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Abstract: The spring-loaded inverted pendulum model is similar to human walking in terms of the
center of mass (CoM) trajectory and the ground reaction force. It is thus widely used in humanoid
robot motion planning. A method that uses a velocity feedback controller to adjust the landing point
of a robot leg is inaccurate in the presence of disturbances and a nonlinear optimization method
with multiple variables is complicated and thus unsuitable for real-time control. In this paper, to
achieve real-time optimization, a CoM-velocity feedback controller is used to calculate the virtual
landing point. We construct a touchdown return map based on a virtual landing point and use
nonlinear least squares to optimize spring stiffness. For robot whole-body control, hierarchical
quadratic programming optimization is used to achieve strict task priority. The dynamic equation is
given the highest priority and inverse dynamics are directly used to solve it, reducing the number of
optimizations. Simulation and experimental results show that a force-controlled biped robot with the
proposed method can stably walk on unknown uneven ground with a maximum obstacle height of
5 cm. The robot can recover from a 5 Nm disturbance during walking without falling.

Keywords: spring-loaded inverted pendulum (SLIP); stiffness optimization; uneven ground walking;
hierarchical quadratic optimization

1. Introduction

A spring-loaded inverted pendulum (SLIP) can be used to predict the spatial trajectory
of the center of mass (CoM), energy wave, and ground reaction force during human
walking, running, jumping, and other motions [1]. Many animal and human motion
experiments have confirmed the good predictive performance of the SLIP model [2,3].
Geyer et al. determined the relationship among the landing angle, spring stiffness, and
total energy of the SLIP model [4]. The SLIP model has unique physical characteristics
and is thus convenient for generating real-time trajectories. The CoM velocity can be
controlled by simply adjusting the landing point or touchdown angle. Raibert calculated
foot placement based on a CoM-velocity feedback controller to adjust the trajectory and
developed a legged robot with a running gait, with evaluation conducted in a simulation
and a physical environment [5]. RHex, ATRIAS, and Minitaur are designed with physics
elastic leg and direct drive joint to realize low inertia leg and torque control joint. The SLIP
model is used to design the leg motion strategy, and realized uneven ground movement
of the physical robot [6–8]. Compared with the linear inverted pendulum model, the
elastic motion characteristics of the SLIP model allow it to greatly reduce the complexity
of trajectory planning. The SLIP model has many advantages for simulating biological
gait, real-time trajectory planning, and disturbance rejection. The flight phase in running
gait is relatively simple, so the corresponding technology is relatively mature. In contrast,
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there are still some problems regarding walking gait, especially for walking on unknown
uneven ground.

For walking gait, Rummel et al. analyzed the virtual spring stiffness range in stable
walking with a double-support phase [9]. To support leg length contraction during walking,
Rezazadeh et al. designed a leg extension and contraction control strategy combined with
velocity decoupling control to achieve high-speed walking for the ATRIAS robot [10].
Schwind et al. improved the feedback control rate of the forward speed in a decoupling
controller based on a stability analysis of the bouncing fixed point [11]. Andrews et al.,
Clark et al., and Schmitt et al. designed a linear update method that uses the current
touchdown angle, flying angle, and target touchdown angle to improve the stability,
balance, and self-recovery ability of the SLIP system on uneven ground [12–14]. Wu et al.
extended the two-dimensional inverted pendulum to three dimensions and proposed a
time-based deadbeat controller to achieve disturbance recovery and error tracking [15].

Previous research has already shown that a variable stiffness in the support leg can
help in controlling energy of the SLIP. Jafarian et al. analyzed the walking performance with
different spring stiffness [16]. Ghorbani et al. proposed an event-based time-independent
controller, based on geometric progression with exponential decay in the kinetic energy
error, which adjusts the stiffness of the support leg spring to control the injected energy
to the biped in tracking a desired speed at the midstance [17]. However, this method
can only effectively control the total energy, and it is difficult to accurately control the
speed and height of the robot in all directions. Wensing et al. constructed an apex return
map combined with human body motion cadence and standing time data, used nonlinear
optimization to get different spring stiffness and touchdown angle offline, and used a first-
order approximate deadbeat controller to achieve trajectory tracking to achieve high-speed
periodic step running [18]. Liu et al. added ground height information and a double-
support phase and extended the above method to uneven ground walking; however, the
optimization process was still offline [19]. The method based on stiffness optimization
of the SLIP mainly faces three problems. Firstly, there is no flight phase in the walking
process, the swing leg cannot move to the desired foot placement in advance during the
flight phase, and the swing leg cannot land with the slack length, so it is difficult to estimate
the next touch down state. Secondly, since there is no flight phase, the apex state cannot
be selected as the discrete state of regression mapping, the reselected state should include
the state after landing and have enough time for the swing leg to move. Thirdly, the
optimization method has a long computational time, so it needs to be accelerated to achieve
the calculation within a control period.

