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Abstract: This paper presents a decentralized communication planning algorithm for cooperative
terrain-based navigation (dec-TBN) with autonomous underwater vehicles. The proposed algorithm
uses forward simulation to approximate the value of communicating at each time step. The simu-
lations are used to build a directed acyclic graph that can be searched to provide a minimum cost
communication schedule. Simulations and field trials are used to validate the algorithm. The simula-
tions use a real-world bathymetry map from Lake Nighthorse, CO, and a sensor model derived from
an Ocean Server Iver2 vehicle. The simulation results show that the algorithm finds a communication
schedule that reduces communication bandwidth by 86% and improves robot localization by up to
27% compared to non-cooperative terrain-based navigation. Field trials were conducted in Foster
Reservoir, OR, using two Riptide Autonomous Solutions micro-unmanned underwater vehicles. The
vehicles collected GPS, altimeter, acoustic communications, and dead reckoning data while following
paths on the surface of the reservoir. The data were used to evaluate the planning algorithm. In three
of four missions, the planning algorithm improved dec-TBN localization while reducing acoustic
communication bandwidth by 56%. In the fourth mission, dec-TBN performed better when using
full communications bandwidth, but the communication policy for that mission maintained 86%
of the localization accuracy while using 9% of the communications. These results indicate that the
presented communication planning algorithm can maintain or improve dec-TBN accuracy while
reducing the number of communications used for localization.

Keywords: autonomous underwater vehicles; terrain-based navigation; acoustic communication

1. Introduction

Researchers, militaries, and marine companies are increasingly utilizing autonomous
underwater vehicles (AUVs) to improve the efficiency of underwater data collection ap-
plications like gathering scientific data, marine geology, marine animal and ecosystem
monitoring, surveillance, naval mine mitigation, pipeline and infrastructure inspection,
and bathymetric surveying [1–3]. Many of these data collection missions require that the
AUV is able to localize itself and sense its surroundings. In many robotics applications,
sensors such as GPS, LIDAR, and cameras are used for localization and sensing; however,
electromagnetic waves quickly attenuate in water, prohibiting the use of these instruments.
Inertial sensors are available, but they are either cost prohibitive or have too much noise and
drift for reliable localization. Acoustic is the primary mode of ranging and communication,
but similarly tends to be either cost prohibitive or provide low information throughput.
Due to these restrictions, terrain-based navigation (TBN) has become a leading means of
self-contained underwater localization [4].

Vehicles using TBN for underwater localization are dependent on terrain information
to improve their state estimation. Vehicles traveling over areas with distinctive terrain will
be able to localize better than those traveling over areas of smooth terrain. Cooperative
localization allows vehicles with better state estimation to aid other vehicles. A vehicle
with accurate localization can transmit its location and covariance to other vehicles via an
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acoustic modem. A receiving vehicle can calculate its distance from the transmitting vehicle
and use this distance measurement with the information provided by the transmitting
vehicle to improve its own localization [5].

This work focuses on planning when each AUV communicates its localization infor-
mation which is important for two reasons: (1) overlapping communication can cause
interference, resulting in failed communication, and (2) acoustic modem bandwidth is
extremely limited and often needed to transmit other information, such as scientific data.

This work presents a decentralized communication planning algorithm that deter-
mines an optimized communication policy for collaborative underwater TBN localization.
The algorithm forward simulates a group of two or more AUVs following predetermined
paths. At each time step a scenario in which the hosting AUV communicates is considered
and then compared to scenarios in which the hosting AUV does not communicate. Each
communication incurs a cost, and scenarios that result in poor localization are discarded.
The resulting communication policy contains a minimum number of communications
while limiting the uncertainty in each vehicle’s location. The proposed algorithm enables
the AUVs to either conserve energy or transmit other types of data. To our knowledge,
this is the first algorithm to non-myopically plan communication policies for AUVs using
cooperative localization.

The field trials were conducted at Foster Reservoir near Sweet Home, Oregon, USA.
Two riptide micro-unmanned underwater vehicles (uUUVs) were used to collect GPS,
altimeter, acoustic communication and dead reckoning data. These data were then used to
evaluate the performance of the proposed communication planning algorithm by evaluat-
ing dec-TBN under four communication regimes: no communication, full communication
using all of the available acoustic data, the communication policy in which acoustic commu-
nications were only used if they were selected by the policy, and random communication
policies of varying bandwidths. The results show that the communication policies were
able to maintain the localization accuracy of the dec-TBN algorithm while reducing the
number of communications by 57% or more. In three of the four trails, the communica-
tion planning algorithm also enabled dec-TBN to localize more accurately than standard
TBN and dec-TBN using a full communication regime. The results from the field trials
and the simulations indicate that the planning algorithm is able to find a competitive
communication policy without trial and error.

2. Related Work

This work draws on the subjects of Terrain-Based Navigation and communication
planning. The next two subsections look at work that has been done in those fields.

2.1. Terrain-Based Navigation

TBN is a technique that originated in 1980 with TERCOM [6] where a flying object,
such as a missile, would compare its altimeter readings to a digital elevation map. Recent
implementations of TBN have been centered around particle filters that compare a vehicle’s
altimeter readings to a bathymetry map [4,7]. Particle filter TBN methods can provide
accurate vehicle location in areas of significant bathymetric features but tend to diverge on
smooth terrain.

Tan et al. developed a decentralised TBN (dec-TBN) algorithm [5] where multiple
vehicles share their locations and covariances with each other. For this algorithm, each
vehicle hosts its own particle filter and performs regular comparisons of its altimeter
readings to a bathymetry map. The vehicles also transmit their particle filter’s estimated
location and covariance to the other vehicles acoustically. The vehicles that receive the
acoustic message estimate their distances from the transmitting vehicle based on the
message’s one way time of flight. That distance, along with the transmitting vehicle’s
location and covariance, are used to update the receiving vehicle’s TBN estimate. In this
work, the vehicles take turns communicating one after another with no consideration given
to the timing of communication [5].
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Dec-TBN forms the foundation of our work. We use a similar dec-TBN formulation in
which each vehicle hosts a particle filter that is informed by altimeter measurements and
location data transmitted from other vehicles. Our work builds on dec-TBN by examining
communication planning for these vehicles to see if localization accuracy can be retained
while reducing the communication overhead.

2.2. Communication Planning

To date, the majority of communication planning for state-of-the-art distributed local-
ization is focused on choosing what data to share with other robots. One approach is to use
metadata from the robots’ pose graphs to identify individual scan lines or camera images
that may contain loop closures [8–10]. Another approach is to design linear–quadratic reg-
ulators to control data flow [11]. These approaches are intended for terrestrial application
where communication bandwidth and reliability are significantly better than underwater
applications. In this case the robots are able to transfer large data sets to each other. The
bandwidth available on an acoustic modem precluded these approaches.

