is well known to cause non-linear, cyclic phase noise in
heterodyne and homodyne interferometers, and this especially includes parasitic reflections
from fibres, which often have significantly higher phase dynamics than ghost beams
generated within the often ultra-stable optical heads [21]. Reducing assembly efforts is
also crucial when aiming for optimal performance at very low readout frequencies, which
often implies the use of quasi-monolithic mounting structures. Off-axis designs can also be
associated with the following disadvantages:

• Limited longitudinal operating range due to an inherent lateral beam-shift.
• Angular alignment change between air and vacuum operation, leading to

increased alignment efforts with required pointing prediction.
• Angular coupling of refractive index fluctuations when operated in air.

The limited longitudinal range of operation is not a major factor for applications
with very limited macroscopic length changes, such as test mass readouts in satellite
gradiometers [22], but it can be limiting in applications where objects move more than
several millimetres, and hence the absolute ranging information is of higher interest. The
change of beam angles, while deterministic, can greatly influence adjustment strategies if
one aims to operate the interferometers at optimal working points. For the prism-based
design, the angular deviation between air and a vacuum was in the order of 1 mrad [12].
We consider manufacturing tolerances to be neither an advantage or disadvantage for
either off or on-axis designs and argue that the associated effort is greatly dependent on
each individual design and the underlying requirements.

To avoid some of the off-axis design disadvantages, we study here an on-axis design
of a compact, quasi-monolithic, single-component optical head. In the following section
we present the conceptual design of the optical head; discuss beam propagation, manufac-
turability and thermal effects; and show the simulated dependence of the interferometer
signals on different test mass alignments. In Section 3 we then focus on the parasitic ghost
beams that are unavoidable in our design and analyse how the DFMI readout algorithm
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can be adapted to reduce their influence on readout linearity by taking into account the
orthogonality of beat signals with different effective modulation depths.

2. On-Axis Optical Head Design

A top view schematic of the on-axis optical head design is shown in Figure 2. The core
is a quasi-monolithihc component (QMC) in which two cube beamsplitters are joined via a
quarter waveplate. The incoming beam from a fibre collimator enters the component from
the left through surface 1 with p-polarisation and is transmitted through the polarisation
selective coating at surface 5. From there the nominal beam propagates through the
waveplate, which is aligned such that the beam entering the second cube has a circular
polarisation. The next coating on surface 10 with a reflectance of 50% then creates an
unequal arm-length Michelson interferometer with the short north arm, N, and the long
east arm, E. Beam N is reflected by a highly reflective coating on surface 7 and beam E
is reflected by the test mass, or object under testing. Both beams recombine at surface
10, and the two resulting interfered beams leave either directly through surface 9 or via a
second transmission through the waveplate and then arrive at surface 4. The outer length
of each cube is 5 mm and we assume a waveplate thickness of 1 mm (this might include an
additional optical window for mechanical stability). All outer surfaces of the cubes are also
coated with an anti-reflective coating to minimise the power of ghost beams.

Setup A

Setup B
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indirect output direct output
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Figure 2. Sketch of the proposed on-axis optical head design. The core of the design is a quasi-monolithic component
(QMC), which consists of a polarisation beam splitter (PBS) cube, a quarter waveplate (QWP) and a beam splitting cube
(BSC) with 50% reflectivity at the diagonal surface. Nominal dimensions are given in units of 1 mm. The two setups A and
B on the lower left indicate two variants for light detection on photodiodes (PDs) (simulations described below), one (A)
with diodes mounted directly onto the component and the other one (B) with distant photodiodes and focusing lenses in
between. The upper sketch shows the overall dimensions of the optical head when a fibre collimator is included. The QWP
glass parts can be assembled using silicate bonding or optical adhesives after applying the specified coatings.
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The usage of polarisation elements has been studied for the Laser Interferometer Space
Antenna (LISA) optical bench and test mass readout [23], and compact quadrature interfer-
ometers also rely on using different polarisation states and cube beamsplitters to decode
the interferometric phase [5]. Other interferometer studies for LISA have also shown that
it is beneficial to clean the polarisation delivered into displacement interferometers [24].
In the presented topology, the polarising surface and the waveplate have three nominal
functions. (1) Any residual s-polarisation from the input beam is filtered out. (2) The
indirect interference beam is not reflected back into the fibre and can be probed. (3) Re-
flections of the indirect interference beam at surfaces 3 and 4 cannot interfere at surface
10, because they have an orthogonal circular polarisation. Leakage of polarisation will
be caused by either the waveplate, due to imperfect rotational alignment and deviations
from its nominal thickness, or mismatches in reflectivity at surface 10 between s and p
polarisation components.

