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Abstract: An efficient near-to-far-field transformation (NTFFT) technique, wherein the near-field
(NF) measurements are acquired along a planar spiral with a uniform step to make the control of
the involved positioners easier, is developed in this article. Such a technique is tailored for quasi-
spherical, i.e., volumetric, antennas under test and makes use of a reduced number of NF data. An
effective two-dimensional sampling interpolation algorithm, allowing the accurate reconstruction
of the input NF data for the standard NTFFT with plane-rectangular scan, is obtained by setting
the spiral step equal to the sample spacing required for interpolating along a radial line according
to the spatial bandlimitation properties of electromagnetic fields, and by properly developing a
non-redundant representation along such a spiral. Tests results are reported to demonstrate that the
proposed NTFFT technique retains the same accuracy as the standard plane-rectangular one.

Keywords: antenna measurements; non-redundant sampling representation of electromagnetic field;
uniform planar spiral scanning; near-to-far-field transformations

1. Introduction

The accurate characterization of an antenna is a metrological challenge whose complex-
ity depends on the region surrounding the antenna under test (AUT), wherein the data are
measured, i.e., the near-field (NF) or far-field (FF) region, the measurement environment,
the facility used to collect the measurements, and the characteristics to be determined [1,2].
Direct FF measurements are the easiest ones from a computational viewpoint, but they
require large outdoor ranges to allow the characterization of electrically large antennas.
In any case, drawbacks related to the transportation and mounting of these AUTs make
these kinds of measurements unpractical and, due to the weather conditions and the pres-
ence of electromagnetic (EM) interferences, also inaccurate. This suggests that one should
perform the characterization through an indoor test range, which benefits from the fact
that measurements are performed in a controlled shielded environment, i.e., the anechoic
chamber. However, only NF measurements are usually allowed there, and the required FF
pattern has to be properly determined by means of a near-to-FF transformation (NTFFT)
technique [1–7]. Although the complexity grows in such a case, the NF measurements allow
us to not only obtain the complete FF pattern of the AUT, but also to exploit the available
information for diagnostic purposes (microwave holography). However, the accuracy of
the NTFFT results is affected by several issues, such as, for instance, the truncation of the
scanning area, the presence of residual reflections, and the interaction between the probe
and the AUT [8].

To determine the radiated FF pattern from the measured NF data, the NTFFT tech-
niques make use of modal expansions of the AUT field, which, depending on the type of
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chosen NF scanning surface, involve plane, cylindrical or spherical waves. The choice of
which scanning has to be employed is dictated by the type of the antenna, the measurement
requirements, and the needed analytical and mechanical complexities.

The NTFFTs with planar scans [9–23] represent the better choice when dealing with
high gain antennas with pencil beam radiation patterns well within the solid angle identi-
fied by the AUT edges and the measurement area ones.

The standard NTFFT with plane-rectangular scanning [9,10] is the simplest one from
analytical and computational viewpoints. In any case, the scanning requires a long mea-
surement time owing to the massive amount of required NF samples, which becomes
greater and greater as the working frequency and/or the scanning plane sizes increase.
The employment of plane-polar [11–13] and bi-polar [14–16] scanning makes possible a
scanning over a larger area as compared to that of a plane-rectangular setup for a given
dimension of the measurement chamber, a finer tuning of the anechoic chamber and, in-
volving rotational movements, a greater accuracy. However, the corresponding NTFFTs
still require a massive amount of NF measurements, which leads to long scanning times.

Over the years, the scientific and industrial communities have felt the necessity to
devote their efforts to find solutions capable to lower the number of the needed NF data
and speed up the characterization process, without any loss in accuracy. To this end, the
theoretical results on the non-redundant representations of EM fields [24,25] have been
profitably exploited in [17–23] to massively reduce the number of needed NF data in
plane-rectangular, plane-polar, and bi-polar scans, respectively.

It can be easily recognized that a time saving can be experienced not only by reducing
the number of required NF samples, but also by making their acquisition faster. To this end,
Rahmat-Samii et al. suggested in [26] the use of continuous and synchronized motions
of the positioners of the probe and AUT. NTFFT techniques with planar spiral scanning
have been developed in [27–33] by suitably following such a hint. In particular, the
NTFFTs in [28–33] permit a greater saving time, since, by applying the non-redundant
representations [24,25] and properly exploiting the unified theories of spiral scans [32,33],
they employ a reduced number of NF samples and spiral turns. Two-dimensional (2-
D) optimal sampling interpolation (OSI) expansions allow one to accurately recover the
huge number of NF data required by the standard plane-rectangular NTFFT [9] from the
non-redundant spiral samples.

