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Abstract: This work considers a base station equipped with an M-antenna uniform linear array
and L users under line-of-sight conditions. As a result, one can derive an exact series expansion
necessary to calculate the mean sum-rate channel capacity. This scenario leads to a mathematical
problem where the joint probability density function (JPDF) of the eigenvalues of a Vandermonde
matrix WWH are necessary, where W is the channel matrix. However, differently from the channel
Rayleigh distributed, this joint PDF is not known in the literature. To circumvent this problem, we
employ Taylor’s series expansion and present a result where the moments of mn are computed. To
calculate this quantity, we resort to the integer partition theory and present an exact expression for
mn. Furthermore, we also find an upper bound for the mean sum-rate capacity through Jensen’s
inequality. All the results were validated by Monte Carlo numerical simulation.

Keywords: line-of-sight; sum-rate channel capacity; vandermonde matrix; multiple antennas

1. Introduction

Since the earliest stages of the development and prototyping of wireless communica-
tions, researchers introduced random matrix theory as a mathematical tool for modelling
and analysing wireless multiantenna communications [1]. A fully detailed model of a
multiantenna point-to-point link between a transmitter and a receiver requires the char-
acterisation of a product of random matrices. For example, cellular networks present
typical scattering phenomena whose entries are not necessarily independent random vari-
ables [2]. Usually, researchers analysed practical scenarios by adopting sampled matrices
from the Gaussian Unitary Ensemble [3] or Polynomial Ensemble [4] channel matrices,
which simplified the analysis of the wireless signal variations [5–8]. It is possible, for
instance, to find an adequately modelled multiantenna setup through sums and products
of random matrices [9]. Thus, the availability of explicit expressions for the channel ma-
trices’ spectral statistics makes the performance analysis and compact design guidelines
discussion possible.

Currently, the demand for more wireless services created urgency for larger bandwidth
available beyond the 6 GHz spectrum. 5G [10], for instance, adopted mmWave frequencies
to enable ultra-broadband communications, and the use of new technologies became
viable. It granted large integrated antenna arrays and directional beamforming to exist
due to the smaller wavelengths that allowed smaller element size. On the other hand,
the main caveat of mmWave communications is the higher attenuation, meaning that
few strong paths characterise a mmWave channel requiring better strategies to ensure
the access node and the user terminal alignment [11]. Henceforth, the usual Gaussian
Unitary or Polynomial Ensemble approach becomes an inappropriate fit in such a new
propagation reality, motivating the search for novel tools to improve channel model and
performance analysis.
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Wireless performance studies usually employ Vandermonde matrices as mathematical
channel models in applications such as system identification, harmonic analysis, direction-
finding and precoding [12–19]. Specifically, given a particular wireless environment, the
sum-rate channel capacity is better modelled by the Vandermonde matrix approach as
presented in [20–23]. For the first time, the authors demonstrated that the free probability
theory improves the accuracy of capacity calculations by including rows of the channel
matrix corresponding to the weaker links [24]. Most of those efforts focused on the
limit eigenvalue distribution of random Vandermonde matrices with unit magnitude and
complex independently and identically distributed phase entries. In [22], the authors
first introduced analytical methods for finding the moments of random Vandermonde
matrices with elements on the unit circle and introduced the concept of Vandermonde mixed
moment expansion coefficient. Later on, the authors of [21] investigated the behaviour of the
matrices’ eigenvalues and their impact on system capacity. The work in [25] derives an
estimation on the number of degrees of freedom for the multiple-input, multiple-output
(MIMO) transmission assuming a line-of-sight environment. Again, they use the random
matrices approach, dependent on a linear number of random variables. They characterise
the number of most significant singular values and give an upper bound on the highest
singular value’s size. Finally, the conclusions presented in [23] includes upper and lower
bounds for the maximum eigenvalue of random unit magnitude Vandermonde matrices,
which are essential tools to calculate an explicit expression for the asymptotic capacity of
the Vandermonde channel.

