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Abstract: In this paper, a novel and flexible solution for fault prediction based on data collected
from Supervisory Control and Data Acquisition (SCADA) system is presented. Generic fault/status
prediction is offered by means of a data driven approach based on a self-organizing map (SOM)
and the definition of an original Key Performance Indicator (KPI). The model has been assessed
on a park of three photovoltaic (PV) plants with installed capacity up to 10 MW, and on more than
sixty inverter modules of three different technology brands. The results indicate that the proposed
method is effective in predicting incipient generic faults in average up to 7 days in advance with true
positives rate up to 95%. The model is easily deployable for on-line monitoring of anomalies on new
PV plants and technologies, requiring only the availability of historical SCADA data, fault taxonomy
and inverter electrical datasheet.

Keywords: PV plants; self-organizing maps; fault prediction; inverter module; key performance
indicator; lost production

1. Introduction
1.1. Motivation

The implementation of accurate and systematic preventive maintenance strategies is
emerging nowadays as an essential tool to maintain high technical and economic perfor-
mance of solar photovoltaic (PV) plants over time [1]. Analytical monitoring systems have
been installed worldwide to timely detect possible malfunctions through the assessment of
PV system performance [2–10]. Due to the abundance of relevant data, and the difficulty in
modeling many complex aspects of PV plants, statistical methods based on data mining
and machine learning algorithms are recently emerging as a very promising approach
both for fault prediction and early detection. In particular, the recent development of key
enabling technologies and paradigms, most notably Internet-of-Things (IoT)-environments
and machine learning algorithms to handle massive quantities of data, have been recently
applied to monitoring the functioning of PV systems. A large number of scientific papers
have been written to describe how they can be effectively used to timely detect possible
malfunctions through the assessment of an indicator performance, and significant works
on the topic include papers [11–19]. Besides, similar strategies have been also presented in
works that tackle wind farms, see [20,21] with the objective of identifying equipment level
failures, while in this case fewer works can be found for the counterpart for PV plants [22].

1.2. Paper Contribution

Such an abundance of scientific papers witnesses the interest of the scientific com-
munity on this research topic, and the practical importance of developing continuous
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monitoring algorithms. Indeed, in addition to high customization costs and the need of
collecting and transmitting a large number of physical variables, there is a significant
interest in developing automatic, non-supervised and accurate methodologies to perform
such maintenance strategies, and this is the focus of the present paper. Furthermore, with
respect to the aforementioned references, our work does not focus on small-size, usually
roof-top-located, PV panels of few kW power, but rather on large-size PV plants that
provide power at the scale of several MWs. Most importantly, differently from the previous
strategies, we shall show how the maintenance strategies proposed here not only manage
to identify possible malfunctioning conditions, but are also able to predict incipient faults a
few days in advance from when they occur in practice. In particular, this paper describes
a novel and flexible solution for inverter level fault prediction based on a data-driven
approach. The model ability to predict or to recognize anomalous patterns and faulty oper-
ating conditions is here validated off-line for three different PV plants located in Romania
and Greece, for a nominal power of up to 10 MW and a testing window of one year. As we
show, the proposed approach has been used in the different plants of different sizes and
technologies in the same fashion, and in each case it has proven to provide valuable and
accurate failure predictions.

2. Case Studies and Methods

In the paper we shall consider three PV plants, called in the following as plants A, B,
and C, respectively, with an installed capacity ranging between 3 and 10 MW, equipped
with two different inverter technologies, labelled as 1 and 2, as shown in Table 1. Plant A is
located in Romania, whereas plants B and C are in Greece, as shown in Figure 1. Globally,
67 inverter devices have been analysed. More details are given in the following subsections.

Table 1. List of considered PV plants: plant A is located in Romania, whereas plants B and C
in Greece.