The remarkable saving of measurement time is due to both the hugely reduced number
of required NF samples and to how the rotary movement of the AUT positioner and the
linear one of the probe positioner are combined during the acquisition on fly. In any case,
such a drastic measurement time saving is obtained at the expense of a non-uniform step
of the spiral [28–31]. In fact, since the spiral step is related to the sample spacing needed
for the interpolation on a radial line, the distance between two consecutive intersections
of the spiral with a radial line grows on increasing the distance from the center of the
scanning area. Hence, the velocity of the linear positioner cannot be constant, but must
vary according to a non-trivial law to correctly draw the spiral, and this, obviously, is
reflected in a complex and sophisticated control system of the linear positioner.

This article’s aim is to develop an effective NTFFT technique with planar spiral
scanning for volumetric AUTs, wherein the spiral step is uniform and, hence, the velocity
of the linear positioner is constant. To this end, by paralleling the reasoning made in [34]
with reference to the NTFFT with a uniform helicoidal scan, the AUT is considered to
be enclosed in a sphere, the spiral is chosen in such a way that its step coincides with
the sample spacing needed for interpolating on a radial line according to the spatial
bandlimitation properties [35], and the non-redundant representation along such a spiral is
properly determined. Then, a 2-D OSI algorithm is ad hoc developed to recover the input
NF data for the NTFFT [9] from the spiral NF samples.

The article is organized as follows. The introductive section is devoted to briefly
reviewing the state of the art and to highlighting the motivation and interest for developing
a non-redundant scanning technique, wherein, to simplify the control of the involved
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positioners, the NF samples are collected along a planar spiral with uniform step. The
non-redundant representation of the voltage over the plane from its samples gathered
along the spiral and the corresponding 2-D OSI algorithm are developed in the subsequent
section. The effectiveness of the so obtained NTFFT with planar spiral scan tailored to
volumetric AUTs is assessed in Section 3. Concluding remarks are provided in Section 4.

2. Efficient Voltage Representation over a Plane from a Reduced Number of NF
Spiral Samples

The spatial bandlimitation properties of EM fields [35] and the results relevant to
their non-redundant representations [24] are properly exploited to develop an efficient
sampling representation of the voltage gathered by the measuring probe over a plane from
its samples acquired on the spiral.

Let an electrically large volumetric, i.e., quasi-spherical, AUT be considered to be
contained in a sphere of radius a (the smallest one enclosing it), and let an electrically small
probe with a first order azimuthal dependence (first-order probe) be used to acquire the NF
samples along a spiral lying on a plane placed at a distance d from the center O of the AUT.
Moreover, let (x, y, z) be a Cartesian coordinate system centered at O, (r, ϑ, ϕ) a spherical
coordinate system employed to identify an observation point P, and (ρ, ϕ) the plane-polar
coordinates specifying P on the scanning plane (see Figure 1).

1 
 

 

Figure 1. Planar spiral scanning with uniform step.

As shown in [36], the voltage V revealed at the terminals of the chosen probe has
the same spatial bandlimitation properties of the AUT radiated field and, accordingly, the
outcomes in [24] can also be applied to the measured voltage. According to [24], once the
scanning spiral is represented in terms of a proper analytical parameterization r = r(η)
and a suitable phase factor e−jψ(η) is singled out from the expression of V, it is possible to
define the “reduced voltage” as

Ṽϕ, ρ(η) = Vϕ, ρ(η) ejψ(η) (1)

The indices φ and ρ denoting the voltage of the probe and rotated probe. The so
obtained reduced voltage Ṽ is a function spatially quasi bandlimited to Wη [24], and
is effectively approximated by a function bandlimited to χ′Wη , by choosing an excess
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bandwidth factor χ′, which ensures a reasonably small bandlimitation error. Note that a
χ′-value slightly larger than unity is enough in the case of electrically large AUTs [24,35].

The following expressions for the optimal phase function and parameterization [24]
can be used to obtain a non-redundant sampling representation of the voltage on the spiral:

ψ (η) =
β

2

σ(Q)∫
0

[
max

r′
R̂ · t̂ + min

r′
R̂ · t̂

]
dσ (2)

η =
β

2Wη

σ(Q)∫
0

[
max

r′
R̂ · t̂ − min

r′
R̂ · t̂

]
dσ (3)

where β is the free-space wavenumber, σ is the curvilinear abscissa along the spiral, t̂ is the
unit vector tangent to it at the point Q on the spiral, r′ identifies the source point Q′, and R̂
is the unit vector from Q′ to Q.