The SLIP model provides only the CoM trajectory of the simplified model. Therefore, a
lot of studies perform control mapping from the simplified model to the high-dimensional
robot model. Khatib used the inverse dynamics method to realize mapping from the
operation space control to the joint space [20]. The whole-body inverse dynamics method
has become popular in humanoid robot control. Hutter et al. treated robot floating-based
inverse dynamics as a quadratic programming (QP) problem and provided a method
for solving the constraints [21]. Feng et al. applied whole-body inverse kinematics QP
optimization based on whole-body inverse dynamics and realized robot force-position
control [22]. Dai et al. considered momentum and angular momentum as the control targets
and used QP to solve the central dynamics tracking problem [23]. However, the numbers
of QP control targets and optimization variables are large, making the computational cost
high. In addition, with the traditional QP method, it is difficult to guarantee absolute
priority because tasks have different importance levels. Kanoun et al. decomposed the
original QP problem into a sequence of QP problems according to priority to ensure
absolute priority [24]. Inspired by [24], the present study improves hierarchical quadratic
programming (HQP). The robot dynamics equation is rewritten as an optimization goal and
given the highest priority. This eliminates the equality constraints for solving a sequence of
QP problems.
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Therefore, this paper mainly improves in these aspects, which are also the main
contributions of this paper.

(1) The velocity feedback controller was used to calculate the foot placement in every
control period, which is respectively used to predict the next landing state and
generate the actual trajectory of the swinging leg.

(2) The touch down state is taken as the regression mapping state, so that the spring
stiffness can be updated immediately after the uneven ground disturbance.

(3) The optimization variables are reduced. Only the spring stiffness and damping
coefficient are optimized to speed up the calculation. Meanwhile, the spring stiffness
is divided into two parts based on midstance to increase the solving space.

(4) HQP is used to realize the mapping of the simple robot model to the whole-body
dynamic model. Whole-body motion control is realized with a strict priority of tasks.

A block diagram of the proposed control method is shown in Figure 1. The control
system is divided into a discrete part and a continuous part. The discrete part is triggered
by the swing leg touchdown and calculates the spring stiffness and damping coefficient
through optimization. The continuous part control frequency is 500 Hz. Its main func-
tion is to achieve the desired trajectory generation, task space control, and whole-body
motion control.
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.
q are the joint position and

velocity, respectively, and τ is the joint torque.

2. Trajectory Optimization of Center of Mass
2.1. Spring-Loaded Inverted Pendulum Model

The SLIP model consists of a mass point and two massless virtual spring legs, as shown
in Figure 2. For each step during walking, the legs are divided into the support leg and the
swing leg. The coordinates of the ends of the support and swing legs are Pst =

(
xst, yyst

)
and Psw = (xsw, ysw), respectively. The CoM coordinates are Pcom = (xcom, ycom). The
world coordinates are fixed to the support foot. In the equations below, k is the virtual
spring stiffness, b is the damping coefficient, lslack is the slack length of the spring, and lst is
the actual length of the stance leg.

Since it is difficult to obtain an analytical solution for the asymmetric SLIP system,
numerical integration was used to describe the CoM motion.

lst =

√
xcom(i)

2 + ycom(i)
2 (1)
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[
Fx(i)
Fy(i)

]
=
(

k ∗ (lslack − lst) + b ∗
( .

lslack −
.
lst

))
·
[

xcom(i)
ycom(i)

]
· 1
lst

(2)[
ddxcom(i)
ddycom(i)

]
=

1
m

[
Fx(i)
Fy(i)

]
+

[
0
−g

]
(3)
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Figure 2. Spring-loaded inverted pendulum (SLIP) model of a humanoid robot.