Plant Number of Inverter Max Active Plant
Name Inverter Manufacturer Power Nominal

Modules Number [kW] Power [MW]

A 35 1 385 9.8

B 7 1 385 2.8

C 25 2 183.4 4.9

Figure 1. Location of the three considered PV plants, which are denoted as A, B, C. The marker size
is proportional to the installed capacity, which is shown in Table 1.
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2.1. PV Plants Details

Plant A is located in Romania and has an installed capacity of around 10 MW, cor-
responding to 35 inverter modules with a rated output power either of 385 kW AC or
55 kW AC. In the plant both polycristalline and thin film solar panels are installed. The op-
erating facility is able to produce around 15 million kWh per year, corresponding to the
annual energy needs of more than 7500 households, thereby avoiding the emission of over
6800 tonnes of CO2 into the atmosphere per year.

Plants B and C are located in Greece. Plant B is in the Xanthi region and is composed
by strings of thin film solar panels connected to seven inverter modules with a rated ouput
power of 385 kW AC, which globally corresponds to an installed capacity of 2.8 MW. On
average, it is able to produce about 3.6 million kWh per year. The last considered PV facility
is located in the Ilia region and it consists of polycristalline solar panels producing around
6.15 million kWh annually. It is equipped with 25 inverter modules with a rated output
power of 183.4 kW AC, which corresponds to an overall installed capacity of 4.9 MW.

2.2. SCADA Data and Alarm Logbooks

The datasets of plants A and B consist of 10 measured signals, as explained in Table 2,
with a sampling time ν of 5 min. Measured signals include both electrical (DC and AC sides)
and environmental quantities (such as the solar irradiance that is acquired by pyranometers,
and temperatures). For plant C, also the internal inverter temperature (Tint) is available.
The signals, collected by sensors installed in the PV facility, are stored in a Supervisory
Control Furthermore, Data Acquisition (SCADA) system. Data are then transmitted to
two higher supervision centers: the Local Control Room of the country of the PV plant,
and the World Monitory Room at the headquarters of the power company managing the
plant under investigation.

Table 2. List of electrical and enviromental signals used as input tags. Tint is only available for
plant C.

Signal Number Signal Type Signal Name Variable Name Unit

1 Electrical DC Current IDC [A]

2 Electrical DC Voltage VDC [V]

3 Electrical DC Power PDC [W]

4 Electrical AC Current IAC [A]

5 Electrical AC Voltage VAC [V]

6 Electrical AC Power PAC [W]

7 Environmental Internal Inverter Tint [°C]Temperature

8 Environmental Panel Temperature Tmod [°C]

9 Environmental Ambient Temperature Tamb [°C]

10 Environmental Global Tilted GTI [W/m2]Irradiance

11 Environmental Global Horizontal GHI [W/m2]Irradiance

The lengths of the historical datasets are different for the three considered plants,
as it is summarized in Table 3, which also shows the number of measured patterns for
each dataset. In particular, it is possible to note that the testing period is always at least
six months long, and in one case one year long, which is convenient to evaluate the
performance of the proposed strategies over different seasons. As it will be described in
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the greater detail in the following sections, a careful pre-processing stage is required to
clean the available data and make them more informative for the training stage.

Table 3. Temporal extension of the data-sets and data used for training and for testing for each PV
plant. The number of measured patterns is also shown (patterns are 10 dimensional for plants A and
B, and 11 dimensional for plant C).

Plant Name Training Period (dd/mm/yyyy) Test Period (dd/mm/yyyy)

A from 20/03/2014 to 30/09/2014
n° of patterns: 55,872

from 01/10/2014 to 30/09/2015
n° of patterns: 104,832

B from 27/10/2014 to 31/03/2015
n° of patterns: 44,640

from 01/04/2015 to 29/02/2016
n° of patterns: 96,192

C from 01/02/2015 to 31/01/2016
n° of patterns: 104,832

from 01/02/2016 to 27/07/2016
n° of patterns: 50,976

In addition to the SCADA data, we also exploit the availability of Operation and
Maintenance (O&M) logs. In this case, the relevant information consists of the start and end
times at which single failure events have been experienced, as well as the specific fault type,
and inverter device suffering the failure. Depending on the plant, this information was
available either through automatic SCADA logbooks, or through manual logbooks where
plant operators manually provided the relevant information. Accordingly, in our model we
have also considered the O&M logs, together with the fault taxonomy which is required
to associate the manufacturer code with the corresponding failure type, description and
severity, which have been used a posteriori to assess the performance of the proposed
strategies. In particular, the logbook has been embedded in our model by matching the fault
classes listed in the fault taxonomy file to the fault occurrences recorded in the logbooks
and associating them with the timestamp of SCADA data. More specifically, a fault of the
kth type is assigned to timestamp tn if the following condition occurs:

tstart,k ≤ tn ≤ tend,k

where tstart,k (tend,k) are the initial (final) instant of the fault event. Once the O&M logs have
been discretized consistently with the SCADA data time line, each timestamp tn has been
labelled according to the fault code occurring in that instant. Simultaneous fault events at
instant tn have been handled according to a prioritization rule, i.e., by labelling tn with the
most severe fault code occurring at that instant and, if necessary, the most frequent fault
in the day D, with tn ∈ D. As a consequence, the resulting time line is labelled with an
integer number, one for each timestamp, corresponding to nominal behaviours (label equal
to 0) or faulty events (label larger than 0). While in principle, the information of the specific
occurred fault was available, yet in this work we only focus on a binary classification
problem where the objective is to discriminate faulty and correct working conditions. Thus,
we have trained our algorithms to recognize faulty working conditions, and not the specific
type of occurred failure.

2.3. Data Pre-Processing

Due to the heterogeneity of the considered physical quantities, the pre-processing
stage has been customized specifically for each tag. In particular, the AC power (PAC)
depends mainly on the solar irradiance (GTI) striking on the PV panel plane and on
the environmental temperature (Tamb). Statistical outliers corresponding to values of
PAC significantly larger than 0 despite low values of the GTI, or viceversa, have been
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removed by implementing a first-order regression of the unknown underlying function
PAC = PAC(GTI) and removing instances that lied far from a linear approximation:

| PAC − (GTI ·m + b) |
GTI ·m + b

> η,

where m and b are the slope and the intercept, respectively, of the linear approximation
computed by means of a least-squares fitting, and η is the threshold set by a trial and
error process, to identify unrealistically far samples. In addition, many signals exhibit a
significant number of not regular data, such as missing or “frozen” samples (i.e., instances
where the signal measured by the sensor does not change in time), or values out of physical
or operative limits, or spikes. Accordingly, a classic procedure of data cleaning has been
carried out to avoid training the algorithms with obviously wrong data. In particular,
as many electrical and environmental signals exhibit daily patterns, days having a large
percentage of missing data have been removed as a whole.

2.4. SCADA Imputation

Since the model, once deployed in practice on-site, must be obviously able to work also
in situations of missing online instances, in a “best-effort” fashion (i.e., as well as possible
given the obvious difficulties of wrong measurements or wrong data transmission), missing
test samples have been imputed according to the classical k-Nearest Neighbors (k-NN)
algorithm. More in detail, the training set has been used as the reference dataset, replacing
missing data with the nearest neighbors according to the Euclidean distance [23,24].

2.5. Data Detrending and Scaling

As different electrical (e.g., PAC) and environmental (e.g., GTI) signals exhibit seasonal
trends, it is convenient to remove such seasonality trends to prevent biased predictions
from occurring. In order to remove the season-dependent variability from input data, a
detrending procedure has been applied by following tailored approaches for each variable.
In particular, the training data of Tmod have been deseasonalized by means of the least-
squares fitting method to infer the best line Tf it against Tamb and selecting only low samples
with low GTI to remove the effect of the panel heating due to sunlight:

T̃mod =
Tmod − Tf it

Tf it

∣∣∣∣∣
GTI≤GTIthr

,

where
Tf it = mT · Tamb + bT

is the fitting temperature, mT is the regression slope, bT is the intercept and
GTIthr = 100 W/m2 is a heuristically determined threshold for the solar irradiance to
identify “low values of the GTIs” that do not give rise to relevant panel heatings effects
(it corresponds to the maximum value of irradiance which does not involve appreciable
heating of the module with respect to the ambient temperature).

All the remaining input variables, apart from DC and AC voltages, have been de-
trended according to a classical Moving Average (MA) smoothing method to compute
the seasonal trend component and applying an additive model for time series decomposi-
tion [25,26].

Finally, input data normalization is performed to avoid unbalance between heteroge-
neous quantities. In particular, we used the standard normalization [26].