A more applicable line of research is communication planning for multi-robot coor-
dination. These methods focus on communicating the belief states of the robots for the
purpose of deciding what actions they should take [12]. This is analogous to dec-TBN
where the AUVs share their state estimations to help each other localize more accurately.

Williamson et al. applied information theoretics to communication planning for
multi-robot cooperation by using KL divergence to quantify the reward of an agent’s
communication [12]. Their approach then uses this approximation in formulating a decen-
tralized partially observable Markov decision process (Dec-POMDP) to remove reasoning
over the value of communication from the POMDP’s coordination model. Using a de-
terministic formula to approximate the value of each communication reduced the search
space of the POMDP [12].

Unhelkar and Shah followed the idea of assigning value to communication and
proposed a decentralized Markov decision process (Dec-MDP) with a reward function
that maximized the expected reward for communication [13]. Marcotte et al. built on the
aforementioned Dec-MDP and Dec-POMDP by factoring the planning problem so that
each robot could plan independently. Subsequent, their algorithm scaled linearly with
the number of robots. Additionally, Marcotte et al. forward-simulated the outcomes of
message passing to determine the value of each communication. This approach has the
added advantage of being able to determine what the message content should be [14].
Similarly, Barcis et al. developed an evaluation model that determines the value of certain
types of data. However, rather than using a Markov decision process, Barcis et al. built
their evaluation model using domain knowledge of the application [15].

Best et al. considered planning-aware communication [16]. In this work a decentral-
ized planning algorithm is presented in which a group of robots is attempting to complete
a task. While the planner is evaluating which actions a robot should perform, it tracks its
uncertainty in what actions it expects the other robots to perform. Once the uncertainty of
a particular robot exceeds a certain threshold it requests a planning update from that robot.
To minimize communication, the algorithm constructs a directed acyclic graph representing
the uncertainty in the robots’ actions and communication cost. While constructing the
graph, every time a communication was requested from a robot the uncertainty in the
robot’s actions reduced to zero. Subsequently, the base node only had to be evaluated once.
The implementation of this directed acyclic graph provides a communication schedule
that is optimal with respect to belief and results in an algorithm with polynomial run time
complexity [16]. Additionally, finding a communication policy is now equivalent to a
longest path search through a directed acyclic graph, which has linear time complexity [17].

The communication planning problem presented here builds on these works in multi-
robot coordination. The communication problem is factored so that each robot can plan
its own communication separately from the other robots. Forward simulation is used
to approximate the value of each communication. The simulations are then used to
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build a directed acyclic graph in which the robot is required to communicate once the
uncertainty in a robot’s location exceeds a certain threshold. The graph can then be
searched for a minimum cost communication policy. Unlike the aforementioned works,
which assumed that the robots have deterministic transition functions, the proposed
communication planning applies these techniques to the inherently stochastic problem
of TBN.

3. Methods and Materials

This section starts by looking at the problem of planning communications for a group
of AUVs using dec-TBN to localize. It then presents a decentralized communication plan-
ning algorithm that builds on the dec-TBN algorithm. This section finishes by illustrating
how the algorithm was tested through simulations, and field trials with two AUVs. The
subsection on methods walks through the problem formulation and the algorithms used
to plan the communications. The materials subsection describes the simulations and the
AUVs used for the field trials.

3.1. Methods

This subsection will first examine the problem of communication planning for a group
of AUVs using dec-TBN for localization. It will then present a communication planning
algorithm that solves this problem. This section will also present the dec-TBN algorithm
that is a part of the communication planning algorithm.

3.1.1. Problem Formulation

We are interested in the problem of scheduling communication for a group of AUVs
using dec-TBN to localize. The AUVs travel in a mapped environment taking altimeter
readings as they move. Each AUV uses the TBN algorithm to estimate its location and the
AUVs can communicate their location and uncertainty with each other. We want to plan a
communication policy that uses minimal transmissions while limiting the uncertainty in
the AUVs’ location.

Each AUV r is equipped with an altimeter, a depth sensor, an acoustic modem, and
a digital bathymetry map of the environment. The AUVs are also provided the starting
locations Xr

t=0, initial covariances Σr
t=0 and paths of all the other AUVs. The AUVs will

localize with a dec-TBN algorithm. An individual instantiation of dec-TBN consists of a
particle filter that tracks the hosting vehicle’s location. At each time step, the inputs to
dec-TBN are the most recent vehicle control inputs and altimeter reading. If available,
Xi

t, Σi
t, and the intra-vehicle range from another vehicle, i 6= r, are also provided to the

dec-TBN. The dec-TBN algorithm outputs the position estimate Xr
t and covariance Σr

t of
the hosting vehicle.

The AUVs can communicate with each other via the acoustic modems. If all of
the vehicles have synchronized clocks, and assuming isotropic water temperatures, the
distance between the transmitting and receiving vehicles can be calculated using the
communication’s one way time of flight (OWTF). To perform dec-TBN, the AUVs must
take turns communicating their localization statistics. The receiving vehicles use the
localization statistics and distance measurement from the transmitting vehicle to inform
the next dec-TBN update.

The proposed decentralized planning algorithm generates a communication policy
πr = {πr

1, πr
2, ..., πr

T} that indicates when the hosting vehicle should communicate its Xr
t

and Σr
t within the planning horizon T. The variable πr is a binary sequence, πr

t = true
indicates that the vehicle should communicate at time step t and πr

t = f alse indicates that
it should not communicate. If a vehicle communicates at time t, the transmission includes
the time of the transmission, Xr

t and Σt
t. The communication is received by all the other

AUVs and informs their next dec-TBN update.
The objective of the planning algorithm is to minimize the AUVs’ communication

while maintaining a bound on localization accuracy. Each communication is given a unit



Sensors 2021, 21, 1675 5 of 24

cost since every localization message consists of the same volume of information: an x-y
location of the vehicle, a two by two covariance matrix, and a time stamp. The modem
itself may append more information depending on its design, but this usually a proprietary
matter that the end user does not have control over. The cost of π for N robots is the sum
of all communication, i.e.:

Cost(π) =
N

∑
i=1

T

∑
t=1

1(πi
t = true) (1)

To ensure that the AUVs maintain a certain degree of accuracy, the communication
planning algorithm is constrained by the estimated accuracy σ of the AUVs’ localization.
For a group of N AUVs at time step t, σt is defined as:

σt =
N

∑
i=1

trace(Σi
t) (2)

The proposed planning problem is formulated as a constraint-based optimization to
find π∗ that has the lowest communication cost while maintaining σ under a user defined
threshold σmax:

π∗ = argmin
π

Cost(π) : σt < σmax ∀ T (3)

3.1.2. Communication Planning Algorithm

The proposed communication planning method is a decentralized planning algorithm
that is intended for vehicles using dec-TBN. The intuition behind the algorithm is that local-
ization information from a vehicle with an accurate state estimate can be used to improve
the localization of other vehicles. It may not be advantageous for vehicles with relatively
poor localization to transmit their information either. Additionally, the dec-TBN particle
filters use randomly generated noise to disperse the particles. Modeling a particle filter’s
response to a vehicle’s path is impractical. For these reasons the proposed communication
planning algorithm involves simulating vehicles traveling through the environment and
evaluating the effects of vehicle’s communication on the group’s localization.