2.2. Touchdown Return Map

Our goal was to control the SLIP model from one step to the next by varying foot
placement and spring characteristics. The walking process can be simplified by defining a
Poincaré map to convert the system into a series of discrete states. Raibert [5] used the apex
state before touchdown as the control state variable whereas Vejdani [25] used the vertical
leg orientation state in the mid support period. For both of these methods, it is difficult
to model the state changes caused by uneven ground. Therefore, the CoM state during
touchdown was used as the control variable in the present study, as shown in Figure 3.
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The robot state variables are the CoM velocity in two directions and the height in the
vertical direction. The state variable of the Poincaré map is defined as Xn = [vn

x , vn
y , hn]T

in step n and Xn+1 = [vn+1
x , vn+1

y , hn+1]
T in step n + 1. The virtual spring stiffness

and damping are divided into two parts according to the midstance, which is based
on an estimate of the duration of the support period. The input vector is selected as
u = [ks1, ks2, b1, b2]

T , where ks1 and ks2 are the spring stiffness and b1 and b2 are the spring
damping coefficient. The discrete return map can be expressed as

Xn+1 = f (Xn, u) (4)

To reduce optimization complexity, foot placement is not used as an optimization
variable; instead, it is directly generated by the CoM feedback controller. In the equation
below, ξx represents the desired distance at touchdown between the swing foot and CoM
in the x direction. Vx and Vx

d are the actual velocity and desired velocity in the x direction,
respectively, and

∫
Vx

n+1dt and
∫

Vx
adt are the desired position and actual position of the

CoM relative to the world coordinate system in the x direction, respectively. Kvx, Kpx, and
KIx are the velocity feedforward coefficient, velocity feedback coefficient, and position
feedback coefficient, respectively. Note that this equation was applied during the whole
support phase and that the result for each control period is used as the expected foot
placement in the period.

ξx = Kvx·Vx
a + Kpx

(
Vx

a −Vx
n+1
)
+ KIx

(∫
Vx

adt−
∫

Vx
n+1dt

)
(5)

To predict the footing point and pass over obstacles, we set the swing leg length. Tsw
is defined as the estimated time of one step, lret is defined as the maximum contraction of
the swing leg, and lslack is defined as the final length. The support leg length at the last
moment of the previous step was used as the initial length of the swing leg. The length of
the swing leg during one step can be obtained via sixth-order interpolation. Given that the
ground height was unknown, the next step landing height could not be obtained in the
prediction process. Here, we define virtual foot placement, for which it is assumed that the
height is the same as that in the previous step, as shown in Figure 3. When the swing foot
height is the same as the virtual foot height, the robot has reached step n + 1.

ysw = yst (6)

2.3. Stiffness Optimization

Given an initial state Xn at the current touchdown time and the desired state of the
next touchdown time, the mapping relationship of f can be obtained using Equations
(1)–(6). The optimized form of the problem can be expressed as Equation (7). An additional
inequality constraint was added to ensure that the robot leg length does not exceed the
slack length during the solution process (i.e., the robot does not have a flying phase). The
optimization equation can be solved within 2 ms using the lsqnonlin function in MATLAB.

min
u
‖Xn+1

d − f (Xn, u)‖2

st. l < lslack
(7)

2.4. Real-Time Trajectory Generation

Using Equation (7), we calculated the spring stiffness and damping coefficient required
to reach the desired state. In the actual walking process of the step support phase after
the robot touched the ground, we used Equations (6)–(8) to generate the reference CoM
trajectory of the current step based on the updated spring parameters in each control cycle.
The foot placement of the swing leg was obtained using Equation (5) according to the
actual velocity, which allows the foot placement to be adjusted in real time. When the
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virtual landing point is lower than the actual landing point, the swing leg touches down
early and the robot switches to the next step. When the virtual landing point is higher than
the actual landing point, the swing leg touches down late and the robot continues to move.
In this period of time, the current spring parameters were used to generate the robot CoM
trajectory. The state error generated at this stage is controlled in the next step.

To verify the proposed method, we used the SLIP model to perform a numerical
simulation in MATLAB. The simulation was running in the computer with Intel(R) Xeon(R)
W-2145 CPU@3.70GHz. The parameters were m = 10 kg and lslack = 0.5 m. The control
period was 2 ms. The robot walked a total of 20 steps in the simulation. To verify perfor-
mance at different heights and velocities, the height of the CoM in the first 10 steps was set
to 0.41 m and that in the last 10 steps was set to 0.40 m. Figure 4a,b shows that the model
can well track the desired velocity and height. Figure 4c,d shows the spring stiffness and
damping coefficients optimized during each step of the walking process. When the robot
accelerated, the stiffness value of the virtual spring ks1 was less than that of the spring
ks2. This is because the spring compression was the same before and after vertical leg
orientation and the energy of the system was increased by the increase in spring stiffness,
resulting in acceleration. When the robot decelerated, the situation was reversed.