3. Methodology

The proposed approach consists in training a self-organizing map (SOM) [27,28]
neural network with the aim to create a model of the nominal behaviour of the system.
For this scope we use an historical dataset, that we denote as training dataset, containing
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only nominal observations, where faulty instances have been removed. The motivation
under this choice is that, as is commonly the case in monitoring applications, most of the
measured data correspond to nominal behaviours, and very few cases of faulty patterns
are usually measured. The usage of supervised learning methodologies, such as Feed-
Forward Neural Networks or Support Vector Machine methods, is not advisable in the
case of strongly unbalanced distributions of correct and faulty patterns. On the other
hand, unsupervised learning methods are more suitable to represent the structure and
the distribution of nominal data. Among unsupervised learning methods, that include
clustering and vector quantization algorithms, SOMs are very convenient as they operate a
map from the original multi-dimensional space to a two-dimensional space preserving the
same topology of the original data (i.e., points that were close to each other in the input
space correspond to cells that are still close to each other in the two-dimensional output
space). Accordingly, SOMs are an excellent candidate when it is necessary to provide an
accurate model of a multivariate distribution of data, and the nonlinear map towards the
output space allows us to introduce a number of very useful tools for data analysis, such
as the measurement of cell occupancy that has been proposed in this work.

In fact, SOMs have been widely used for condition monitoring applications in other
contexts [29,30]. In this manuscript, an original KPI based on the frequency of cells
occupancy has been introduced on purpose for our specific application of interest.

In particular, the trained SOM is used to calculate a parameter for each cell of the
map, denoted as probability of cell occupancy, which represents the number of training
points that are mapped to that particular cell, normalized with respect to the total number
of points. During the monitoring stage, new state observations are presented to the SOM
and are classified as “in control" or “out-of-control". For this purpose, we calculate the
probability of cell occupancy for all the instances measured during the last 24 h, and we
compare it against thpreviously computed probability of cell occupancy. The proceduree is
now illustrated in more detail.

3.1. Self-Organizing Map Neural Network Based Key Performance Indicator: Monitoring of
Cell Occupancy

The SOM output space consists of a fixed and ordered bi-dimensional grid of cells,
identified by an index in the range 1, . . . , D, where a distance metric d(c, i) between any
two cells of index c and i is defined [27]. Each cell of index i is associated with a model
vector mi ∈ R1×n that lies in the same high-dimensional space of the input patterns r ∈ ∆,
where the matrix ∆ ∈ RN×n represents the training dataset to be analysed, containing N
observations of row vectors r ∈ R1×n. After the training, the distribution of the model vec-
tors resembles the distribution of the input data, with the additional feature of preserving
the grid topology: model vectors that correspond to neighbouring cells shall be neighbours
in the high-dimensional input space as well.

When a new input sample r is presented to the network, the SOM finds the best
matching unit (BMU) c, whose model vector mc has the minimum Euclidean distance
from r:

c = argmini{‖r−mi‖}.

In this case we say that the input pattern r is mapped to the cell c. In order to assess the
condition of newly observed state patterns to be monitored, we introduce the following KPI:

KPI(d) =
D

∑
i=1

pi,d
1− |pi,TRAIN − pi,d|
1 + |pi,TRAIN − pi,d|

(1)

where d denotes a test day index, and the probability of cell occupancy during day d is
defined as

pi,d =
Ni,d

Nd
, i = 1 . . . D,
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where Nd = 24 · 60/ν is the total number of samples in a day, and Ni,d is the number of
samples, within day d, that were mapped to cell i. In the same fashion the probability of
cell occupancy in the training phase is defined as

pi,TRAIN =
Ni,TRAIN

N
, i = 1 . . . D

where Ni,TRAIN represents the number of training patterns that were mapped to cell i,
while N is the total number of training samples. It is straightforward that

0 ≤ pi,d ≤ 1, ∀i = 1 . . . D

and
0 ≤ pi,TRAIN ≤ 1, ∀i = 1 . . . D.

As a result, the KPI(d) value defined in Equation (1) is calculated once a day, based
on the analysis of the measurements of the previous 24 h.