We assume that the minimal distance L to the test mass is 5 cm. The paths of the two
nominal beams are largely in common within the cube, with the propagation of the long
arm towards the test mass being the major difference between them. Temperature-induced
thermal expansion and changes of refractive index will cancel out to a large degree for the
component internal beam path, leaving only the long-arm length change due to thermal
expansion of the component as first order coupling. This effect is of course dependent on
the mounting strategy of the interferometer and on the expansion of the spacer that defines
the distance to the test mass, two effects which can partly cancel each other if materials
with suitable coefficients of thermal expansion are used. For a characteristic length of 5 mm
and a coefficient of thermal expansion of α = 5× 10−6, the uncompensated temperature
coupling is in the order of 2.5× 10−8 m/K.

The dimensions of the optical head are compatible with a beam-diameter of about
1 mm, taking into account chamfers and that coatings typically do not extend into the
corners on each surface. Compared to previous off-axis designs this leads to further
reductions of component volume and size, giving even more prominence to the fibre
collimator dimensions in the design of the optical head.

All parts that are used for constructing the QMC are standard optical components that
can be manufactured, and are available, with low angular tolerances [25,26], providing,
for example, sufficient perpendicularity and parallelism of the surfaces to enable two-
dimensional interferometer assembly, as is done in the case of the LISA optical bench [27].
The dimensional tolerance of the components is largely uncritical for our design. Angular
tolerances and matching the pathlength between surface 10 and surfaces 7 and 8 are
the most critical to achieve minimal coupling of thermal and refractive index effects.
Assembly of multi-component optical elements requires a bonding method, such as an
optical adhesive or silicate bonding, and ultra-precise alignment [28,29]. The macroscopic
alignment of the input beam and the resulting output beams is mainly driven by the need to
avoid beam clipping, and with typical tolerances of the used components and an absolute
beam positioning of about 100µm, this requirement should be fulfilled. The major fine
adjustment needed is to ensure matching points of beam splitting and beam interference
at the critical diagonal surface 5, which is the condition for maximum longitudinal range
with a zero-angle of incidence on the test mass. This can be achieved by tuning the tip
and tilt angles of the input beam and test mass, or of the optical head relative to the test
mass as alternative to the latter. In the case of angular misalignment between the critical
surfaces, the splitting and recombination point can still be matched, if input beam and
test mass alignment (or again optical head orientation) are adjusted accordingly. Angular
misalignment of surfaces transmitted by the input beam can be compensated in this process.

We studied the influence of test mass tilts on the interferometer signals using the
IfoCAD software library [30]. We assumed a Gaussian input beam with a waist diameter
of 1.0 mm and a waist position at surface 5. We calculated signals for large (3 mm diameter)
photodiodes that are mounted directly on the outer surfaces of the interferometer (setup
A) and for smaller (1 mm diameter) photodiodes that are placed further away with some
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focusing lenses in between (setup B). Neglecting ghost beams, we derived interferometer
contrast, tilt-to-length coupling and its slope. For a tilt-sensitive readout with quadrant
photodiodes, we also computed the expected differential wavefront sensing, its derivative
and the differential power sensing signals. We limited the analysis to a maximum tilt
of about ±0.4 mrad to ensure beam clipping effects were negligible. The results of our
simulation are shown in Figure 3.
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Figure 3. Simulated signals at the direct output ports for setups A and B (see Figure 2) under in-plane test mass rotation.
The input beam parameters for both setups were 0.5 mm waist size radius and 15 mm waist position. The beam origin was
5 mm away from the PBS. The wavelength was 1550 nm. The distance between BSC and photodiode was 0.1 mm in Setup
A. The distance to the lens was 0.1 mm in Setup B; there was a distance between the lens and photodiode of 9.0 mm.