The communication planning algorithm is a decentralized algorithm that is run in-
dependently on each vehicle. The algorithm builds a directed acyclic graph G. The graph
nodes N represent the σt of the AUVs and the edges represent the communication cost
between nodes. The graph is built by forward simulating a set of vehicles as they follow
predefined paths through an environment. Each leaf node hosts a simulated state of the
vehicles which is instantiated as a set of particle filters; e.g., if planning for three vehi-
cles, each leaf node would contain three particle filters. The leaf nodes are expanded by
forward simulating the vehicles one time step and having them localize via dec-TBN on
the bathymetry map. The leaf nodes are expanded twice, once with the hosting vehicle
communicating its Xt and Σt, and once without communicating, thereby creating two new
leaf nodes. The edges between the parent node and the new leaf nodes are given weights
of 1 and 0 for communicating and not communicating respectfully.

To reduce computational demands of the algorithm, it is assumed that the state
resulting from the host vehicle communicating is the same for all leaf nodes. This is a similar
assumption to Best et al. [16] and the resulting structure of the graph is demonstrated in
Figure 1. Nt,0 represents the state in which the host vehicle has communicated at time
step t. The rest of the nodes result from not communicating. Constructing the graph as a
directed acyclic graph provides polynomial run time with complexityO(BNT2) where B is
the number of particles used in the particle filters. Additionally, finding a communication
policy from the directed acyclic graph can be done with linear time complexity [17].
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N0,0 N1,0 N2,0

N1,1 N2,1

N2,2

N3,0

N3,1

N3,2

N4,0

N4,1

N4,2

Max Uncertainty

Figure 1. Communication planning graph. The node Nn represents the nth node in G. Each node
holds the value of σ of a simulation state. The dotted edges represent forward simulation without
communication. The solid edges represent forward simulation with communication.

In practice, the planning algorithm holds the simulations for each leaf node i in a
queue Qi. At each time step the algorithm cycles through the queue and progresses each
simulation one step forward. The simulations move the robotsR along a path P using a
motion model M. Then, they update the dec-TBN algorithm using the simulated vehicles’
locations on the bathymetry map to provide depth readings. If communication is indicated,
the Xt and Σt of the hosting vehicle’s dec-TBN algorithm is provided to the other simulated
vehicles’ dec-TBN updates.

At each time step all of the simulations in Q are forward simulated without commu-
nication. If σt of the resulting simulation state is less than σmax, then the resulting state is
added to Q and a new node is appended to G with the value of σt. This node is connected
to the leaf node representing the state that was just updated with an edge weight of 0. Q0
holds the simulation for Nt,0 in which the hosting vehicle has just communicated. The last
update performed at each time step is to forward simulate Q0 with communication. The
resulting state is added to Q as the next Q0 and a corresponding node is added to G with
the simulation’s value of σt. This node is connected to all of the leaf nodes with an edge
weight of 1. Due to dec-TBN’s reliance on terrain information to improve localization, a
static threshold value for σmax is difficult to determine. Instead, the threshold value is a
product of σmax and σt of Q0. See Algorithm 1.
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Algorithm 1 Communication Planning Algorithm

Require: [X0, Σ0, M, P]r, ∀r ∈ R, T, σmax
Ensure: π . Robot Communication Policy

1: . Particle filter for each robot
2: Q0.sims←PF(([X0, Σ0, M, P])r, ∀r ∈ R . Queue
3: Q0.parent← 0
4: G.nodes0 ← 0 . Cost Graph
5: m = 0
6: for t = 1 to T do
7: P = Q.parent . List of current leaf nodes

8: . Update Qi without communication a
9: for i = |Q| to 1 do

10: η ← PF_Update(Qi, a = f alse)
11: if η.σ < Q0.σ× σmax then
12: m = m + 1
13: p = Qi.parent
14: Qi+1.sims← η
15: Qi+1.parent← m
16: G.nodesm ← η.σ
17: G.edgesp,m ← 0

18: . Update Qi with communication
19: m = m + 1
20: Q0.sim←PF_UPDATE(N0,t−1, a = true)r, ∀r ∈ R
21: Q0.parent← m
22: G.nodesm ← Q0.σ
23: G.edgesP ,m ← 1
24: π ←LOWESTCOSTPATH(G) . Search over Graph

3.1.3. Decentralized TBN Algorithm

Many modern TBN algorithms use particle filters to track the vehicle’s position on a
digital elevation map or bathymetry map in the case of marine environments [18,19]. The
dec-TBN algorithm used here utilizes an update step that incorporates range measurements
to another vehicle with that vehicle’s localization information. First, a vehicle transmits
its Xt and Σt to the other vehicles via an acoustic modem. A receiving vehicle calculates
a range measurement D from the transmitting vehicle via the acoustic communication’s
OWTF. D provides a measurement that adds information to the particle filter and is used
with the location information from the transmitting vehicle in the next particle filter update.

The modified particle filter update propagates the particles via the vehicle’s speed
S, heading θ, time between updates δt, and motion model M. Then the particle filter
calculates the probability of each particle’s location given a depth measurement z from an
altimeter. A probability density function pd falt using the altimeter’s mean and standard
deviation is used to compare the depth measurement to the expected depths Z from the
bathymetry map. The probability of each particle’s location is also calculated by creating a
multivariate normal distribution pd fcoms using the location and covariance received from
the other vehicle. The locations of the particles are then shifted towards the transmitting
vehicle’s location by the distance calculated from the acoustic modem’s time of flight. The
resulting particle locations are used to sample the aforementioned normal distribution.
The probabilities resulting from the bathymetry measurement and the communication
measurement are multiplied together with the previous particle weights to create the new
particle weights. This process is illustrated in Algorithm 2.
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Algorithm 2 Particle Filter Update with a Received Communication

1: function PF_UPDATE(X0, T, S, θ, z, D, Xr, Σr)
2: particles← X0 . Initialize particles
3: w← 1/|particles| . Initialize particle weights
4: for t = 0 to T do
5: particles← MOVE_PARTICLES(S, θ, t, M)
6: Z ← BATHYMETRYMAP(particles)
7: wbathy ← PDFalt(z−Z , µalt, σalt)
8: wcomms ← PDFcoms(particles + D, Xr, Σr))
9: w← w× wbathy × wcomms

10: w← w/ ∑(w)

11: X ← ∑(weights× particles)
12: Σ← Covariance(particles)

return X, Σ

3.2. Materials

This subsection will look at the simulator used to test the communication planning
algorithm and the AUVs used to collect data during field trials.