In this work, there is a proposal for an upper bound and a method to derive an exact
series expansion for calculating the mean sum-rate channel capacity. The setup scenario
considers a base station equipped with an M-antenna uniform linear array and L users
under line-of-sight condition. This scenario leads to a mathematical problem where the
joint probability density function (JPDF) of the eigenvalues of a Vandermonde matrix WWH

are necessary, where W is the channel matrix. Similar to what was exposed earlier, the
usual Gaussian Unitary or Polynomial Ensemble approach becomes an inappropriate fit to
the derived JPDF. The novelty of our work is on circumventing this problem by employing
Taylor’s series expansion to derive the moments of mn = E

[
trL

((
WHW

)n
)]

required to
compose the calculation of sum capacity. The exploration of the integer partition theory
properties is the solution to find the exact expression for all mn. We also give examples of
how to derive the formulation and find the resulting sum-rate capacity. Furthermore, we
also find an upper bound for the mean sum-rate capacity by using Jensen’s inequality. The
validation of the results comes from Monte Carlo numerical simulations.

The paper is organised as follows. Section 2 refers to the development of the methods
for calculating the mean capacity when one considers a random Vandermonde matrix.
Section 3 presents a numerical analysis that evaluates the methods and compares the results
with simulations. Finally, the discussion is closed in the Section 4.

2. Channel Capacity

For a general matrix W with M lines and L columns consider the mean capacity
defined as [20]

C =
1
L
E
[
log2

∣∣∣IL + γWWH
∣∣∣]

=
1
L

L

∑
k=1

E[log2(1 + γλk)]

=
∫
R

log2(1 + γt)p(t)dt,

(1)

where γ is the signal-to-noise ratio (SNR), λk is the instantaneous k-th eigenvalue of the
matrix WWH and p(t) is the marginal distribution of the eigenvalues. Usually, this model
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is generally represented by the diagram of Figure 1 with M antennas at the base station
and L single-antenna users.

Sum-rate channel vectors arise in a uniform linear antenna array (ULA) at the trans-
mitter under far-field, line-of-sight propagation conditions. Such conditions frequently
manifest in realistic wireless backhaul scenarios [26]. Here, if uniformly distributed users
transmit signals to the base station, then one can suitably represent the wireless channel
by a random Vandermonde matrix with unit magnitude (i.e., users can control the power
such that unitary magnitude is possible throughout all the matrix elements) and complex
phase entries such that

V =


1 · · · 1

e−jω1 · · · e−jωL

...
. . .

...
e−j(M−1)ω1 · · · e−j(M−1)ωL

, (2)

where ωl is an independent and identically distributed random variable. Unlike the case
of complex Gaussian entries, formulas for the capacity when W is a Vandermonde matrix
are still yet not well explored [20].

...

1

2

3

4

5

L...

4321 5 M

Figure 1. Diagram of a uniform linear array base station with M antennas and L users.

2.1. Approximation by Taylor Series

When applying Taylor series, one has that [27]

log2(1 + t) =
1

ln 2

∞

∑
k=1

(−1)k+1 tk

k
, (3)

so that it converges only when t < 1. If one substitutes (3) into (1), then

C =
1

ln 2

∞

∑
k=1

(−1)k+1

k
γk
∫

tk p(t)dt

=
1

ln 2

∞

∑
k=1

(−1)k+1

k
γkmk,

(4)

where
mk =

∫
tk p(t)dt, (5)



Sensors 2021, 21, 1674 4 of 15

for k ∈ Z+, mk are the average moments of WWH . Following this method, the authors
of [20] show that one can calculate capacity through a finite partial sum of (4). In that
case, the calculations relied on up to seven terms in (4) using the method described in [21].
This approach is valid for low SNR values, which does not suffice in capacity estimation
for Vandermonde matrices over a wide range of SNR values. As suggested in [20], an
extension to the methods proposed in [21] or novel methods are needed.

In this manuscript, with the aim of coming up with a different Taylor expansion other
than the one in (3), one considers a one-dimensional Taylor series as an expansion of a real
function f (t) about a point γ0 so that [28]

f (t) = f (γ0) + f ′(γ0)(t− γ0)

+
f ′′(γ0)

2!
(t− γ0)

2

+ ...

+
f (n)(γ0)

n!
(t− γ0)

n + ...

one can express other form of (3) such that

log(1 + γt) =
1

ln 2

(
log(1 + γγ0)+

∞

∑
k=1

(−1)k+1

k(1 + γγ0)k γk(t− γ0)
k

)
.