Figure 4. Numerical simulation results. (a) Discrete height, (b) discrete velocity, (c) discrete spring stiffness, and (d) discrete
damping coefficient.

3. Whole Body Control Based on Hierarchical Quadratic Programming

Whole-body robot control based on QP and weights has two problems. One is that
the robot joints have many degrees of freedom (DoFs) and the task space is large, resulting
in complicated calculation for QP optimization. The other is that it is difficult to achieve
absolute priority between different tasks using weights to assign task priorities. Therefore,
HQP is used to achieve fast and priority-based control by gradually reducing the solution
space and solving a series of QP problems according to priority.

3.1. Hierarchical Quadratic Programming

HQP optimization is usually used to solve whole-body dynamics control. A linear
cost function can be transformed into a standard quadratic programming problem [20].
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Here, the form of the optimization function is modified. First, equality constraints are
added to the cost function. Second, a slack factor is added to the inequality constraints to
ensure that each optimization has a solution. The optimization form is as follows:

min
v,X

‖AeqX− beq‖2 + ‖v‖2

st. AueqX− bueq ≤ v
(8)

where X is the state variable to be solved and v is the slack factor. A2
eq =

[
A1

eq; A2
eq; · ; An

eq

]
,[

b1
eq; b2

eq; · ; bn
eq

]
,
[

A1
ueq; A2

ueq; · ; Am
ueq

]
, and

[
b1

ueq; b2
ueq; · ; bm

ueq

]
represent the coefficients of

equality constraints and inequality constraints, n and m are the numbers of equality and
inequality constraints, respectively. It should be noted that Ai

eq could be the smallest unit of
a task, such as the position of the CoM in the x direction, or a combination of multiple tasks,
such as the position and posture of the swing foot. A1

eq to An
eq are arranged in descending

order of task priority.
For the highest-priority tasks A1

eq and b1
eq, the following equations were solved using

QP to obtain a solution X∗1 that satisfies the highest-priority tasks, which can be obtained
by solving the following equations with QP.

min
v,X∗1

‖A1
eqX∗1 − b1

eq‖2 + ‖v‖2

st. AueqX∗1 − bueq ≤ v
(9)

The solution of the (i + 1)-priority task is denoted as X∗i+1; its value should not affect
the result of higher-priority tasks.

X∗i+1 = X∗i + zi·ui+1 (10)

The linear operator satisfies
[

A1
eq; A2

eq; · ; Ai
eq

]
·zi = 0, so all X∗i+1 possible solutions

can satisfy the higher-priority optimization goal. Note that the optimization variables of
the QP optimization at this priority are ui+1 and X∗i+1 is calculated using Equation (10).

min
v,ui+1

‖Ai+1
eq
(
X∗i + zi·ui+1

)
− bi+1

eq ‖2 + ‖v‖2

st. Aueq
(
X∗i + zi·ui+1

)
− bueq ≤ v

(11)

The result X∗n obtained at the lowest priority is the final optimization result. The
optimization problem is solved according to priority from high to low priority. A lower-
priority solution is searched for in the null space of the higher-priority solution. As the
priority decreases, the size of the null space decreases, and thus the solution process
becomes faster.

3.2. Robot Configuration and Dynamics

The DoF layout of the humanoid robot used in the present study is shown in Figure 5.
There are seven DoFs in total, including two DoFs for each leg and three floating DoFs. An
inertial measurement unit (IMU) is installed on the upper body of the robot to measure
its posture and acceleration. The robot is point-footed. A pressure switch is installed at
the end of the foot to detect the contact state. The floating coordinate system is established
and fixed to the waist of the robot. qb =

{
qbz, qbx, wby

}
is the generalized joint variable

of the floating base; it represents the position and Euler angle of the floating base viewed
in the world coordinate frame. qj = {qr1, qr2, ql1, ql2} are the generalized coordinates of
the active joints of the right and left legs. The robot’s active joints and floating joints
are denoted as its generalized joint coordinate variable q =

{
qb, qj

}
, which is a 7 × 1



Sensors 2021, 21, 1696 8 of 17

vector. Each link of the robot has mass m =
{

mb, mthigh, mshank, mthigh, mshank

}
and inertia

I =
{

Ib, Ithigh, Ishank, Ithigh, Ishank

}
.