3.2.1. Simulations

To evaluate the proposed communication planning algorithm, simulations were run
to determine how well AUVs using dec-TBN could localize given the communication
policy produced by the algorithm. The simulations leverage real-world data by using
a bathymetry map of Lake Nighthorse near Durango, Colorado, USA. The bathymetry
map was created by doing an extensive survey of the reservoir. Depth readings from the
survey were corrected for temporal changes in the height of the reservoir. Then, the depths
were combined into a digital elevation model via a sliding window Kalman filter (see
Figure 2). Additionally, the depth readings from this survey were used to build a sensor
model of the altimeter on an Ocean Server Iver2 AUV that was used for part of the data
collection. This sensor model was used in the simulator to provide depth readings to the
simulated vehicles.

Figure 2. AUV paths through the simulated environment of Lake Nighthorse, CO. The blue stars are
the AUVs’ waypoints. The green lines are the actual paths of the AUVs when using decentralized
terrain-based navigation (dec-TBN), and the orange lines are the actual paths of the AUVs when using
dead reckoning. Cooperative TBN leads to more accurate path following (closer to the waypoints)
even in areas where the terrain is flat. The AUVs travel approximately 1.5 km.
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Simulations involved two or more AUVs following predefined paths across the
bathymetry map. Each AUV used its dec-TBN state estimate to compute control inputs.
Gaussian white noise was introduced into the vehicle’s true movements to emulate the
navigational errors that occur in real underwater vehicles. The sensor model derived from
the Iver2’s altimeter was used to introduce noise into the depth readings used for the AUVs’
dec-TBN. Figure 2 shows the simulated paths of four AUVs. The blue stars are waypoints
that the AUVs followed. The green lines are the actual paths that the AUVs traveled when
using dec-TBN. The orange lines are the actual paths that the AUVs traveled when using
dead reckoning. The AUVs traveled a little more than 1.5 km in these simulations.

The AUVs’ localization accuracy in the simulation is evaluated by comparing the
AUVs’ state estimations to their true locations. The error δr

t for AUV r at time step t is
calculated as:

δi
t = ‖Xi

t − X̂i
t‖ (4)

In this case, X is the true location of the AUV and X̂ is the TBN estimate.
The joint error ∆t of all N AUVs is:

∆t =
i=N

∑
i=1

δi
t (5)

To evaluate the communication planning algorithm, a number of simulations were
run utilizing different communication regimes: no communication, full communication,
communications planned by our algorithm, and varying bandwidth policies. For full
communication, the AUVs took turns communicating at each time step. The varying
bandwidth policies involved the vehicles communicating in evenly spaced blocks. Each
block of communication involved all of the vehicles taking a turn to communicate. The
blocks were spaced so that the total number of communications used equaled a percentage
of the full communication.

Before starting a simulation, communication policies were generated for the AUVs.
For simulations using the planning algorithm, each AUV was given the initial locations
of all the vehicles with a corresponding uncertainty of three meters. The AUVs were also
given paths that each vehicle would follow. The AUVs then performed the communication
planning algorithm independently. The AUVs did not share their communication policies,
so it was possible that more than one vehicle tried to communicate at the same time. In this
case, the communications were assumed to interfere with each other and were not received
by any of the vehicles.

The simulation started after the communication policies had been generated. During
the simulation, the AUVs attempted to follow their prescribed paths by using dec-TBN
and communicating their locations and covariances at the time steps indicated by the
communication policy. The simulation ended once the first AUV achieved its goal. The
particle filter in the dec-TBN algorithm uses stochastically generated noise when moving
the particles. Additionally, the simulations add Gaussian white noise to the true movements
of the vehicles and the vehicles’ sensor measurements. To determine the relative average
joint error, every simulation was run 100 times with the AUVs following the same paths.

3.2.2. Field Trial AUVs

Field trials were conducted on Foster Reservoir near Sweet Home, Oregon, to val-
idate the aforementioned techniques using real altimeter and acoustic communication
data. Two micro-unmanned underwater vehicles (uUUVs) built by Riptide Autonomous
Solutions (https://www.baesystems.com/en-us/product/riptide-family-of-autonomous-
undersea-vehicles accessed on 1 January 2021) (see Figure 3) were used to collect data
for the filed trials. Each uUUV is equipped with an acoustic modem, altimeter, IMU, and
GPS receiver. A detailed list of the vehicles’ relevant hardware is presented in Table 1.
The two uUUVs, known as Dory and Nemo, collected altimeter, acoustic communication,

https://www.baesystems.com/en-us/product/riptide-family-of-autonomous-undersea-vehicles
https://www.baesystems.com/en-us/product/riptide-family-of-autonomous-undersea-vehicles
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dead reckoning and GPS data while following dead reckoning paths on the surface of the
reservoir. Using dead reckoning in this manner provided underwater-grade path following
while allowing the vehicles to collect GPS data for ground truth comparisons.

Figure 3. Riptide Autonomous Solutions micro-unmanned underwater vehicles (uUUVs) used for
the experiments on Foster Reservoir, OR.

Table 1. Relevant Riptide Hardware.

Item Part Name Producer

Acoustic Modem Micromodem-2 Woods Hole Oceanographic Institution
Altimeter Sea Scan Echo Marine Sonic Technology

GPS Ivory3 GlobalTop Technology Inc.
IMU AHRMS-M1 Sparton Navigation and Exploration

Real-Time Clock ChronoDot Macetech LLC
Computer Beaglebone Black Beaglebone

The uUUVs’ proprietary software utilizes the Mission Oriented Operating System
(MOOS). A MOOS app was designed to perform back and forth communication where
each vehicle transmits an acoustic message to the other vehicle immediately upon receiving
a communication. To begin the pattern, and in the event of a missed communication, Dory
was programmed to transmit a message once every minute in the absence of a response.
Nemo only transmitted a message upon receiving one from Dory. A one minute timeout
was chosen because it takes about 30 s for a vehicle to process a received message and then
queue up and send a response message.