(6)

The expression (6) is only valid for the condition
∣∣∣ γ(t−γ0)

1+γγ0

∣∣∣ < 1. If one substitutes (6)
in (1), then the following can be written

C =
1

ln 2

(
log(1 + γγ0)+

∞

∑
k=1

(−1)k+1

k(1 + γγ0)k γk
∫
(t− γ0)

k p(t)dt

) (7)

Notice that in (7), the term
∫
(t− γ0)

k p(t)dt must be evaluated for each value of k. For
instance, for k = 2, the term

∫
(t− γ0)

k p(t)dt can be written as∫
(t− γ0)

2 p(t)dt

=
∫

t2 p(t)dt− 2γ0

∫
tp(t)dt + γ2

0

∫
p(t)dt

= m2 − 2γ0m1 + γ2
0.

(8)

For k = 2, three moments are required according to the previous algebraic expan-
sion. Following the same rationale and using Newton’s polynomial expansion, (7) can be
written as

C =
1

ln 2

(
log(1 + γγ0) +

∞

∑
k=1

(−1)k+1

k(1 + γγ0)k γkΨk(γ)

)
, (9)

where

Ψk(γ) =
k

∑
i=0

(−1)k−i
(

k
i

)
γk−i

0 mi (10)

Regarding Equations (4) and (9), both require the availability of mk moments that
can impact on the desired quality of the capacity estimation. The full computation of the
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first seven lower-order moments described in [21] are difficult to derive, and higher-order
moments add further burdens to this task as a tedious evaluation of many integrals is
needed and, as alternative, the usage of numerical methods. Thus, here one deal with the
computation of mk by reframing the problem of the mean empirical eigenvalue distribution
of WHW depicted in [20].

2.1.1. Computation of mk

As it is clear in (9), the computation of mk is essential. As it is well known, the
eigenvalue moments can be computed as [29]

mk = E
[

trL

((
VHV

)k
)]

= E
[
trL

(
VHV ·VHV · · ·VHV

)]
,

(11)

where trL(·) = L−1Tr(·) is the normalised trace. Originally, there are other ways to calculate
(11) where further details can be found in [20,21,23]. The most important conclusion taken
from previous works is that (11) can be addressed as a counting problem according to what
one can explore in Appendix A. The solution of (11), in terms of a combinatorics approach,
depends on the understanding of partition of a set [30]. Thus, it is important to highlight
the following definition:

Definition 1. Define P(n) as the set of all partitions of {j1, j2, · · · , jn}. ρ is a partition in P(n)
such that ρ = {ρi | i ∈ Z+}. P(n, k) = {ρ | ∀ρ ∈ P(n), |ρ| = k}. ρi is a subset (also
denominated as block) of ρ. The | · | operator when applied to sets gives their cardinality.

One can write the exact moments (see Appendix A for the proof), considering that
0 < ω < 2π is uniform and identically distributed, as

mn = E
[
trL

((
VHV

)n)]
=

n

∑
k=1

(
Mn+1−k

(MN)n

)(
N
k

)
Γ(n, k),

(12)

where

Γ(n, k) = ∑
ρ∈P(n,k)

|ρ|!n!
|ρ|

∏
i=1

(ri!)(i!)ri

, (13)

rk =

{
|Rk| , ∃Rk

0 , otherwise
, (14)

and,Rk = {A ∈ ρ | |A| = k}.
Here, one use partition sets to calculate the moments. Currently, there is no closed-

form expression for calculating the moments using partition sets. However, it has both
asymptotic expansions that accurately approximate it and recurrence relations by which
calculates exactly. Further hints are given in Appendix A.
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2.2. Example on How to Evaluate mn

In this given example, make M = N = 4. For calculating m1, substitute directly the
values in (12) such that

m1 =
n

∑
k=1

(
Mn+1−k

(MN)n

)(
N
k

)
Γ(n, k),

=
1

∑
k=1

(
41+1−1

(4.4)1

)(
4
1

)
Γ(1, 1).

Here, Γ(n, k) presents a detailed evaluation because it involves an algorithmic calcu-
lation based on the partition sets’ analysis. Nevertheless, once the process is understood,
calculating all moments is similar to calculating the first one. To do this, use Table 1, which
shows the equivalence of integer partitions and all the possible partitions formed by jk
objects for some values of n. Furthermore, use Table 2, which shows all possible cardi-
nalities for ρ and the subsets ρk presented in the Table 1. These tables offer the necessary
information used to evaluate Equations (12)–(14) in this specific example.