Interferometric contrast within the analysed range of tilt stayed above 60% and we
found a slightly angle-dependent differential wavefront sensing coupling factor of about
3750 rad/rad, comparable to the prism interferometer design [12]. The position of the
focusing lens in setup B was fixed and not optimised further, and we found that the tilt-
to-length coupling in this case was less linear. For both setups we also calculated the
coupling after a linearisation with post-processing corrections that used the DWS readout
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for correcting the tilt-to-length coupling. Interestingly, this simple linearisation was more
effective for setup A. These results show that the on-axis optical head has a comparable
angle-dependency to similar compact interferometers, and that one can at least consider
mounting the photodiodes directly next to, or onto the component to further reduce the
footprint of the overall assembly.

3. Ghost Beam Analysis for Deep Frequency Modulation Interferometry

In an idealised set-up, with perfect alignment and anti-reflective coatings, all light
sent into the optical head is used for the readout, no light is reflected back into the fibre,
only the nominal polarisation is present and no parasitic ghost beams are generated. Since
anti-reflective coatings and bonding interfaces have some residual reflection in any real
device and polarisation leakage also occurs, we have to assume that non-negligible ghost
beams are generated on various surfaces in our design. Theses parasitic beams will lead
to additional interference signals that can limit the phase readout noise and linearity.
Estimating the coupling of these parasitic beams to the phase readout is non-trivial for
DFMI, because the effective modulation depth of each interference beat signal depends on
the relative propagation delays between any two beams. This effect not only complicates the
analysis; it also provides opportunities to adapt the phase estimation algorithm to reduce
the influence of parasitic beams. For large differences in effective modulation depth, the
resulting signals become orthogonal, a fact that is used in other interferometer techniques
to implement multiplexing capabilities. In the following analysis we use this fact to reduce
the influence of parasitic ghost beams that are caused by parasitic surface reflections.

Another technique we apply is prominently used in heterodyne interferometers to
reduce the influence of ghost beams, the so-called balanced detection. It uses the two
complementary output port signals of the interferometer, from which amplitude and
phase are extracted and then combined in the complex plane to null the additional optical
interference terms [21]. Application of this technique requires the phase readout to be
sufficiently linear for the coupling of the respective ghost beam beat signals, which we
analyse in the following.

Before we can begin the analysis, we must introduce some simplifications to make
the equations more readable. In the following, we write interference signals without
considering the constant DC terms (Px ∝ E2

x); we set the units of the electric fields and
of the resulting interference signals to 1 ([P] =

[
E2

x
]
= 1); we set the values of the two

nominal beams in the north and east arms to unity (EN = EE = 1); and we assume that all
parasitic reflections are smaller than 0.25% (rp ≤ 0.05), leading to negligible degradation of
the nominal beam amplitude (tp ≈ 1). We also include the assumption that the reflectivity
of surface 10 is r10 = 1/

√
2, which corresponds to an input power of Pin = 2. For ghost

beam analysis, only the relative beam amplitudes are important, and we neglect other
noise sources such as shot noise, readout noise and digitisation noise.

To deduce the DFMI signals, we assume the typical approximations when calculating
the beat signals. We set the propagation delay of the short north arm at the point of
interference and its phase to zero (τN = 0 s, φN = 0 rad) and also set the modulation phase
to zero (ψ = 0 rad). Finally, we use c(t) = cos (ωmt). In this notation the nominal beat
signal for the two complementary output ports becomes

P±N,E = ±ENEE cos [φE + mE cos (ωmt)] = ±1 cos [φE + mEc(t)], (4)

with a modulation depth mE = 2π∆ f τE = 2π∆ f (τL + τ1) ≈ 2π∆ f (2L)/c and the desired
interferometric phase φE = φL + φ1 = 2δL/λ · 2π + φ1. Here c is the speed of light, λ is
the laser wavelength and φ1 is an additional, almost constant phase that accounts for slight
differences τ1 between both arms within the cube. Both beams are interfered at surface 10
the associated phase shifts leads to the opposite sign for each output port, which is the
basis for the above-mentioned balanced detection scheme. We assume a minimal distance
to the test mass of L ≥ 5 cm.
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Now we include the first parasitic reflection into our analysis, the internal reflection
at surface 8, as shown in inset (a) of Figure 4. It generates an additional beam E1 with an
amplitude |E1| = 0.05, a delay that is very similar to the one in the north arm, τ1 ≈ 0, and
a random phase φ1 that varies only very slowly and with negligible dynamics (due to the
low coefficient of thermal expansion and assumed temperature stability). The resulting
output power now contains three effective beat signals (mE = mL + m1) and φE = φL + φ1:

P±N,E,1 = ±ENEE cos [φL + φ1 + mEc(t)] (5)

±ENE1 cos [φ1 + m1c(t)] (6)

+EEE1 cos [φL + (mE −m1)c(t)] (7)

= ±1 cos [φE + mEc(t)] (8)

±0.05 cos [φ1 + m1c(t)] (9)

+0.05 cos [φE − φ1 + (mE −m1)c(t)] (10)

Please note that this result is not physical; it defies energy conservation because of
the unitary transmission for the nominal beams. However, this description is sufficient to
demonstrate our ability to effectively cancel all of the here listed parasitic contributions.
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Figure 4. Propagation of individual, parasitic ghost beams generated by zero-angle transmission at internal and external
surfaces of the QMC. (a) shows the path of beam 1, reflected directly at surface 8. (b) shows the path of beam 2, reflected
at surface 8 after one trip through the long arm. (c) shows the path of beam 3, generated via a reflection of the interfered
beams at surface 9 in the direct output. (d) shows the path of beams 4, 5 and 6, created by reflections in the indirect output
path. Reflected Beams 1–4 lead to parasitic beat signals with the highest amplitudes, while beams 5 and 6 are somewhat
suppressed by the polarisation optics.

To probe into the effect of this signal on the phase estimation, we expand the three
beat notes using the Bessel functions of the first kind and then we add their contributions
to the injected harmonic amplitudes of the modulation frequency for each output port in a
numerical simulation. Then we use a non-linear Levenberg–Marquardt fit operating on
the harmonics Nl to Nh to estimate two sets of the three desired signal parameters, the
amplitude Pf, the modulation depth mf and the interferometric phase φf. The fit function
we use is

Pfit(n) = Pf Jn(mf) cos
[
φf + n

π

2

]
for n = Nl . . . Nh (11)

We also make the following assumptions: The pathlength difference corresponding to
τ1 is smaller than 100µm, from which we estimate that m1 = τ1/τL ·mL ≤ 0.001 ·mL and
with mL ≈ 7 this leads to m1 ≤ 0.007.
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Using Nl = 1 and Nh = 10, we find the expected non-linear behaviour of the dif-
ference between the two estimated and injected phases that depends on the phase difference
φδ = φ1 − φL and the absolute value of φ1. The strongest phase estimation error
∆φ = φE − φf is shown as a green line in Figure 5. We derive the maximum strength
of the unit-less non-linear coupling as

δ =

∣∣∣∣∆φ

φδ

∣∣∣∣. (12)

Since we assume that φ1 is a slowly changing quantity, largely driven by temperature
effects, its phase dynamics will be below our desired phase noise levels in the order of
1µrad/

√
Hz and this means that we can evaluate the effect of the ghost beams on our

readout purely with regard to the phase dynamics of the actual phase φL, which is the test
mass motion in combination with the average laser frequency variation, though the latter
can be stabilised also to negligible values. This is true for the analysis of all other ghost
beams discussed below as well, and we argue that ghost beams occurring in our optical
head are fully negligible for the readout of phase variations in applications with very low
signal dynamics. To improve on the non-linearity of δ < 0.05, we then apply a balanced
detection correction by computing the vector difference between the two output signals,
effectively negating the influence of the EEE1 beat. Results of this approach are shown
as solid blue line in Figure 5, reducing the non-linear coupling to δ < 5× 10−6. Errors
in modulation depth estimation are plotted as well with ∆m = mf −mE. The additional
correction only suppresses the ENE1 beat, because it has the same sign in both output
ports. Finally, we recognise that the modulation depth of m1 is very small and that the
EEE1 contributions are largely contained in the first harmonic N = 1. Since this one is
often contaminated by amplitude noise due to the laser modulation, we adapted the fit
algorithm to operate only on the amplitudes of Nl = 2 to Nh = 10 and achieve the dashed,
blue line results in Figure 5. This principle also works for other values of mL, but at a value
of mL = 7 we expect a minimal reduction in signal-to-noise ratio, because J0(m = 7) ≈ 0,
meaning the fit will ideally not evaluate this harmonic amplitude anyhow. As one can see
from the right side of Figure 5, the estimation of the modulation index also significantly
improves when excluding the first harmonic.
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Figure 5. Simulated worst-case deviations from the nominal and estimated phases ∆φ; and the modulation index deviations,
∆m, for signals according to P±N,E,1 and fit Pfit for mL = 7.0, φ = π/4. The error reduction due to balanced detection (BD)
and exclusion of the first harmonic are clearly visible.