By denoting with ϕ the angular parameter that describes the spiral, the coordinates of
Q can be so expressed: 

x = ρ cos φ
y = ρ sin φ

z = d
(4)

where ρ = φ k. Note that while the radial coordinate ρ is always positive, ρ can also
assume negative values. Moreover, the spiral angle ϕ is continuous, whereas, according to
Equation (4), the azimuthal angle ϕ has a jump discontinuity of π at the origin. The spiral
step is determined by two consecutive intersections Q(ϕ) and Q(ϕ + 2π) of the scanning
spiral with a given radial line. Hence, to make possible the recovery of the voltage V at any
point P over the plane, such a step has to be chosen coincident with the sample spacing
required, according to the spatial bandlimitation properties [35], to interpolate Ṽ along a
radial line. Accordingly,

∆ρ =
πd

χ χ′βa
(5)

χ being a proper oversampling factor. Being ∆ρ = 2π k, then k = d/(2 χ χ′βa).
Simple geometrical considerations allow one to determine the maximum and min-

imum values of the inner product R̂ · t̂ in Equations (2) and (3) needed to develop the
non-redundant representation along the spiral. In fact, it can be easily recognized from
Figure 2 that these extreme values occur at the tangency points P1,2 of the modelling sphere,
with the straight lines through the point Q on the spiral and lying in the plane identified
by the unit vector t̂ and that r̂, pointing from O to Q. Indicating with R̂1,2 the unit vectors
pointing from P1,2 to Q and with n̂ the unit vector perpendicular to r̂ and parallel to the
plane specified by r̂ and t̂ (see Figure 2), it results in:(

R̂1 + R̂2
)
/2 = r̂ sin δ = r̂

√
1− a2/r2 (6)(

R̂1 − R̂2
)
/2 = n̂ cos δ = n̂ (a/r) (7)

By substituting Equation (6) into Equation (2) and considering that dr = r̂ · t̂ dσ, it
follows:

ψ = β

σ(Q)∫
0

R̂1 + R̂2

2
· t̂ dσ = β

r(Q)∫
0

√
1− a2/r2dr = β

√
r2 − a2 − βa cos−1(a/r) (8)
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Figure 2. Geometry of the problem in the plane r̂, t̂.

Let us turn to the evaluation of Equation (3). To this end, denoting with ε the angle
between t̂ and r̂, it results in:(

R̂1 − R̂2
)
· t̂/2 = t̂ · n̂ (a/r) = (a/r) cos(ε− π/2) = (a/r) sin ε (9)

In Equation (9),

a/r =
a√

d2 + k2φ2
(10)

And

sin ε =
√

1 − cos2 ε =

√
1 − (t̂ · r̂ )2 (11)

Wherein it can be easily shown that

t̂ · r̂ =
kφ√

1 + φ2
√

d2 + k2φ2
(12)

Therefore, by taking into account that from Equation (4) it follows

dσ =

√
(dx)2 + (dy)2 = k

√
1 + φ2dφ (13)

And, by choosing Wη = β a, Equation (3) can be rewritten as

η = k

φ(Q)∫
0

√
d2 + φ2d2 + k2φ4

d2 + k2φ2 dφ (14)

Unfortunately, the integral in Equation (14) cannot be solved in a closed form and,
accordingly, has to be determined numerically.

By taking into account such results, the probe voltage V at a point Q over the uniform
planar spiral can be determined by using the OSI formula:

V(η(Q)) = e−jψ(η(Q))
m0+ p

∑
m=m0− p+1

Ṽ(ηm)K(η − ηm, η)sin c
(

π
η − ηm

∆η

)
(15)

where Ṽ(ηm) are the reduced voltage samples, m0 = bη/∆ηc is the index of the one closest
to Q, 2p is the number of considered samples, b·c is the floor function, and

ηm = m ∆η = mπ/(χ χ′Wη) = mπ/(χ χ′βa) (16)
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In addition, sinc(η) is the sin(η)/η function, and

K(η, η) =
cosh

[
πνp

√
1− (η/η)

]
cosh(πνp)

(17)

With ν = (1− 1/χ) and η = p∆η, denotes the Knab’s sampling window function [37].
Note that when interpolating in proximity of the pole, χ′ has to be increased to avoid the
bandlimitation error growing there.