The acoustic messages consisted of a message ID number and a character flag to
indicate if the message was sent as a response to a received message, or if it had been
initiated due to a timeout. One way time of flight (OWTOF) information was determined
from the timestamps appended to each message when transmitted by the acoustic modem.
To make the timestamps accurate enough for intervehicle ranging, the clocks on the uUUVs
were synchronized via the network time protocol (NTP) with Dory acting as a server
and Nemo as a subscriber. The NTP service was provided over wifi which was only
available near the deployment site. Once the uUUVs departed on their paths the service
was no longer available. The uUUVs then maintained time synchronization with their
ChronoDot high accuracy real-time clocks. This provided OWTOF measurements with
a standard deviation of about 10 milliseconds which equates to a standard deviation in
ranging measurements of 14.75 m. This accuracy is considered sufficient for the purpose of
this experiment given that the dead reckoning error of these vehicles often exceeds 100 m.
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Nemo was found to have an erroneous compass that returns bad heading measure-
ments when facing the southeast quadrant (90 to 180 deg.). Nemo’s paths initially compen-
sated for this issue by subtracting 50 degrees off of headings that were originally between
90 and 180 degrees. Once GPS data were available from the experiment, the vehicle’s true
headings were determined and a quadratic polynomial curve fit was used to correct the
compass measurements. This technique was applied to both vehicles but its benefits are
not as pronounced on Dory. The GPS data were also used to determine constant offsets to
correct each vehicle’s speed. Figure 4 illustrates Nemo’s corrected and uncorrected dead
reckoning paths. The green line is Nemo’s ground truth GPS path, and the red and blue
lines are its dead reckoning and corrected dead reckoning paths, respectively.

Figure 4. Correcting Nemo’s faulty compass. Ground truth GPS data (green line) were used to
fit a quadratic polynomial curve to the faulty compass measurements that resulted in poor dead
reckoning (red line). The GPS data were also used to determine a constant offset for the vehicle’s
speed. This resulted in improved dead reckoning performance (blue line).

3.2.3. Vehicle Modeling

Each vehicle’s speed, compass, altimeter and acoustic modem OWTOF were modeled
to improve the quality of the data and determine the uncertainties of the hardware. First,
the vehicle’s GPS path was smoothed with a moving averaging filter. All of the vehicle
trajectories should have a constant speed of two knots or 1.029 m per second. The vehi-
cle’s true speed was taken to be the average of the speeds calculated from the distances
between GPS locations and duration between the corresponding timestamps. The stan-
dard deviation of the speeds was set as the uncertainty in the vehicle’s true speed. The
vehicle’s true headings for each time step were determined by the smoothed GPS data.
The errors between the true headings and the corrected compass headings computed from
the quadratic polynomial curve fit were calculated. The standard deviation of the errors
was set as the uncertainty in the corrected compass readings. The motion of the vehicle
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can then be modeled with dead reckoning using a North-East-Down reference frame. See
Equation (6).

Xt+1 = stδtt

[
sin(θt)
cos(θt)

]
+ Xt (6)

where

X =

[
x
y

]
(7)

The altimeter was modeled by first smoothing the data with a Kalman filter. The effect
of the aforementioned outlier rejection and smoothing can be seen in Figure 5. Next, the
smoothed GPS path was used to get a ground truth altimeter profile. The errors between
the altimeter profile and the corresponding altimeter measurements were used to calculate
the average altimeter error and its standard deviation. Similarly, the acoustic modem’s
OWTOF was modeled by using the GPS data to determine the true distances between the
vehicles for each received communication. Then, the mean and standard deviation of the
errors between the true distances and the ranges calculated from the OWTOF, assuming a
speed of sound in water of 1475 m per second, was calculated. Figure 6 depicts some of the
ground truth data used for the modeling.

Figure 5. Dory’s altimeter profile from Mission 4. The blue line represents the raw altimeter data. The
red line shows the filtered data after outlier rejection and Kalman filtering. Note that the reservoir is
believed to have a maximum depth of 16 m.

Figure 6. Successful acoustic communications between the uUUVs. The green arows indicate
communications from Dory to Nemo and the Cyan arrows show communications from Nemo to
Dory. Note that Dory was much more successful at communicating to Nemo.
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Table 2. Empirical Riptide Models.

Process Model Units

Dory Altimeter −0.049 ± 1.774 m
Acoustic Modem 0.653 ± 0.009583 s

Speed 0.819 ± 0.249 m/s
Compass −2.277 ± 1.525 deg

Nemo Altimeter −0.034 ± 0.953 m
Acoustic Modem −0.652 ± 0.005731 s

Speed 0.760 ± 0.201 m/s
Compass 0.157 ± 23.784 deg

After the vehicle modeling was completed, the data from the selected mission were
corrected based on the resulting vehicle models. For each vehicle, all nonzero speeds
during the mission were set to the calculated true speed. The corrected compass headings
were computed from the vehicle’s quadratic polynomial curve fit. The altimeter data
were smoothed with a Kalman filter. The average altimeter error was then subtracted
from all of the nonzero altimeter readings. The range measurements for the successful
acoustic communications were calculated by subtracting the average OWTOF error from
the successful communication measurements, then multiplying them by 1457 m per second.
Table 2 illustrates the resulting vehicle models.

4. Results

This section shows the results from the simulations and field trials. The simulation
results are presented first. This is followed by filed trial results which first, illustrates
the bathymetry map that was produced of the experiment area, and then presents the
communication bandwidth used by the planning algorithm and the resulting localization
accuracy of dec-TBN.

4.1. Simulation

To the authors’ knowledge, previous dec-TBN works only use a full communication
scheme where the AUVs take turns communicating at each time step. The planning
algorithm results are compared to simulations with full communication and communication
that happens on an incremented schedule. The comparison schedules varied the amount
of bandwidth used. Lower bandwidth schedules involved the vehicles communicating in
evenly spaced blocks. Each block of communication involved all of the vehicles taking a
turn to communicate. The blocks were spaced so that the total number of communications
used equaled a percentage of the full communication.

Results are presented for two sets of simulations. The first set involved two AUVs and
the second set involved four AUVs. During each set of simulations, the AUVs localized
with dead reckoning and dec-TBN, which was evaluated using the aforementioned commu-
nication regimes. Each set of simulations is an aggregation of 1100 individual simulations
from 11 localization methods being evaluated 100 times each.

Tables 3 and 4 list the localization methods used for the simulations. The bandwidths
are listed in the left columns of the tables as part of the localization method. The left center
columns list the corresponding number of communications. The right center columns show
the total error for each communication scheme. The total error is calculated as the area
under the curve of the relative average joint errors which can be seen in Figures 7–10. The
right columns list the average error which is calculated as the total error divided by the
number of time steps. Note that dead reckoning error is not present in the figures because
it is much greater than the errors being shown.
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Table 3. Localization methods, communication bandwidth and total joint error for 2 AUVs over the
course of a 1.5 km track.