If the test samples of the day d being monitored represent mainly nominal obser-
vations, then the corresponding pi,d values shall be close to pi,TRAIN values, that were
calculated using nominal historical observations. In this case the resulting value of the
KPI in Equation (1) tends to 1. Conversely, if the patterns of day d contain abnormal
conditions, then the cell occupancy will be mainly altered, leading to a situation where for
a significant number of cells |pi,TRAIN − pi,d| tends to 1 (pi,d close to 1 and pi,TRAIN close to
0 or viceversa). In this case the resulting KPI value tends to 0.

Table 4. Logic for the generation of the warning levels.

Warning Level Thresholds KPI Derivative Persistence

1 KPI < µ− 3σ <0 1 day
2 KPI < µ− 3σ <0 ≥2 days
3 KPI < µ− 5σ <0 1 day
4 KPI < µ− 5σ <0 ≥2 days

From a physical point of view, the proposed KPI is a robust indicator that is able to
detect changes in the underlying non-linear dynamics of the plant. The normal status
is represented by KPI = 1, while decreasing values represent a deviation from healthy
conditions.

In particular, we have accurately tuned a set of rules and thresholds based on the KPI
values, in order to generate warning levels of different severity, as summarized in Table 4.
The following two thresholds are defined as lower control limits:

thr1 = µ− 3σ,

and
thr2 = µ− 5σ,

where µ and σ represent, respectively, the mean value and the standard deviation of the
KPI values calculated as in Equation (1) using all the training patterns.

The logic of the generation of the warnings takes into account the crossing of the
thresholds, the persistence of the KPI values below the thresholds and the derivative
of the KPI. In particular, a negative derivative, representing a progressive degradation
of the health state of the plant, is a necessary condition for the generation of a warning.
This choice has the effect to avoid the generation of warnings during the positive derivative
of KPI, that usually correspond to a period where the plant is gradually returning to a
normal state after a maintenance intervention. In this way the number of false positives is
greatly reduced.
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4. Results and Discussion

The proposed model has been trained on the training set as specified in Table 3, and in
this section we discuss the outcome of the testing stage. A 20× 20 map was used (D = 400),
with hexagonal cells int the topological space, and the sequential update rule was used to
train the map [27]. Figure 2 shows the a-posteriori calibration of the trained map for the
inverter A.2 of plant A. Each cell of the calibration map is associated with a label related
to the fault class of the patterns that were mapped to that cell most times. Obviously,
in the training calibration map only the nominal class is present, and the obtained map
results to be divided in two clusters related to day (left side) and night (rigth side). The test
calibration map was created using only faulty patterns, yielding the distribution shown in
the right side of Figure 2, where it can be noticed that different kind of faults are mapped
to nearby cells related to day and night regions.

As a result, our system was able to identify a significant amount of failure events,
which we could validate using the available data, and a selection of the most interesting
ones is discussed in more detail in this section.

Figure 2. Calibration of the trained SOM, using training data and test data.

4.1. Plant A

Table 5 lists the most relevant faults occurred on the inverter module A.2 of plant
A in the test period 01 October 2014 to 30 September 2015, i.e., 1 year long. For each
failure, the table reports the specific fault, the time interval until the problem was fixed,
and its severity in a scale from 1 (most critical) to 5 (least critical), as defined by the
inverter manufacturer. According to the alarm logbook, this plant experienced a number
of thermal issues on several different devices which lead to a non-correct heat dissipation.
Such damages led to a production loss estimated in some thousands of euros and required
the replacement of many components of the inverter of plant A in August–September 2015.

Table 5. Main failures occurred on inverter A.2 of plant A in the historical period.

Fault Name Severity (1 to 5) Start Date (dd/mm/yyyy) End Date (dd/mm/yyyy)

AC Switch Open 2 10/10/2014 11/10/2014
AC Switch Open 2 03/11/2014 28/11/2014

DC Insulation Fault 2 09/12/2014 10/12/2014
DC Voltage High 2 11/06/2015 23/06/2015
AC Switch Open 2 24/08/2015 25/08/2015