The dynamics of robot can be expressed as D(q)
··
q + h

(
q,
·
q
)
= Bτ + JT(q)F

J(q)
··
q +

·
J(q)

·
q = 0

(12)

where τ ∈ R7×1 is the torque of the generalized joint and F ∈ R4×1 is the contact force and
torque of the two feet. The contact force of the swing leg is set to zero during the single-
support phase. D(q) ∈ R7×7 is the inertia matrix, B ∈ <18×18 is the joint torque mapping
matrix, and JT(q) ∈ R7×4 is the Jacobian matrix of the contact point. h

(
q,
·
q
)
∈ R7×1 is the

matrix of the centrifugal force, Coriolis force, and gravity.
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Figure 5. Force-controlled humanoid robot. An inertial measurement unit (IMU) is installed inside
the chest and a contact switch is installed for each foot. Each leg has 2 degrees of freedom (DoFs). (a)
Simulation model and (b) DoF configuration.

3.3. Task Space Controller and Constraint

At the kinematics level, the walking tasks of the humanoid robot are mainly divided
into the following control tasks: the position of the CoM, the position of the swing leg,
and the upper body posture. At this level, there is no need to consider the dynamics
of the robot. For the above tasks, a proportional-derivative feedback and feedforward
controller was used to get the acceleration control values, as shown in Equation (13), where
Pd =

{
pcom, pswing, pposture

}
represents the desired position of the task space CoM, swing

legs, and upper body posture, P represents the actual position, and
··

P∗d represents the output
acceleration of the task space controller.

··
P∗d = kp(Pd − P) + kd

( ·
Pd −

·
P
)
+
··
Pd (13)

Task P is differentiated twice to get the mapping from the task space acceleration to
the joint space acceleration. JP(q) is the Jacobian of P.

JP(q)
··
q =

··
P∗d −

·
JP(q)

·
q (14)

To satisfy the dynamic characteristics of the interaction between the robot and the
actual physical environment during the walking process, the optimization solutions need
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to be limited. For the robot in the present study, the ground contact torque was set to 0 in
the dynamic modeling stage, so there is no need to consider the pressure center constraint.
Joint torque output and friction constraints were added to the optimization solution.{

τmin ≤ τ ≤ τmax
−uFx ≤ Fx ≤ uFz

(15)

3.4. Prioritized Whole-Body Control

To avoid the construction of a contact dynamics model and direct control of the contact

force, the state variables are written as X =
[··
q, τ, F

]T
∈ R18×1. For whole-body robot

control, the robot dynamics equality constraints and the task space control objectives were
included in the optimization cost function. Since the equality constraints of dynamic
equation are the properties of the robot, it is necessary to give dynamics-related items the
highest priority.

The ground contact constraint is given the second-highest priority. For the task space
target, according to the impact on the walking task, the priority is given to CoM tracking,
swing leg tracking, and upper body posture tracking. The optimization coefficient matrix
is shown in Table 1.

Table 1. Equality constraint coefficient matrix.

Priority Description Ai
eq bi

eq

1 Dynamic
A1

eq =[
D(q) −B −JT(q)

]
, b1

eq = −h
(

q,
·
q
)

,

2 contact A2
eq =

[
J(q) 0 0

]
, b2

eq = −
·
J(q)

·
q,

3 CoM A3
eq =

[
Jcom(q) 0 0

]
, b3

eq = −
·
Jcom(q)

·
q,

4 Swing foot, posture
A4

eq =
[

Jswing(q) 0 0
]
,

A5
eq =

[
Jposture(q) 0 0

]
,

b4
eq = −

·
Jswing(q)

·
q,

b5
eq = −

·
Jposture(q)

·
q,

The solution X∗n can be obtained using Equations (8)–(11). Note that the problem in
the solution space of the highest priority can be solved without using QP. With the state
variable containing τ and F, it can be reasonably assumed that τ = 0 and F = 0. These
two variables satisfy the inequality constraints. By substituting them into the dynamic
equation, we can obtain X∗1 as

X∗1 =
[··
q, τ, F

]T
=
[
−D(q)−1h

(
q,
·
q
)

, 0, 0
]T

(16)

The method used in this study more frequently calls QP optimization. However,
the method used here has some advantages. First, each call of QP is used only for part
of the optimization goal; low-priority tasks are searched for in the null space of higher-
priority tasks and thus the search space is gradually reduced. The equality constraint is
eliminated, so a single optimization is very fast. Second, for the highest priority, the results
are directly obtained through inverse dynamics based on reasonable assumptions; that is,
QP optimization is not used. Third, the final optimization results can strictly guarantee
task priority. For each layer of QP optimization, we can solve the optimization problem
using MATLAB’s QP solver quadprog. The HQP problem can be solved within 0.05 ms.