Localization Method Number of
Communications Total Error [m·s] Average Error [m]

Policy (Proposed) 67 11,004 10.53
Dead Reckoning 0 73,644 70.4
TBN—No Comms. 0 12,911 12.36
dec-TBN, Full (100%) 1058 19,694 18.85
dec-TBN, 80% 816 17,645 16.89
dec-TBN, 60% 612 16,523 15.81
dec-TBN, 40% 408 15,088 14.44
dec-TBN, 20% 204 12,853 12.30
dec-TBN, 10% 102 12,044 11.52
dec-TBN, 5% 50 11,669 11.17
dec-TBN, 2.5% 26 11,782 11.27

Table 4. Localization methods, communication bandwidth and total joint error for 4 AUVs over the
course of a 1.5 km track.

Localization Method Number of
Communications Total Error [m·s] Average Error [m]

Policy (Proposed) 139 8929 8.54
Dead Reckoning 0 73,514 70.3
TBN—No Comms. 0 12,180 11.66
dec-TBN, Full (100%) 1048 18,227 17.44
dec-TBN, 80% 840 15,489 14.82
dec-TBN, 60% 621 13,052 12.49
dec-TBN, 40% 416 11,066 10.59
dec-TBN, 20% 208 9730 9.31
dec-TBN, 10% 108 9341 8.93
dec-TBN, 5% 52 9820 9.39
dec-TBN, 2.5% 28 10,607 10.15
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Figure 7. Overview of simulation results for 2 AUVs using varying communication bandwidths.
Error bars show standard error of the mean.
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Figure 8. Simulation results for 2 AUVs using the planned policy, TBN without communication, and
low bandwidth communication policies. Error bars show standard error of the mean.
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Figure 9. Overview of simulation results for 4 AUVs using varying communication bandwidths.
Error bars show standard error of the mean.
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Figure 10. Simulation results for 4 AUVs using the planned policy, TBN without communication,
and low bandwidth communication policies. Error bars show standard error of the mean.
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Figures 7 and 9 show an overview of the joint errors for some of the communication
policies evaluated in simulations with two and four AUVs, respectively. The presented
policies include the policy produced by the planning algorithm, the full communica-
tion policy, some of the proportional communication policies, and non-cooperative TBN.
Figures 8 and 10 provide closer looks at the joint errors for the planned communication
and lower bandwidth communication policies for simulations with two and four AUVs.
Note that the 5% communication policy is present on all graphs for continuity.

Figures 7–10 show that the proposed algorithm finds a communication schedule that
provides more accurate localization. In all graphs the joint error experienced by the planned
communication policy is less than the other communication policies. For the simulations
with two AUVs the planning algorithm schedules a total of 67 communications which is
similar to low bandwidth policies of 5% and 2.5% which use 50 and 26 communications,
respectively. For the simulations with four AUVs the algorithm schedules 139 commu-
nications which is similar to the 10% bandwidth policy. This is nearly twice as many
communications as prescribed by the planning algorithm for the two AUV simulations
and achieves notably more accurate localization. This is due to the greater amount of
information that is available from the two additional AUVs.

The lower bandwidth communication schemes perform better in general because they
reduce the number of noisy measurements being transmitted. Additionally, the higher
communication schemes can cause the TBN particle filters to become overly confident
in their state estimate. This over confidence can result in the filter diverging, especially
in these scenarios where at least one AUV is traveling through an area with minimal
terrain features.

4.2. Field Trials

This subsection present the results of the experiments conducted at Foster Reservoir
near Sweet Home, Oregon with two AUVs. First, the bathymetry map create by surveying
the experiment area is shown. Then, the communication bandwidth used by the planning
algorithm and the resulting localization accuracy are presented.

4.2.1. Bathymetry Map

Creating a bathymetry map required surveying the portion of the reservoir used
for the experiment. The bulk of the survey was performed by the Riptides operating
on the surface for GPS localization. A Platypus LLC Lutra autonomous surface vehicle
(ASV) equipped with a Lowrance side scan sonar was also used to survey a portion of the
reservoir near the deployment site; however, the Lutra is reliant on wifi communication
with a base station so its range was limited.

The accumulated altimeter and GPS data were used to create a 2.5D digital elevation
profile of the reservoir’s bathymetry. First, the riptide altimeter measurements were
adjusted to account for the attitude of the vehicle by using its roll pitch and yaw angles to
project altimeter measurements into the world frame. The Riptides’ altimeters are mounted
to look forward by 20 degrees which was added to the vehicles’ pitch before doing the
transform. The Lutra’s sonar is mounted facing downward and attitude data were not
available so the transforms were not applied to that data. Next, the survey and experiments
were conducted over four days that were spread out over the course of a month. During
this time, the height of the reservoir lowered by 4.1 m. There is a USGS hydrology station
on the dam [20] that measures the elevation of the water’s surface. The hydrology data
were used to calculate the difference in surface height between each day, which was applied
to the Riptide and Lutra data. Then, the data were checked for outliers by first eliminating
measurements that were deeper than the maximum depth of the reservoir, followed by
applying a two sigma low-pass filter. Finally, the digital elevation profile was created using
a sliding window Kalman filter to interpolate the data points onto an x-y grid of Universal
Transverse Mercator (utm) coordinates. The resulting bathymetry map is presented in
Figure 11.
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Figure 11. Bathymetry map of Foster Reservoir used for communication planning in decentralized
terrain-based navigation field trials. This map a generated from data collected by the uUUVs.

4.2.2. Experiments

Four missions were performed on Foster Reservoir to evaluate the communication
planning algorithm. Each mission was evaluated using non-cooperative TBN, dec-TBN
using all of the available communications (dec-TBN-full), dec-TBN using the communica-
tions that have been selected by the planning algorithm (dec-TBN-planned), and randomly
generated communication policies.

When the communication planning algorithm generated policies for the two vehicles,
the planning horizon was set to be the duration of the mission divided by 30 s which was the
Riptides’ maximum communication rate assuming no communications were missed. The
missions were between 24 and 38 min long resulting in planning horizons of 48 to 76 time
steps. The planning algorithm was given the planning horizon along with each vehicle’s
preplanned course, true speeds, and starting GPS position with an assumed uncertainty of
three meters. The planning algorithm was also given noise models for the vehicles that
were informed by the empirical models but slightly inflated, which is standard practice
for a particle filter [21]. The algorithm then generated communication policies for the
vehicles. The communication policies were matched to the available communications via
their timestamps. Since the time steps for the communication policies incremented in 30 s
intervals starting from the start of the mission, the available communications were matched
to the closest time step in the policy. If the policy indicated that a communication should
be used, then it was included in the dec-TBN update, otherwise it was omitted. The full
communication rows of Table 5 shows the number of successful communications received
by each vehicle during the missions. The Policy rows show the number of communications
planned by our algorithm and the number of those communications that were used to
evaluate dec-TBN. The table’s horizon row indicates the total number of possible acoustic
transmission during the mission.