Given (13), the reader first need to evaluate ρ ∈ P(n, k) to find the items of the
summation term. If n = 4, the only case where there are two summation terms is when
k = 2 according to Table 1 (i.e., “3 + 1”, “2 + 2”). Notice that for other values of k, one
obtain only one summation term in (13).

Table 1. Integer partition and the sets of jk objects equivalency.

n Integer Partition Equivalent jk Sets Partition ρ
1 1 {{j1}} {ρ1}

2 2 {{j1, j2}} {ρ1}
1+1 {{j1}, {j2}} {ρ1, ρ2}

3
3 {{j1, j2, j3}} {ρ1}

1+2 {{j1}, {j2, j3}} {ρ1, ρ2}
1+1+1 {{j1}, {j2}, {j3}} {ρ1, ρ2, ρ3}

4

4 {{j1, j2, j3, j4}} {ρ1}
3 + 1 {{j1, j2, j3}, {j4}} {ρ1, ρ2}
2 + 2 {{j1, j2}, {j3, j4}} {ρ1, ρ2}

2 + 1 + 1 {{j1, j2}, {j3}, {j4}} {ρ1, ρ2, ρ3}
1 + 1 + 1 + 1 {{j1}, {j2}, {j3}, {j4}} {ρ1, ρ2, ρ3, ρ4}

Next, evaluate ri for each summation term defined by ρ ∈ P(n, k) expressed by
(13). Given a chosen partition in the set P(n, k), ri refers to the number of subsets with
cardinality equals to i. For instance, if the summation term corresponds to, for example,
the decomposition “3 + 1”, then see that there is only one subset with three elements and
one subset with one element in Table 1. Thus, it is straightforward to check Table 2 and
conclude that r1 = 1 and r3 = 1. On the other hand, if the summation term corresponds to
the decomposition “2 + 2”, then two subsets have two elements and, henceforth, r2 = 2.
All values of ri up to n = 4 can be obtained from Table 2.



Sensors 2021, 21, 1674 7 of 15

Table 2. Integer partition cardinalities of the subsets ρk. It highlights the number of subsets with the
same cardinality.

Integer
Partition |ρk| = 1 |ρk| = 2 |ρk| = 3 |ρk| = 4 |ρ|

1 1 0 0 0 1

2 0 1 0 0 1
2 0 0 0 2

3
0 0 1 0 1
1 1 0 0 2
3 0 0 0 3

4

0 0 0 1 1
1 0 1 0 2
0 2 0 0 2
2 1 0 0 3
4 0 0 0 4

Now, remind m1 and evaluate Γ(1, 1). A quick glimpse at Tables 1 and 2 lets us know
that Γ(1, 1) = 1 and, henceforth, m1 = 1.

Next,

m2 =

(
42+1−1

(4.4)2

)(
4
1

)
Γ(2, 1)

+

(
42+1−2

(4.4)2

)(
4
1

)
Γ(2, 2).

As it was previously done, if we use (13), and Tables 1 and 2, then Γ(n, k) is evaluated
such that

Γ(2, 1) =
1!2!

(r1!)(1!)r1 × (r2!)(2!)r2
=

1!2!
(0!)(1!)0 × (1!)(2!)1 .

Similarly,

Γ(2, 2) =
2!2!

(r1!)(1!)r1 × (r2!)(2!)r2
=

2!2!
(2!)(1!)2 × (0!)(2!)0 .

Finally,

m2 =
1
4
+

3
16

=
7

16
.

Continue the same procedure such that

m3 =

(
43+1−1

(4.4)3

)(
4
1

)
Γ(3, 1)

+

(
43+1−2

(4.4)3

)(
4
2

)
Γ(3, 2)

+

(
43+1−3

(4.4)3

)(
4
3

)
Γ(3, 3),
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and then Γ(n, k) is evaluated such that

Γ(3, 1) =
1!3!

(1!)(3!)1 ,

Γ(3, 2) =
2!3!

(1!)(1!)1 × (1!)(2!)1 ,

Γ(3, 3) =
3!3!

(3!)(1!)3 .