4. Simulation and Experiment

To demonstrate the proposed method for walking on unknown uneven ground, we
performed a simulation and an experiment on a planar robot. The planar humanoid robot
has a total mass of 4.87 kg. Table 2 shows the mass and inertia of the links in the model
and lists the dimensions of the links of the robotic mechanism. The parameters of the left
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and right legs are the same, so only those for one leg are shown. The robot had 4 DoFs and
each joint was driven by a brushless DC motor with a 5:1 gear ratio based on force control.
A six-axis IMU (MPU6000) was mounted at the center of the upper body to measure the
posture and acceleration. A pressure switch was installed on each foot to measure the
contact state of the robot with the ground. The computer with Intel(R) Xeon(R) W-2145
CPU@3.70GHz was used as the robot computing platform.

4.1. Simulation

Simulink in MATLAB2018B and Adams 2018 software were used to verify the pro-
posed methods. We built the robot simulation model in SolidWorks, including rigid bodies
with mass and inertia and force-driven joints. A complex terrain composed of stairs, slopes,
and irregular and rugged roads was constructed. A contact model between the robot and
the road was added. The robot had two joints on each leg (four in total). A free-motion
joint with three DoFs was added between the upper body and the ground. Its measured
value was the output of the IMU. To make the simulation more realistic, Gaussian noise
and a low-pass filter were added to the state values, including joint velocity, IMU data,
and contact force. In the simulation, we used the force sensor to detect the contact state;
the actual robot uses only a pressure switch. The coefficient of friction between synthetic
rubber and concrete was 0.6–0.85, so the friction coefficient was set to 0.7. To verify the
walking ability of the robot with the proposed method on complex terrain without the
effect of driver limitation, the maximum joint torque of the robot in the simulation was set
to be three times that of the actual robot.

Table 2. Model parameters used in simulation.

Description Value

mb 2.088 kg
m1 1.064 kg
m2 0.329 kg
Ib 0.0044 kg·m2

I1 0.0038 kg·m2

I2 0.0028 kg·m2

Lb 0.152 m
L1 0.25 m
L2 0.25 m

To verify the robot’s ability to walk on unknown uneven ground using the proposed
method, we constructed a complex environment composed of multiple terrains in Adams
2018, as shown in Figure 6, including two steps going up and two steps going down
(each 5 cm high), upward- and downward-sloping ramps with an incline angle of 21◦,
an undulating surface, and an irregular rough surface. The ratio of the maximum terrain
height in one step to the robot leg length was 0.18. In the simulation process, the robot
accelerated to 0.3 m/s in three steps, and then kept the velocity of 0.3 m/s to move forward.
The desired height of the CoM was set as 0.40 m during support foot switching. The
height of 0.45 m when the robot is standing was set as the slack length of the spring. In
optimization, the initial spring stiffness and damping coefficient were set at 20,000 N/m
and 100 Ns/m. The joint torque limit was set to 100 Nm. The CoM acceleration limitation
was set as 10 m/s2 and 8 m/s2 in the x and y directions. Spring stiffness, damping, length,
and CoM velocity were recorded during the walking process. The parameter values used
in the simulation are shown in Table 3.
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Table 3. Weights and gains used in simulation.

Description Value

lslack 0.45 m
Tsw 0.3 s

[Kvx,Kpx,KIx] [0.12,0.2,0.1]
[kp_com,kd_com] [[1000,700], [40,65]]

[kp_swing,kd_swing] [[600,600], [35,35]]
[kp_posture,kd_posture] [50,5.5]

Figure 6 shows the walking process of the robot. The robot walked up the stairs at
1.8–3.0 s and down the stairs at 3.0–4.4 s. It walked up the slope at 4.4–8.2 s and down
the slope at 8.2–12.7 s. Finally, it passed over the undulating surface at 12.7–17 s and the
irregular rough surface at 17–20 s. Figure 7a,b respectively shows the spring stiffness
and damping coefficient optimized in each step during support phase switching. The
average spring stiffness was 18,187.6 and 21,555.8 N/m for ks1 and ks2, respectively, and
the average damping coefficient was 129.5 and 178.2 Ns/m for b1 and b2, respectively.
Figure 7c shows the actual length of the virtual spring during walking. During the whole
process, the actual spring length was smaller than the slack length. Figures 8 and 9 show the
step period and step length of each step, respectively. Figure 7d shows that the maximum
velocity error of the robot, which was caused by the unmodeled terrain, was 0.04 m/s. It
was proved that our method could effectively control the CoM velocity of the robot and
tracking the desired velocity.