Thus far we have shown the use of balanced detection as a dedicated post-processing
step, but we recognise that the separate fitting of two complementary output ports could
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be integrated into a single fit routine that also takes the presence of a parasitic ghost beam
beat-note at the same modulation depth into account. Since the fit is inherently non-linear,
we also hoped to increase robustness when making the fit function more physical for later
experiments. We adapted our fit to operate on two sets of harmonics, with the indirect
output port harmonics having a negative sign in their index, n, and we extend the fit
function with two parameters, a ghost beam phase φf,g and amplitude Pf,g,

Pfit,BD(n) = J|n|(mf)
[
sgn(n)Pf cos

(
φf + |n|

π

2

)
+ Pf,g cos

(
φf,g + |n|

π

2

)]
(13)

for n = −Nh, · · · − Nl, Nl, . . . Nh (14)

The fit with included balanced detection achieved the same linearity results in our
simulation; it increased computation times by up to a factor of two and reduced the
parameter error standard deviations by a factor of

√
2, which indicated a higher robustness.

In the next step of our analysis, we include the second parasitic reflection from surface
8, as shown in inset (b) of Figure 4. This reflection occurs when the long arm beam
is transmitted back into the component, creating a second round-trip beam E2 with an
amplitude |E2| = 0.05, a delay that is twice the one of the long arm, τ2 ≈ 2 · τL + τ1, and
a phase φ2 = 2 · φL + φ1. When we now calculate the resulting output powers we have a
total of six beat signals (φL = φE − φ1):

P±N,E,1,2 = ±ENEE cos [φE + mEc(t)] (15)

±ENE1 cos [φ1 + m1c(t)] (16)

±ENE2 cos [2φL + φ1 + (2mL + m1)c(t)] (17)

+EEE1 cos [φL + mLc(t)] (18)

+EEE2 cos [φL + mLc(t)] (19)

+E1E2 cos [2φL + 2mLc(t)] (20)

= ±1 cos [φE + mEc(t)] (21)

±0.05 cos [φ1 + m1c(t)] (22)

±0.05 cos [2φE − φ1 + (2mL + m1)c(t)] (23)

+0.05 cos [φE − φ1 + mLc(t)] (24)

+0.05 cos [φE − φ1 + mLc(t)] (25)

+0.0025 cos [2φE − 2φ1 + 2mLc(t)] (26)

The second beat has already successfully been suppressed by excluding the first
harmonic, Nl = 1, from the fit. Beat signals four and five can again be suppressed using
balanced detection. The third and sixth beat signals, however, cannot be canceled with the
previous fit, but the sixth beat is already significantly smaller in amplitude. We analysed
the phase and modulation index error when probing P±N,E,1,2 with the fit function Pfit,BD,
and the results are shown in the upper plots in Figure 6 for different values of m and
for the worst-case value of φ1. The non-linearity is below δ < 1.6 × 10−2, already an
improvement against the nominal beat amplitude of 0.05 due to the higher modulation
index of this disturbance.

Since the third beat signal has twice the effective modulation depth, we can use
the orthogonality to expand our fit algorithm such, that it searches for two additional
parameters, the power of the second tone Pf,2m and its phase φf,2m. Now we are estimating
a total of seven parameters, and the fit function is

Pfit,BD,2m(n) = J|n|(mf)
[
sgn(n)Pf cos

(
φf + |n|

π

2

)
+ Pf,g cos

(
φf,g + |n|

π

2

)]
(27)

+ sgn(n)Pf,2m J|n|(2mf) cos
[
φf,2m + |n|π

2

]
(28)

for n = −Nh, · · · − Nl, Nl, . . . Nh. (29)
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Figure 6. Simulated, worst-case deviations from nominal and estimated phase and modulation indices for signals according
to P±N,E,1,2, and fit Pfit,BD for different values of modulation index mL. The maximal non-linearity was found for mL = 7.5
with δ < 1.6× 10−2.
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Figure 7. Simulated, worst-case deviations from nominal and estimated phase and modulation indices for signals according
to P±N,E,1,2, and fit Pfit,BD,2m for different values of modulation index mL. The maximal non-linearity was found for mL = 6.5
with δ < 1.3× 10−4. Error and non-linearity for phase and modulation index improved by more than two orders of
magnitude in comparison to results shown in Figure 6.