Figure 3 illustrates, on the top part, the curve of the proposed daily KPI (in blue),
as well as the warning levels triggered by the KPI, with different colours depending on
the severity of the warning, ranging from green (warning level 1—least critical), to red
(warning level 4—the most critical). In order to evaluate the ability of the proposed KPI to
detect anomalous working conditions, we also show in black the normalized number of the
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true faulty instances N̂ f ault that were registered on each day. In particular, the normalized
number of true faulty instances on the d−th day is computed as:

N̂ f ault(d) =
number of faulty instances in day d− 1

Nd
· 100%, , (2)

Roughly speaking, Equation (2) may give rise to value between 0, i.e., no fault observed
in the day, up to 100%, indicating abnormal days with all the Nd instances labelled as faulty.
The two thresholds thr1 and thr2 are also represented by dashed and dotted black curves,
respectively.

Figure 3. Historical case studies for inverter A.2 of plant A. Top plot—Left axis: KPI, as well as the
warning levels and the upper and lower thresholds are shown as a function of datetime; Right axis:
time series of daily number of faults. Bottom plot: TPR, FNR and FPR as a function of datetime.

Additionally, in order to make a quantitative performance evaluation, in the bottom
of Figure 3, it is possible to observe the True Positive Rate (TPR), the False Negative Rate
(FNR), and the False Positive Rate (FPR), as a function of the date. In particular, the TPR
is defined as the ratio of the true positive (faults) with respect to the actual faults (i.e.,
TPR = TP/P); the FNR is defined as the ratio of the false negatives (i.e., faults that were
not recognized as faults) with respect to the actual faults, so that FNR = FN/P; and FPR,
which is defined as the ratio of the False Positives with respect to the non-faults cases (i.e.,
it corresponds to the rate of false alarms). In practice, a faulty sample has been classified as
a TP if at least one warning is triggered in the previous 7 days, otherwise it is classified
as FN. On the other hand, if an alert is raised and no faults occur in the following week,
the corresponding sample is taken as a FP. As can be seen, a clear correlation between the
warning alerts and the actual faults is observed, with the most severe warnings triggered in
correspondence of the most critical days, i.e., those having a higher percentage of registered
faulty instances. Additionally, although the daily generated KPI may introduce a delay in
the generation of predictive alerts, it is effective in minimizing the amount of generated
false positives and false negatives instances, thanks also to the monitoring of the trend
derivative.

In particular, the first critical failure (AC Switch Open), that gives rise to almost 60%
of device faults in a day, is observed on 10 October 2014. The model anticipates the failure
triggering warnings of level 1 on both October 4 and on October 9, with a significant
degradation of the KPI in correspondence of the fault. The same failure occurs again on 3
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November 2014 for a more prolonged number of days (until 28 November 2014), and for
26 consecutive days the SCADA registers almost 100% of daily faults of the device, and
almost no power generation at all. The SOM early detects the anomaly with a remarkable
drop of the KPI from 4 November, triggered by an unexpected zero power generation
for an almost fully sunny day, as shown in Figure 4. However the first sign of abnormal
behaviour had been predicted almost 10 days before with warnings of level 1 occurring
on the 24 and 25 October, and with the KPI well below the first warning threshold thr1.
Furthermore, during the prolonged fault, the KPI notifies the operators with a degree of
criticality that progressively increases up to the maximum level 4, thus strongly advising
the plant operator to proceed with the reactive maintenance action. In particular, as can be
seen in Figure 5, application of the proposed method and timely maintenance interventions
could have led to an energy gain up to roughly 20%.

Figure 4. Pac of inverter A.2 (top) and GTI (bottom) as a function of datetime in the period 20 October
2014–30 November 2014 (plant A). The warning levels are superimposed for convenience.

Figure 5. Left axis: energy ratio with respect to the ideal case with and without the application of the
SOM based model for inverter A.2 of Plant A. The green area represents the maximum energy gain
achievable by enabling it. Right axis: time series of daily number of faults.
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Conversely, it is interesting to note that the proposed method does not trigger any alert
in correspondence of the DC Insulation fault, i.e., an overvoltage across the DC capacitors,
that occurs on 9 December, due to the positive value of the KPI derivative. However, the
last warning of level 4 activated on 4 December would have allowed the O&M team to
plan a maintenance intervention and solve this issue in time. Then, from the beginning of
year 2015 the overall trend of the KPI exhibits a slow but almost constant increase, with
some alerts up to level 2 that occur in correspondence, or even ahead, of some minor, yet
actual, faulty events.