A communication regime that generated policies randomly was also used to evaluate
dec-TBN. This served to compare the communication planning algorithm to naive com-
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munication planning. The random communication regime generated policies that utilized
various amounts of bandwidth ranging from 80% to 5% of the vehicle’s potential communi-
cations, i.e., the vehicle’s mission duration divided by communication rate. These policies
were created by placing the indicated number of communications randomly throughout
the policy. The number of successful acoustic communications between the vehicles are
limited; subsequently, the random communication policies are likely to miss the available
communications. For this reason, when dec-TBN was evaluated with the random com-
munication regime, each bandwidth was repeated 20 times with a new random policy
generated for each iteration. Table 5 also lists the number of communications planned for
the random policies, and the average number of planned communications that coincided
with the available data.

Table 5. Acoustic Communications

Mission 1 Mission 2 Mission 3 Mission 4

Horizon 48 48 59 74

Dory Plan Used Plan Used Plan Used Plan Used

Full 7 2 3 5
Policy 8 1 7 0 7 0 12 1
Rand 80% 39 1.3 37 1.5 39 1.45 58 3.9
Rand 60% 29 1.05 28 1.3 29 1.65 43 2.75
Rand 40% 19 1.05 18 1.2 19 1.1 29 2.25
Rand 20% 9 0.55 9 0.4 9 0.6 14 1.25
Rand 10% 4 0.4 4 0.35 4 0.2 7 0.65
Rand 5% 2 0.15 2 0.2 2 0.1 3 0.45

Nemo

Full 5 19 7 6
Planned 3 0 11 5 7 4 13 0
Rand 80% 24 3.25 37 13.45 24 4.65 51 3.5
Rand 60% 18 3.2 28 12.15 18 4.4 38 3.15
Rand 40% 12 1.7 18 9.85 12 3.45 25 2.05
Rand 20% 6 1.1 9 5.5 6 1.9 12 1.2
Rand 10% 3 0.6 4 3.1 3 0.6 6 0.8
Rand 5% 1 0.5 2 1.1 1 0.25 3 0.1

The state estimation paths resulting from these communication regimes were com-
pared to the vehicle’s GPS path. The errors and joint errors between the state estimations
and the GPS path were calculated using Equations (4) and (5), respectively. The total errors
for the two vehicles were then calculated as the Riemann sum of the joint errors, and the
average errors were calculated as the total error divided by the duration of the mission.

Table 6 lists the total errors, average errors, and duration of each mission. Figures 12–15
show the joint errors for each mission including the joint error from the corrected dead
reckoning path, and the random communication policy that produced the lowest total error.
The total errors are listed in the figures’ legends after the corresponding label. Images of
the vehicles’ paths from all four missions are available in the appendix. These figures show
the vehicle’s GPS path, corrected dead reckoning path, and the three TBN paths.
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Table 6. Localization results from Foster Reservoir field trials. Path lengths range from 1.1 to 1.6 km.

Total Error Mission 1 Mission 2 Mission 3 Mission 4 Units

DR Corrected 197,915 76,560 245,494 262,651 m·s
TBN, No Comms 127,314 81,141 130,162 230,466 m·s
DEC-TBN, Full 114,342 97,460 121,166 176,297 m·s
DEC-TBN, Planned 80,889 71,548 82,354 199,268 m·s
Random 80% 105,468 100,555 104,210 213,721 m·s
Random 60% 97,612 104,208 108,056 222,819 m·s
Random 40% 97,874 87,875 111,720 233,036 m·s
Random 20% 94,140 82,908 115,417 216,886 m·s
Random 10% 92,838 78,759 130,724 215,278 m·s
Random 5% 85,590 78,248 128,043 207,156 m·s

Average Error

DR Corrected 135 52.5 137.6 117.8 m
TBN, No Comms 87 55.7 72.9 103.4 m
DEC-TBN, Full 78 66.9 67.9 79.1 m
DEC-TBN, Planned 55 49.1 46.1 89.4 m
Random 80% 71.8 69.0 58.4 95.9 m
Random 60% 66.4 71.5 60.6 100.0 m
Random 40% 66.6 60.3 62.6 104.6 m
Random 20% 64.1 56.9 64.7 97.3 m
Random 10% 63.2 54.1 73.3 96.6 m
Random 5% 58.3 53.7 71.8 93.0 m

Duration 24.5 26.25 29.7 37.1 min

Figure 12. Joint Error for Mission 1. This figure shows that the planning algorithm enabled better localization accuracy.
Only one communication was used by the policy.



Sensors 2021, 21, 1675 20 of 24

Figure 13. Joint Error for Mission 2. The spike in DEC-TBN, Full Comms. at 22:10 is indicative of a negative feedback loop
from communicating erroneous localization data.

Figure 14. Joint Error for Mission 3. The planning algorithm produced the lowest total error using four communications.
It was followed closely by a random policy that used six communications. In this case, the 80% random communication
regime produced the lowest total error of the random communication regimes.
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Figure 15. Joint Error for Mission 4. The spikes in TBN result from poor altimeter data for this mission. Dec-TBN full was
able to compensate for the poor data better than dec-TBN planned. A low bandwidth random policy also happened upon a
good set of communications for the circumstances.

Tables 5 and 6 shows that the planning algorithm used 43% or less of the available
communication used by dec-TBN while maintaining or improving dec-TBN localization
accuracy. Dec-TBN performed particularly well with the planning algorithm in missions 1
and 3. During mission 1, the communication policies utilized one communication from
Nemo to Dory, whereas 12 communications were available between the vehicles. During
the third mission, four communications were utilized from Dory to Nemo with a total of 10
communications being available. Figures 12 and 14 also depict this trend with the planned
communications joint error generally trending below the other errors.

Mission 2 had a relatively low error in corrected dead reckoning. Dec-TBN-planned is
able to slightly improve the vehicles’ localization, while TBN and dec-TBN-full do slightly
worse. It can be seen in Figure 16 that a portion of Dory’s TBN and dec-TBN paths follows
a straight line that is parallel to the GPS and dead reckoning paths, but is offset by some
distance. Particle filters are known to bounce around, so the straightness of this segment
suggests that altimeter data were not available which caused the particle filter to track
parallel to the dead reckoning path. The offset was likely caused by the particle filter
diverging before encountering this gap in altimeter data. The poor performance of dec-
TBN-full suggests that poor TBN localization during certain communications caused a
negative feedback loop that degraded the dec-TBN-full state estimates. This can be seen in
Figure 13 where the dec-TBN-full joint error spikes while the other errors stay low. The
communication planning algorithm does not anticipate the quality of the data. In this
case, the planned policy for this mission utilized five of the 21 available communications.
This not only reduced the negative feedback, but also chose communications that were
more informative.
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Figure 16. Dory’s paths from Mission 2. A gap in altimeter data is responsible for the straight section
of the TBN paths that parallel the GPS and dead reckoning paths.