Finally,

m3 =
1
16

+
9

64
+

3
128

=
29

128
.

Now, evaluate the fourth moment such that

m4 =

(
44+1−1

(4.4)4

)(
4
1

)
Γ(4, 1)

+

(
44+1−2

(4.4)4

)(
4
2

)
Γ(4, 2)

+

(
44+1−3

(4.4)4

)(
4
3

)
Γ(4, 3)

+

(
44+1−4

(4.4)4

)(
4
4

)
Γ(4, 4),

The procedure continues the same as all previous ways to evaluate Γ(n, k) despite one
exception. As discussed earlier, if n = 4, the only case where there are two summation
terms in (13) is when k = 2 according to Table 1 (i.e., notice two partitions that |ρ| = 2).
Thus, evaluating these cases the same way we did earlier but considering summation terms
such that

Γ(4, 2) =
2!4!

(1!)(1!)1 × (1!)(3!)1 +
2!4!

(2!)(2!)2 .

Finally,

m4 =
1

64
+

[
9

256
+

3
64

]
+

9
256

+
9

4096
=

553
4096

.

Using m1, m2, m3 and m4 enables the reader to use (9), (10) and calculate the sum rate
capacity as

C =
1

ln 2

(
log(1 + γγ0) +

γ
( 7

16 − γ0
)

1 + γγ0

− γ2
29

128 −
7γ0

8 + γ2
0

2(1 + γγ0)2 + γ3
533

4096 −
87γ0
128 +

21γ2
0

16 − γ3

3(1 + γγ0)3 + · · ·

,

2.3. Upper Bound

One can state that the matrix WHW is bounded such that∣∣∣det(WHW)
∣∣∣ ≤ K

∏
i=1
||vi||. (15)
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If M→ ∞, L→ ∞, and c = L
M , then the products of 〈vi, vj〉 → 0, for i 6= j [31]. Thus,

in the limit, equality in Hadamard’s inequality is achieved. Therefore, from (1), an upper
bound for the sum rate capacity is expressed as

C ≤ log2

(∣∣∣IL + γ diag(WHW)
∣∣∣)

C ≤ log2

(∣∣∣∣IL + γ
IL
L

∣∣∣∣)
≤ log2

([
L + γ

L

]L
)

.

(16)

3. Numerical Analysis

In Section 2, several methods on how to calculate the capacity when W is considered
as a Vandermonde matrix (with uniformly distributed phases). This section will evaluate
the analytical development from the previous subsections using simulations.

In Section 2.1, this investigation proposed a different Taylor expansion other than
(3), considering a Taylor expansion as a power series expansion for log(1 + γt) about the
point γ = γ0. Furthermore, Equations (4) and (7) require the calculation of moments mk
as described in the Section 2.1.1. In order to compute mk, random phase arguments are
generated and used in Equation (11). The calculation of the squared error (SE) is computed
as follows.

1. Generate K ensembles of V according to Equation (2). Consider V a matrix with unit
magnitude and ωl an independent and identically distributed random variable.

2. Calculate the moments m̃n = 1
K ∑K

i=1 trL

((
Vi

HVi

)n)
using the previous generated

ensembles.
3. Employ Equations (12)–(14) to derive the analytical moments.
4. Find SE by calculating (m̃n −mn)2.

Figure 2 shows the square errors for moments of order n = {2, 3, 4, 5} versus the num-
ber of sample points K, ranging from 10 to 70. It is important to observe the convergence of
the simulated moments of the Vandermonde matrices (with uniformly distributed phases)
towards the analytical moments mk as the number of samples increases. Note that the error
magnitude is as low as 10−5 for moment of order n = 2 with only ten samples. Notice also
that the error magnitude decreases as the order n of the moment increases.

10 20 30 40 50 60 70

Samples

0

1

2

3

4

5
10-5

n=2
n=3
n=4
n=5

Figure 2. SE of the first 4 simulated moments (m̃n) from the exact moments (mn) with M = L = 8.
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Next, this investigation compares the methods for calculating capacity through Equa-
tions (4) and (7). The setup of simulation assumes the values of antennas and users as
M = L = {4, 8, 16, 32}. The simulation uses the same steps required to generate random
phase arguments for the matrix V discussed previously. The calculation of the moments
mk follows the description in the Section 2.1.1. Figure 3 illustrates the results comparing
the simulation and the analytical methods. To compute the analytical mean sum-rate, one
hundred moments has been used. Straight lines represent Equation (7) and dashed lines
represent Equation (4). The coloured discrete symbol × represents the values yielded by
the simulations. Notice the perfect matching between simulation and analytical results for
M = L = {4, 8, 16, 32}. For Equation (4), as it is a series representation around γ = 0, it is
expected that when the curve moves away from the origin, the series representation will
no longer be as good as in the region near γ = 0.