For a point-footed robot, the walking process can simply be divided into flat walking,
walking up, and walking down. In flat waking, the touchdown time, the foot placement,
and the CoM state of the next touchdown moment are close to the expected value. The
spring parameters and step size show periodicity. When walking down, because the virtual
foot placement was higher than the actual foot placement, the robot needed to move until
it touched the ground under the current parameters. For example, at 4.0 s, the robot
was walking down the stairs, and thus the virtual spring length and velocity increased.
With the difference in the foot placement height of the robot increased, the velocity error
increased; When waking up, the swing leg will touchdown early compared to the desired
trajectory, and immediately enter the next step. The COM accelerated in the second half of
the midstance, so the swing leg touchdown early will cause the velocity to be lower than
the expected velocity. When touchdown, due to the unknown terrain, the CoM cannot be
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controlled precisely to reach the desired state, but all errors can be accounted and controlled
in the current step by reoptimization and will not accumulate in the next step. So, the robot
can overcome the disturbance of uneven ground.
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To verify the performance of the proposed method on robots with different sizes, we
increased the robot height to 1.2 m. The ratio of the maximum terrain height in one step
to the robot leg length was 0.096 and the robot mass was set to 65 kg. The spring model
parameters were changed accordingly. This robot walked in the same environment. The
simulation shows that the proposed method achieved better horizontal velocity control
for a larger robot. The reason is that when the length of the virtual spring is longer, the
spring compression is greater, and the ratio of the maximum terrain height to the spring
compression is smaller, so the energy disturbance to the SLIP model is also smaller. Related
videos can be viewed in the supporting material.

The proposed method achieves good control performance in the presence of an exter-
nal force disturbance in the single-support phase. During the construction of the touch-
down return map, we used Equation (5) to calculate the desired foot placement in each
control cycle to optimize stiffness, and then calculated the desired CoM trajectory based on
the spring stiffness. In the actual walking process, for the foot placement of the swing leg,
the actual CoM velocity (not the desired CoM velocity) was used to calculate the actual
foot placement. When there was no external force disturbance after the robot lands, ideally,
the desired and actual CoM velocity of a single step should be consistent, and the desired
and actual footing points should be consistent. When there is an external force disturbance,
the CoM velocity will be disturbed, and the actual foot placement will be recalculated
according to the actual velocity, so that the CoM velocity feedback controller retains the
effect of real-time velocity control. Previous studies adjusted foot placement [17] using
offline optimization and thus could not adjust it according to actual disturbances during the
single-step support period. On flat ground, the robot with the proposed method walking
at a velocity of 0.1 m/s can quickly recover the desired state without falling if an external
force disturbance with a duration of 0.1 s and a total impulse of 5 Nm was applied during
the single-step support period. Disturbance recovery was achieved via foot placement
adjustment and whole-body dynamics control based on HQP. When the disturbance is
small, the velocity can recover the desired state within the single-step support phase period
via only whole-body dynamics control. When the disturbance is large, the control error of
HQP is transmitted to the foot placement controller. Related videos can be viewed in the
supporting material.

4.2. Experiment

We applied the proposed method to an actual robot for walking on unknown uneven
ground. The joint configuration and structural parameters of the physical robot were
consistent with the simulation model. Each joint consists of an external rotor motor with
a maximum power of 400 W and a 5:1 synchronous belt, and was driven by an ELMO
driver in the current control mode. NUC8i7HVK with intel Core i7-8809G CPU@3.10GHz
was used as the control computer, and Windows-RTX was used as the real-time operating
system of the robot. The six-axis IMU sensor of MPU6050 was installed on the upper
body to measure the velocity and attitude. A push switch was installed on the foot to
detect the contact state between the foot and the ground. The driver, IMU and switch was
communicated with control computer by CANopen with a frequency of 500 Hz. Since
the robot was planar, to avoid falling sideways, we designed a long arm mechanism with
circular motion. The robot was fixed on the end of the arm and it could only move forward
and backward or up and down in a circular trajectory. The circle radius was 2.5 m, as
shown in Figure 10.