The second most severe failure starts on the 11 June 2015 due to an overvoltage
across the bulk capacitors of the DC/DC converter. Remarkably, also in this case the SOM
realizes of the anomalous behaviour already on 6 June, and triggers a first warning of
level 1. Additionally, a sudden KPI drop is observed in correspondence of the failure, with
warnings generated up to level 4. After this failure, the nominal behaviour is restored
and the model does not generate any alert until the end of August 2015, when the model
predicts an anomaly on 23 August, which is followed by an actual registered fault that
occurs the following day.

The performance over the whole test set are remarkable, with a TPR exceeding 93%
(FNR < 7%) and a FPR of almost 13%.

4.2. Plant B

Table 6 lists the most critical failures occurred on inverter B.1 installed in plant B in
the test period of interest from 1 April 2015 to 29 February 2016, whereas in Figure 6 the
proposed KPI, the warning levels, as well as the daily number of faults are plotted as a
function of time for the same device. In the first part, the KPI is almost always above the
safety threshold and does not detect the DSP communication error between the inverter
internal control devices that occurs on 16 July 2015. After that, the KPI starts to decrease
and realizes of an incoming failure on 26 July, generating alerts up to level 2. A real failure
occurs indeed on 6 August, due to an internal sensor error in the measurement of the
leakage current on the DC side. A consequent maintenance action is then scheduled to
verify the issue.

Figure 6. Historical case studies for inverter B.1 of plant B. Top plot—Left axis: KPI, as well as the
warning levels and the upper and lower thresholds are shown as a function of datetime; Right axis:
time series of daily number of faults. Bottom plot: TPR, FNR and FPR as a function of datetime.
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Then a new fault is predicted on August 10, with warnings triggered up to level 2. An
overvoltage across the bulk capacitors on the DC side occurs indeed on 13 August, and it
lasts almost 13 days, causing also the replacement of the inverter. The warnings triggered
by the indicator during the failure are thus explained with the lack of data in these days.

From 24 August, the KPI starts signaling new faulty conditions, with alerts that
progressively become more critical, up to level 4, in correspondence of an internal sensor
fault that is registered by the system on 7 September. The consequent inspection of the
O&M operators confirmed the fault and caused the replacement of a cooling fan in the
inverter. Similarly, from 14 September, the KPI starts again progressively to decrease with
new warnings that get up to level 4, when a failure is again registered on 23 September. On
that day, a new corrective intervention is scheduled which causes the substitution of the
inverter cooling pump. Then the KPI recovers safe values, with some alerts generated in
correspondence of minor faulty events, with very few missed detections or misdetections.

Furthermore, for the second PV plant, the KPI performs in an accurate fashion, with a
TPR exceeding 98% (FNR < 2%) and a FPR equal to about 18%.

Table 6. Main failures occurred on inverter B.1 of plant B during the testing period.

Fault Severity Start Date End Date Notes
Name (1 to 5) (dd/mm/yyyy) (dd/mm/yyyy)

Communication 2 16/07/2015 16/07/2015 None
Error

Internal 2 06/08/2015 07/08/2015 Fault Log
sensor fault downloading

DC Voltage 2 13/08/2015 25/08/2015 Device B.1
High replaced

Internal 2 07/09/2015 07/09/2015 Cooling fan
sensor fault replaced

Internal 2 23/09/2015 23/09/2015 Cooling pump
sensor fault replaced

4.3. Plant C

Table 7 lists the most severe failures registered for inverter 3.5 of plant C in the
testing period, from 1 February to 27 July 2016. As in the previous cases, Figure 7 shows
the proposed KPI, the warning levels and the daily number of faults as a function of
time for the same module. As can be seen in Table 5, the device does not experience
particularly important failures until the last decade of May. Indeed, the registered failures
are mainly due either to some parameters outside of the standard values or by scheduled
maintenance actions.