In mission 4, dec-TBN-full achieves the lowest total error. The total error for dec-
TBN-planned is about 21% larger than full communication, but it still performs better
than TBN and dead reckoning while only using one of the 11 available communications
for that mission. Additionally, the random communication policies are able to achieve
similar localization results as the planning algorithm but they require a parameter sweep
to identify the appropriate communications bandwidth. Subsequently, the communication
planning algorithm is able to identify a competitive policy without trial and error.

5. Discussion

This paper has provided a communication planning algorithm for AUVs using decen-
tralized TBN (dec-TBN). The AUVs are assumed to be equipped with an altimeter and an
acoustic mode. The AUVs are also assumed to have knowledge of the other vehicle’s paths,
basic motion and noise models, and their starting location and its uncertainty. Additionally,
the AUVs are given a bathymetry map of the area they will be operating in. The communi-
cation planning problem is formulated as a constraint-based optimization. The problem is
then solved by forward-simulating the AUVs’ dec-TBN algorithms along their intended
paths and using the simulation states to construct a directed acyclic graph (DAG). After
the simulation reaches its goal state, the communication policy is determined by doing a
shortest path search through the DAG.

The communication planning algorithm was tested through simulations and field
trials. The simulation leveraged a bathymetry map that had been created from exhaustive
surveys of Lake Nighthorse, CO. It also utilized an altimeter model from an Ocean Server
Ecomapper AUV. The simulations involved two or more AUVs traversing the bathymetry
map along preplanned paths and localizing with dec-TBN. The dec-TBN was performed in
accordance with a number of communication regimes, including communication policies
generated by the planning algorithm, no communications, communications at every time
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step, and having communications spaced out at a variety of intervals. Each simulation
was repeated 100 times. The effectiveness of the communication regimes was determined
by the dec-TBN localization error calculated as the difference between the simulator’s
location of the vehicles and the dec-TBN state estimates. The simulations showed that the
communication planning algorithm provided a low bandwidth policy that also improved
localization accuracy over the other communication regimes.

To validate the communication planning algorithm, field trials were conducted on
Foster Reservoir, OR. Two Riptide micro-unmanned underwater vehicles (uUUVs) were
used to collect data in the reservoir. The two uUUVs followed preplanned paths on
the surface of the reservoir collecting GPS, altimeter, acoustic communication, and dead
reckoning data. The data were then used to construct a bathymetry map of the area that
the vehicles had been in. The data were also used to build instruments and process models
of the uUUVs. The planning algorithm was used to generate communication policies for
the paths followed by the uUUVs given their vehicle models and the bathymetry map.

The communication policies were evaluated by playing back the mission data and
using a dec-TBN algorithm to localize the vehicles. Four communication regimes were used
for this evaluation: no communication, full communication, the communication policy,
and random communication policies of varying bandwidth. For full communication, all of
the available acoustic communications were provided to the dec-TBN algorithm. For the
communication policy, only the available acoustic communications that coincided with a
planned communication were provided to the dec-TBN algorithm. Six random policies
used varying numbers of communication placed at random time steps. The random
communications were used if they coincided with an available acoustic communication.

The results show that the communication policy used 43% or less of the available
communications and provided better localization on three of the four data sets. On the
fourth data set, the full communication regime provided more accurate localization, but
the communication policy maintained 86% of the localization accuracy while using 9%
of the communications. The results from the field trials and simulations indicate that the
policies produced by the planning algorithm reducing the communication bandwidth used
for localization messages while maintaining, if not improving, the localization accuracy of
dec-TBN.
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15. Barciś, M.; Barciś, A.; Hellwagner, H. Information Distribution in Multi-Robot Systems: Utility-Based Evaluation Model. Sensors
2020, 20, 710. [CrossRef] [PubMed]

16. Best, G.; Forrai, M.; Mettu, R.R.; Fitch, R. Planning-Aware Communication for Decentralised Multi-Robot Coordination.
In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australia,
21–25 May 2018; pp. 1050–1057.

17. Best, G.; Martens, W.; Fitch, R. Path planning with spatiotemporal optimal stopping for stochastic mission monitoring. IEEE
Trans. Robot. 2017, 33, 629–646. [CrossRef]

18. Carreno, S.; Wilson, P.; Ridao, P.; Petillot, Y. A survey on terrain based navigation for AUVs. In Proceedings of the IEEE/MTS
OCEANS Conference, Seattle, WA, USA, 20–23 September 2010; pp. 1–7.

19. Melo, J.; Matos, A. Survey on advances on terrain based navigation for autonomous underwater vehicles. Ocean Eng. 2017,
139, 250–264. [CrossRef]

20. Survey, U.S.G. National Water Information System, Fosters Lake. 2020. Available online: https://waterdata.usgs.gov/nwis/uv?
cb_62614=on&format=gif_default&site_no=14186600 (accessed on 1 November 2020).

21. Schön, T.B.; Gustafsson, F.; Karlsson, R. The particle filter in practice. In The Oxford Handbook of Nonlinear Filtering; Oxford
University Press: Oxford, UK, 2011; pp. 741–767.

http://dx.doi.org/10.1002/rob.21832
http://dx.doi.org/10.1007/s10514-015-9508-2
http://dx.doi.org/10.1007/s10514-019-09849-0
http://dx.doi.org/10.3390/s20030710
http://www.ncbi.nlm.nih.gov/pubmed/32012915
http://dx.doi.org/10.1109/TRO.2017.2653196
http://dx.doi.org/10.1016/j.oceaneng.2017.04.047
https://waterdata.usgs.gov/nwis/uv?cb_62614=on&format=gif_default&site_no=14186600
https://waterdata.usgs.gov/nwis/uv?cb_62614=on&format=gif_default&site_no=14186600

	Introduction
	Related Work
	Terrain-Based Navigation
	Communication Planning

	Methods and Materials
	Methods
	Problem Formulation
	Communication Planning Algorithm
	Decentralized TBN Algorithm

	Materials
	Simulations
	Field Trial AUVs
	Vehicle Modeling


	Results
	Simulation
	Field Trials
	Bathymetry Map
	Experiments


	Discussion
	References