The analytical upper bound, given in Equation (16), is compared against the simulation
using the steps for generating a random variable V described previously. Figure 4 illustrates
the results comparing the simulation and the upper bound approximation. Here, straight
lines represent the curve for Equation (16) and the coloured discrete symbol × represents
the values yielded by the simulations. As the number of base station antennas and users
M = L increases, the gap between the upper bound and simulation decreases.

0 2 4 6 8 10
0

5

10

15

C
ap

ac
ity

M=L=4
M=L=8
M=L=16
M=L=32

Eq. 7

Eq. 4

Sim.

Figure 3. Analytical mean sum-rate capacity compared with simulation.
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0 2 4 6 8 10
0

5

10

15

C
ap
ac
ity

M=L=4
M=L=8
M=L=16
M=L=32

Figure 4. Analytical upper bound sum-rate capacity compared with simulation.

4. Conclusions

This work investigates a base station equipped with an M-antenna uniform linear
array and L users under line of sight condition. An exact series expansion to calculate the
mean sum-rate channel capacity is presented. This scenario led to a mathematical problem
where the joint probability density function (JPDF) of the eigenvalues of a Vandermonde
matrix WWH were a necessary model, where W is the channel matrix. However, differently
from the case where the channel is Rayleigh distributed, this joint PDF is not known. To
circumvent this problem, one can employ Taylor’s series expansion and present a result
where the moments of mn = E

[
trL

((
WHW

)n
)]

are computed. To calculate this quantity,
this investigation resorted to the integer partition theory and presented an exact expression
for mn. Furthermore, one can derive an upper bound for the mean sum-rate capacity by
making use of Jensen’s inequality. All the results were validated by Monte Carlo numerical
simulation.

Future Works

In this work, we have assumed that the phase distribution of the entries of matrix W
are uniformly distributed. It would be interesting investigating other phase distributions,
such as the Von Misses distribution, which have parameters that better translate the
directivity of the user. Other possible point of future investigation would be further
simplification of the expressions associated to the integer partition theory. Furthermore, it
would be interesting to investigate the use of large intelligent surfaces (LIS) [32] to aid the
communication between the MIMO base station and the users.
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Appendix A. Vandermonde Moment Coefficient

Proceed with the proof of (12). Calculate

mn = E
[
trL

((
VHV

)n)]
= E

[
trL

(
VHV ·VHV · · ·VHV

)]
,

(A1)

where trL(·) = L−1Tr(·) is the normalised trace. This expression can be expanded as

mn = E

L−1 ∑
i1,...,in
j1,...,jn

V(j1, i2)H ×V(i2, j2)×
V(j2, i3)H ×V(i3, j3)×

... ×n

V(jn, i1)H ×V(i1, j1)

, (A2)

so that jn ∈ Z and in ∈ Z indexes the lines and columns of matrix V.
Substitute the elements of (2) in (A2) to have a new representation of (A1), which can

be expressed as

mn =E

N−nL−1 ∑
i1,...,in
j1,...,jn

ej(i2.ωj1) × e−j(i2.ωj2)×
ej(i3.ωj2) × e−j(i3.ωj3)×

... ×n

ej(i1.ωjn) × e−j(i1.ωj1)

, (A3)

or, for a more convenient representation, the following expression,

mn =N−nL−1 ∑
i1,...,in
j1,...,jn

E


ej(i2−i1)ωj1×
ej(i3−i2)ωj2×
ej(i4−i3)ωj3×

... ×n

ej(in−in−1)ωjn

, (A4)

where 0 < ik < M, 1 < jk < L. Notice that as n increases, the number of required jk and ik

indexes also grows making the computation of E
[
trL

((
VHV

)n
)]

more complicated. As
earlier introduced in Section 2.1.1, one way to simplify the design problem is to treat the
indexes jk as elements of a set.