The results using this fit are shown in Figure 7 for different values of m and for the
worst-case value of φ1. With the inclusion of the second harmonic fit, we reduce the
phase readout linearity to δ < 1.3× 10−4 and the error in modulation depth estimation to
|∆m| < 3× 10−4. The remaining non-linearities are understood to be dominated by the
sixth beat signal. However, its effect is not only suppressed by its smaller amplitude, but
also by its inherent orthogonality. A further extension of the fit to also account for the last
beat is of course possible, but we do not explore this here.

Thus far we have shown that we can adapt the DFMI readout algorithm to account for
parasitic reflections occurring at surface 8 of our design in such a way that non-linearity
can be reduced to levels below 0.1%. We have not studied the influence of a possible
third round-trip signal, but expect it to be even less relevant, due to its even smaller
amplitude and higher delay. Handling ghost beams generated at surface 8 under zero-
degree transmission is the most crucial aspect to achieving our goal of an on-axis design
with no alignment change between air and vacuum, and further experimental exploration
of linearity will first have to deal with other non-linearities from, for example, the laser
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frequency modulation. A maximum error ∆m = 5× 10−4 for the extracted modulation
depth corresponds to an error in absolute ranging of less than 4µm for mL = 7 and
L = 5 cm, excluding additional errors due to calibration and noise.

As shown in the two lower sketches of Figure 4, the design is sensitive to additional
ghost beams generated at other surfaces. The reflections 3 and 4 especially can lead to
relevant non-linearities, as discussed below. Reflections 5 and 6 are to some degree sup-
pressed, because they would enter the right cube with an orthogonal circular polarisation.
All of these zero-degree reflections not happening at surface 8 are not required to enable an
on-axis design and could be suppressed with additional modifications and more complex
topologies of the quasi-monolithic component. A variant that retains the on-axis design
but is specifically adjusted to reduce the influence of reflections 3, 4, 5 and 6 is sketched
in Figure 8. The parasitic beams have an intentional angle deviation and a significantly
reduced interferometric beat signal amplitude, should they end up on the photodetector.

4

3
6

5

N

E

(a) (b)

origin of ghost beam reflectance optical contact

(c)

Figure 8. Shown are sketches of an alternative QMC design that employs intentional wedge angles to reduce the influence
of ghost beams 3, 4, 5 and 6, as depicted in Figure 4. The wedges can either be realised by machining more complex shapes
than right angle prisms or by including additional wedged windows with matching refractive indices that are bonded at
the marked surfaces with very low transmissivity contacts. (a) shows the propagation of the nominal beams. (b) shows
the deflection achieved for ghost beams 3 and 4. (c) shows the deviation achieved for ghost beams 5 and 6. An optimised
design would need to take the optimal birefringence of the waveplate and the changing refractive indices into account.

To complete the analysis for the design based on perpendicular external surfaces,
we analyse the effect of ghost beam 3 (beam 4 would behave very similar, but its power
depends on the refractive index mismatch and the bonding technique). To simplify the
description, we assume from here on that the differential delay is negligible τ1 ≈ 0, we
define a characteristic optical path length d = 2× 5 mm · nglass ≈ 15 mm for beams that
bounce through the cube once and we discard any secondary ghost beams. If the already
interfered signal is reflected back into the interferometer, we have to add a total of four
additional beams to our analysis. We name these beams according to their travel paths;
for example, the beam E3

NN is the original beam EN, reflected at surface 9, then split at
surface 10 and reflected back at surface 7 to the interference point. The effective delay for
this beam in our notation is τNN = τN + τd = 0 + d/c, with c being the speed of light, and
the amplitude is |E3

NN| = |EN| · r/2 = 0.025. The interference between all eight relevant
beams will consist of 28 beat signals. The matrix in Table 1 lists the effective modulation
depth for each beat signal and the values below the diagonal include a negative sign if the
beat has a phaseshift of π at the indirect output.