The push recovery performance was tested. Since the robot used in this experiment
was two-dimensional, we used a rod that rotates around a fixed axis to limit its movement
in the left and right directions. The robot could move along the circle at the end of the rod
and in the up and down directions. During the experiment, the robot joint torque limit
was set according to the real value. The whole-body controller used in the experiment was
slightly modified compared with that used in the simulation because of differences between
the actual and simulated robots. It is difficult to accurately respond to the desired torque
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command with a high frequency because the actual robot joint force control bandwidth
and control accuracy were limited. Therefore, the optimization item min‖τk+1 − τk‖2 for
smooth output torque was added to the actual robot. This optimization item was given
the lowest priority. The test environment included a 7◦ slope and 2-cm-high steps. Figure
11 shows the walking state of the robot moving over unknown uneven ground. Figure 12
shows the walking state of the robot after it was disturbed by a thrown volleyball. The robot
showed good ability to traverse complex terrain and recover from external disturbances.
The experiment can be viewed in the supplementary materials.
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5. Discussion

In this paper, we applied the proposed method to a two-dimensional planar robot
and showed good walking performance. We selected the state of touchdown moment as
the regression mapping state variable, so that the optimization process can take the state
disturbance at the moment of touchdown into consideration, so that the robot can control
the disturbance and move the swinging leg to the desired foot placement at a complete
walking step. The CoM velocity feedback controller was used to calculate the desired
foot placement and used to estimate the touchdown state of the next step to construct the
regression. The main reason that we do not take the foot placement as an optimization
variable mainly for reducing the computational complexity and retaining the adjustment
ability of the swing leg after the spring parameters are determined is to control the external
force disturbance during the single-step support period. In addition, the spring stiffness in
the single-step support period was divided into two parts by midstance, so that different
stiffness could be applied in the compression stage and the elongation stage to control the
system energy, which improved the optimization solution space. The main feature of the
HQP method used here was the strict guarantee of task priority. In addition to tasks related
to walking stability, it was important for robot operation tasks. For example, grasping tasks
require high position/force control accuracy of the end of an arm in only a certain direction.
The advantage of the method in this paper was that the robot could control the state in
the step after touchdown, while the preview methods need to be controlled by adjusting
the footing point or other parameters in the next step after touchdown. In the process
of walking, the change of foot placement and stiffness was equivalent to replanning the
trajectory and HQP used the whole-body instantaneous dynamics to track and control the
trajectory. We only realized the real-time optimization of the planar robot, and it needed to
consider the real-time calculation if extending the method to 3D. In addition, the spring
stiffness was divided into two parts at midstance, where there will be a sudden change of
the contact force, so the requirements of torque control of the physics robot were higher.
These issues will be further discussed in future work.
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6. Conclusions

We proposed a humanoid robot motion planning and control method based on spring
stiffness optimization and HQP. Walking on unknown uneven ground and push recovery
were demonstrated in a simulation and an experiment. The proposed method could be
divided into two parts, namely discrete stiffness optimization and whole-body control. For
real-time planning, a return map was constructed based on the touchdown moment and the
spring stiffness was divided into two parameters based on the midstance. Foot placement
was calculated using the velocity feedback controller (i.e., it was not an optimized variable).
For whole-body control, the dynamic equations and contact constraints were rewritten as
the optimization cost function. Tasks were prioritized according to importance, with tasks
related to equality constraints given the highest priority. Sequential QP problems were
solved in order of priority, with lower-priority QP problems solved in the higher-priority
QP problem’s null space. A robot with the proposed method covered 5-cm-high stairs, 21◦

slopes, undulating ground with a maximum height of 6 cm, and irregular rough ground in
a simulation. It recovered from an external force disturbance of 5 Nm. In an experiment, a
real robot using the proposed method also displayed a good performance. The method
presented in this paper achieved a good control performance in a planar robot. However,
we can still make improvements in the following aspects. Adding more optimization goals,
such as the contact force and foot placement, to generate a more human-like gait or using
real data of human walking to generate robot walking trajectory through learning and
improve the robot’s ability to perform tasks while walking [26,27].
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