Accordingly, the model does not detect any relevant issue until 21 May (see Figure 7),
when the KPI suddenly drops triggering alerts up to level 4. Looking at the single signals
(Figure 8), an obvious anomaly is given by the power generation that is equal to zero
irrespectively of the sunny weather conditions. Similarly, an unmotivated drop in the inter-
nal inverter temperature occurs. The technical inspection on the plant confirms the issue,
which was caused by an IGBT stack fault and led to a production loss estimated roughly in
16 MWh. The whole inverter is then replaced after the failure. Then the KPI comes back to
take safe values, generating only some alerts around 27 June, in correspondence of minor
grid failures caused by mains parameters out of range.

The KPI works in an accurate way also for plant C, as can be seen in the bottom plot
of Figure 7. In fact, the TPR is almost 92% (FNR = 8%) and FPR is just roughly 1%.
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Table 7. Main failures occurring on inverter 3.5 of plant C during the testing period.

Fault Severity Start Date End Date Notes
Name (1 to 5) (dd/mm/yyyy) (dd/mm/yyyy)

AC Voltage 3 07/03/2016 07/03/2016 Grid fault
out of range

AC Voltage 3 09/03/2016 09/03/2016 Grid fault
out of range

AC Voltage 3 12/04/2016 12/04/2016 Grid fault
out of range

AC Voltage 3 15/05/2016 15/05/2016 Scheduled
out of range maintenance

AC Switch 2 21/05/2016 07/06/2016 Inverter 3.5
Open replaced

Figure 7. Historical case studies for inverter 3.5 of plant C. Top plot—Left axis: KPI, as well as the
warning levels and the upper and lower thresholds are shown as a function of datetime; Right axis:
time series of daily number of faults. Bottom plot: TPR, FNR and FPR as a function of time.
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Figure 8. From top to bottom: Pac, GTI and Tint of inverter 3.5 of plant C as a function of datetime in
the period 8 May–7 June 2016. The warning levels are superimposed for convenience.

5. Conclusions

In Table 8, we summarize the performance results of the proposed method obtained
in the three case studies. In particular, excellent performances are obtained in terms of
TPR values, and good results are also achieved in terms of FPR for all the case studies.
The predictive capacity of the proposed method is summarized in Table 9 reporting the
dates of the occurrence of the faults, and the dates when such faults had been predicted
by the proposed KPI. On average, the KPI predicts incipient faults between 6 and 7 days
before they are observed in practice. Furthermore, in addition to being able to predict
the faults, the KPI also exhibits excellent early detection capabilities, by signaling with
increasing warning levels as the faults evolve and reach more severe conditions.

The proposed SOM-based monitoring system is now being installed in PV plants for
online condition monitoring and the preliminary feedback from plant operators is very
positive. A full evaluation of the online system will be the subject of our future work.
Furthermore, we are currently developing a supervised fault-classification tool that we
plan to integrate in the system in order to predict the specific class of fault, in addition to
recognizing a generic faulty condition, as in our presented work.

Table 8. Summary of the performance results on the three case studies.

Test Case TPR FNR FPR

Plant A, inv. A.2 93% 7% 13%

Plant B, inv. B.1 98% 2% 18%

Plant C, inv. 3.5 92% 8% 1%
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Table 9. Summary of the predictive performance of the proposed method.

Test Case
Date of Fault
Occurrence

(dd/mm/yyyy)

Date of Fault
Prediction

(dd/mm/yyyy)

Time in Advance
of Prediction

Plant A, inv. A.2 10/10/2014 4/10/2014 6 days

Plant A, inv. A.2 3/11/2014 24/10/2014 10 days

Plant A, inv. A.2 09/12/2014 last warning on
04/12/2014

(5 days)
fault occurs during
plant maintenance

Plant A, inv. A.2 11/06/2015 06/06/2015 5 days

Plant A, inv. A.2 24/08/2015 23/08/2015 1 day

Plant B, inv. B.1 16/07/2015 not detected -
minor fault

Plant B, inv. B.1 06/08/2015 26/07/2015 10 days

Plant B, inv. B.1 13/08/2015 10/08/2015 3 days

Plant B, inv. B.1 07/09/2015 24/08/2015 14 days

Plant B, inv. B.1 23/09/2015 14/09/2015 9 days

Plant C, inv. 3.5 21/05/2016 21/05/2016 0 days
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