With the previous analysis we covered all signals of the upper left quadrant of this
matrix. The lower right quadrant produces beat signals at the same modulation depth;
as covered by our fit algorithm, their phases should by largely coherent and the corre-
sponding beat amplitudes are in the order of 0.1%. Critical additions are the beat signals
in light gray that contain a delay corresponding to the characteristic length d, which is
md = mL · d/(2L) ≈ 0.15mL for a long arm length of L = 5 cm. For mL = 7 this gives
md = 1.05. Since the phase of each of these eight critical beat signals might have some
additional, relatively constant phase contribution, we evaluated their impacts individually
by adding only one of them add a time to P±S,L,1,2 and measuring the non-linearity for
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different additional phase values and values of mL = 6 to 8. The maximal δ determined for
each beat signal is shown in Table 2, together with the effective modulation depth values
for mL = 7.

Table 1. Summary of all relevant beat signals when considering reflections 1, 2 and 3. Parasitic signals with an amplitude of
r are highlighted in gray, signals with an amplitude of r/2 are highlighted in light gray and all other parasitic signals have
an amplitude ≤ r2. Some signals are suppressed using balanced detection, because they have different signs in the direct
(above the diagonal) and indirect (below the diagonal) output port, just like the nominal signal.

mx EN EE E1 E2 E3
NN E3

NE E3
EN E3

EE

EN L ≈ 0 +2L d +(d + L) d + L +(d + 2L)

EE −L L L +(L− d) d +d d + L

E1 ≈ 0 L 2L +d d + L +(d + L) d + 2L

E2 −2L L 2L +(2L− d) L− d +(L− d) d

E3
NN d −(L− d) −d −(2L− d) +L L +2L

E3
NE −(d + L) d d + L L− d −L ≈ 0 L

E3
EN d + L −d −(d + L) −(L− d) L ≈ 0 +L

E3
EE −(d + 2L) d + L d + 2L d −2L L −L

Table 2. Parasitic beat signals from reflection 3 with an amplitude of r/2; those with changing sign
are not suppressed using balanced detection. The modulation depth of each beat is shown together
with the maximum non-linearity factor extracted by applying the fit function Pfit,BD,2m.

x E3
NN E3

NE E3
EN E3

EE

EN d ±(d + L) d + L ±(d + 2L)

EE ±(L− d) d ±d d + L

mL = 7 E3
NN E3

NE E3
EN E3

EE

EN 1.05 ±8.05 8.05 ±15.05

EE ±5.95 1.05 ±1.05 8.05

δmL=7 E3
NN E3

NE E3
EN E3

EE

EN 3.6× 10−5 ±5.2× 10−4 3.4× 10−4 ±3.8× 10−4

EE ±5.0× 10−4 3.6× 10−5 ±5.6× 10−5 3.4× 10−4

As expected from our previous analysis, the beat signals further away in modulation
depth contributed less, and the tones that were suppressible via balanced detection also
had a slightly weaker influence when compared to other signals at the same modulation
depth. Figure 9 shows the Nl = 1 to Nh = 10 Bessel functions of the first kind together
with vertical lines indicating the modulation depth of the relevant beat signals. Luckily,
even beat signals close to the nominal modulation depth (±md) were to some degree
orthogonal. By adding the effect from each of these eight parasitic beat signals, we arrived
at a conservative, total non-linearity of δ < 0.0027 (for mL = 6.5, the worst case), which is
roughly an order of magnitude below the amplitude of each of these beats of r/2 = 0.025.
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Figure 9. Shown are the Bessel functions of the first kind for the first 10 harmonics. The vertical lines indicate the modulation
depth values that correspond to the major parasitic beat signals present when considering ghost beams 1, 2 and 3 for mL = 7.

Since the ratio of d and L can be adjusted, one could study other combinations that
might be more or less susceptible to these couplings. Applying even more complex fit
algorithms is of course also possible, but the number of extracted parameters (seven for
Pfit,BD,2m) should generally not exceed the number of harmonics analyzed (18 for Pfit,BD,2m),
so overall increases of modulation depth and harmonics analyzed might be required.
Future iterations and extension of the fit could also make use of more correlations within
the signal—for example, fixed amplitude and phase relations—to effectively reduce the
number of fit parameters.