According to the properties given in Definition 1, suppose a given sequence (j1, j2, ..., jn)
gives rise to a partition ρ = {ρk | k ∈ Z+}. The formation law of the subset ρk is determined
by repeated values assumed in some instance of the sequence (j1, j2, ..., jn) during the
evaluation of the summations in (A4). Thus, ρk is formally expressed as

ρk = {jr | (1 ≤ r ≤ n)(∃s ∈ Z+)[jr = s]}, (A5)

for some instance of the sequence (j1, j2, ..., jn) in (A4).
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Using Definition 1, (A4) can be rewritten as

mn = N−nL−1 ∑
ρ∈P(n)

∑
i1,...,in

∑
j1,...,jn

giving rise to ρ

E

[ |ρ|
∏
k=1

ej
(

∑r∈ρk
ir−1−∑r∈ρk

ir
)

ωρk

]
.

(A6)

Now, the indexes jk presented in the summation of (A4) do not follow an ordered
incremental sequence of values within the range 1 ≤ jk ≤ L. It follows the order of the
possible sets ruled by (A5). A further manipulation of (A6) allows us to find another
convenient representation of (A6) as

mn = ∑
ρ∈P(n)

∑
j1,...,jn

giving rise to ρ

∑
i1,...,in

N|ρ|−n−1c|ρ|−1L−|ρ|

E

[ |ρ|
∏
k=1

ej
(

∑r∈ρk
ir−1−∑r∈ρk

ir
)

ωρk

]
,

(A7)

where c = L
N .

As a support for understanding the role of the set ρ, let us assume for this moment a
partition ρ = {{1, 2, 3, · · · , n}} for a certain instance of the sequence (j1, j2, j3, · · · , jn). In
this case, the partition ρ has only one element as one can assume that j1 = j2 = j3 = · · · = jn
and, henceforth, ωj1 = ωj2 = ωj3 = · · · = ωjn . If one evaluates (A7) using the current

instance of ρ, the argument of the expectation becomes ∏
|ρ|
k=1 ej(0)ωρk = 1 no matter what is

the value assumed by the random variable ωρk .
Now suppose a partition ρ = {{1}, {2}, {3}, · · · , {n}} for a certain instance of

(j1, j2, j3, · · · , jn). In this case, the partition ρ has a total of n elements, which indicates that
not a single pair of jn has the same values in the sequence. Thus, the expectation in (A7)
can be written as

E
[ |ρ|
∏
k=1

ej
(

∑r∈ρk
ir−1−∑r∈ρk

ir
)

ωρk

]

=
|ρ|

∏
k=1

∫
ωρk

ej
(

∑r∈ρk
ir−1−∑r∈ρk

ir
)

ωρk f (ωρk )dωρk ,

(A8)

where f (ωρk ) is the probability distribution function of ωρk .
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Assuming the probability density function as f (ωρk ) = 1/2π for 0 < ωρk < 2π, the
following can be written

E
[

ej
(

∑r∈ρk
ir−1−∑r∈ρk

ir
)

ωρk

]
=

{
1, for ∑r∈ρk

ir−1 = ∑r∈ρk
ir

0, otherwise
.

(A9)

The reader can count how many times (A9) assumes the unity value by knowing the
cardinality of Sρ,N , which is given by

Sρ,N =

{i1, i2, · · · , in}| ∑
k∈ρj

ik−1 = ∑
k∈ρj

ik∀j ∈ {1, 2, · · · , |ρ|}.

 (A10)

If one consider again that |ρ| = 1, one have that ωρ1 = ωρ2 = · · · = ωρn and,
henceforth, the number of solutions of (A10) is equal to the number of permutations of
the sequence (j1, j2, · · · , jn) such that |S1,N | = Nn. On the other hand, if one consider that
|ρ| = n from the previous discussion, then no permutation is possible and |Sn,N | = N. For
other values of |ρ| it is easy to see that |Sρ,N | = Nn+1−|ρ|.

Note that the mean calculation is equivalent to count the set of solutions for each
instance of ρ. Furthermore, no closed-form expression for the partition function is known,
but it has both asymptotic expansions that accurately approximate it and recurrence
relations that allow us to calculate it precisely.
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