Estimating the coupling of ghost beams that are caused by polarisation leakage re-
quires a different analysis not covered here and will also depend strongly on the quality of
the optics, coatings and alignment. The most dominant polarisation ghost beams will create
beats at the nominal modulation depth, making them non-suppressible by extending the fit.
Since such beats will follow the nominal phase, to first order their coupling is expected to
be, at most, a second order effect. An experimental study of a similar combination of a po-
larising beamsplitter and a quarter waveplate for LISA found no measurable non-linearity
within their sensitivity [23]. Comparing this to the QMC is, however, not straight-forward
because the interferometer topology is more complex, with the Michelson beamsplitter
(surface 10) as a crucial difference. Practically speaking, one can try to add additional optics
to clean the output beams if polarisation leakage should become a dominating effect.

For actual implementations, we recommend operating the optical head first in a
calibration mode in which the long arm beam is dumped. In this mode, only beat signals
between EN, E1 and ENN will be present, and one can, for example, increase the laser power
to enable a higher signal-to-noise ratio measurement of the parasitic beats that are otherwise
dominated by the main measurement beat and readout noise. From such a measurement,
the modulation depth m1, md and the corresponding electric field amplitudes might be
estimated with higher accuracy before operating with a test mass, and in turn, this also
quickly reveals the quality of the anti-reflective coatings and might indicate whether other
parasitic beats are present.

The noise sources neglected in the above analysis will always limit the displacement
readout noise floor to similar levels as in previous implementations, if the same opto-
electronics and power levels are used, to about 230 fm/

√
Hz [12]. Without expanding

the fit algorithm, non-linear noise is created in our design for large signal dynamics that
are dominated by E1 and E2 and scales linearly with the square root of the dominating
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parasitic reflectivity R. For R ≤ 0.25% the extended fit algorithms bring the maximum non-
linearity caused by ghost beams down to a level of δ < 3× 10−3, which is slightly below
the current experimentally demonstrated level of δ ≈ 1× 10−2 achieved with an off-axis
topology [12]. Larger values of R therefore reduce the phase measurement spurious-free
dynamic range but might be acceptable if the test mass motion is sufficiently small during
times in which the full phase readout sensitivity is required. Deviations of the beam
splitter cube reflectivity from 50% will reduce the suppression of ghost beams provided by
balanced detection, but small amplitude differences in both output ports can be accounted
for in post-processing [21].

4. Conclusions and Outlook

Realising on-axis optical heads for DFMI is an interesting approach to enable picometer-
level displacement and nano-radian tilt sensing and micrometer-accuracy absolute ranging
that can be realised using compact QMCs. Major advantages are the extended longitudi-
nal measurement range and fixed beam-angles, which will simplify alignment strategies,
especially if several sensors are to be used to probe a single test mass. One expected
disadvantage of our design, non-linearity due to zero-angle generation of ghost beams, can
be suppressed by extending the readout algorithm of DFMI. Balanced detection and fitting
of higher modulation depth signals were shown to be effective extensions that reduce
ghost-beam-induced non-linearity in simulations to levels below 0.3% for a straightforward
and below 0.01% for an extended design when several parasitic signals with a relative
amplitude of ≈5% were present.

The complexity and orthogonality of DFMI beat signals also provides opportunities
for other multiplexing and ghost beam suppression schemes, and reducing non-linearities
due to the laser modulation [11]. The reduction in optical head size and its other benefits
are paid for by increasing the phase extraction complexity and computational effort. The
increase in computation time between the initial fit, Pfit, and the final fit, Pfit,BD,2m, was
less than four in our simulations. Laboratory tests of such sensors and real-time algo-
rithm implementations will reveal the compatibility of such approaches for any given
application; they will give insights into effects caused by polarisation leakage; and further
improvements in the signal processing and phase estimation might compensate for the
computational effort as well. It is worthwhile to conclude with the fact that any real DFMI
interferogram contains a multitude of information, which makes optimal phase extrac-
tion an arithmetical and numerical challenge that is, however, rewarded with additional
information that could not be extracted in homodyne or heterodyne interferometers.
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