Then, the reconstruction of the voltage V at a point P over the plane proceeds as
follows: (a) by using Equation (15) to determine the intermediate samples on the radial
line passing through P; (b) by interpolating these last through the OSI expansion:

V(τ(P)) = e−jβ r(P)
n0+ q

∑
n= n0− q+ 1

Ṽ(τn)K(τ − τn, τ)sin c
(

π
τ − τn

∆τ

)
(18)

To finally obtain the voltage value at P. In this last expansion, τ = ρ/d, τn = τn(ϕ) =
kϕ/d +n∆τ = τ0 +n∆τ are the normalized abscissae of the intermediate samples, Ṽ(τn) =
V(τn) ej β r (τn) is the expression of their reduced voltages, n0 = b(τ − τ0)/∆τc, τ = q∆τ,
and the other symbols have the same meanings as in Equation (15).

By summing up, the voltage at a point P over the plane can be determined by proceed-
ing as follows:

(i) The phase factor e−jψ is singled out from the values of the voltage samples gathered
on the spiral according to the developed representation, and the OSI Equation (15) is
applied for reconstructing the involved intermediate samples;

(ii) The phase factor e−j β r(τn) is extracted from the value of the intermediate samples
evaluated at the previous step, and the OSI Equation (18) is applied for evaluating the
voltage value at P.

The 2-D OSI formula, obtained by matching the Equations (15) and (18), can be applied
to reconstruct the voltages Vρ and Vϕ at the points needed by the probe-compensated
NTFFT with plane-rectangular scan [9]. However, the formulas in [9] require the knowledge
of Vy and Vx to be valid. Therefore, the probe should co-rotate in order to maintain its axes
parallel to those of the AUT. The usage of a first-order probe enables a “soft” co-rotation [31],
allowing us to relate the no co-rotated voltages Vϕ and Vρ to the corresponding co-rotated
ones Vy and Vx through the relations:

Vy = Vϕ cos ϕ−Vρ sin ϕ; Vx = Vϕ sin ϕ + Vρ cos ϕ (19)

3. Test Results

Some experimental results appraising the efficiency of the here developed NTFFT
technique with planar spiral scanning are presented in this section. They refer to an E-plane
monopulse antenna working at 10 GHz in the sum mode and made by assembling two
pyramidal horns. It has been mounted in the “versatile” NF facility system available at
the laboratory of antenna measurements of the University of Salerno, whose positioners (a
rotating table, a vertical slide, and two turntables) are arranged in such a case to work as
a plane-polar NF facility. The apertures of the considered horns, lying on the plane z = 0,
are 8.9 cm× 6.8 cm sized and their centres are 26.5 cm apart. According to the developed
voltage representation, this antenna is considered to be contained in a sphere with diameter
2a equal to its maximum transverse dimension, i.e., 36.0 cm. The measurement plane
distance d is 19.0 cm and the samples of the probe voltages Vϕ and Vρ are collected on
a spiral covering a circular zone of radius 106.0 cm. An open-ended WR-90 rectangular
waveguide, exhibiting a nearly first-order azimuthal dependence [38], has been utilized as
a measurement probe. As stressed above, such a choice enables the soft co-rotation of the
collected voltages according to Equation (19).
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A suitable choice of the χ′-value is based on the AUT maximum transverse dimension.
Given the electric maximum dimension of the considered AUT (2a = 12 λ, λ being the
wavelength), a χ′-value equal to 1.25 ensures a bandlimitation error below −90 dB [39]
and, therefore, negligible.

Then, preliminary numerical simulations have been carried out in order to conve-
niently choose the OSI parameters to be used in the laboratory proofs, which are able
to make the reconstruction error much smaller than the measurement one, thus guaran-
teeing that no meaningful representation error is introduced. It is noteworthy that, once
the measurement set-up characteristics have been fixed, the developed non-redundant
representation depends only on the sphere modelling the AUT, and not just on the par-
ticular AUT. Accordingly, a uniform planar circular array, placed in the plane z = 0 and
with a diameter equal to 12 λ to fit the maximum transverse dimension of the considered
monopulse antenna, has been simulated. The elements of the array, elementary Huygens
sources linearly polarized along the y-axis, are radially and azimuthally spaced by 0.45 λ

and are symmetrically located with respect to the yz-plane. Moreover, according to the
given measurement set-up characteristics, the NF samples have been simulated as acquired
by a WR-90 rectangular waveguide on a spiral spanning a circular zone of radius of about
35 λ. At last, the simulations account for the choice of χ′ equal to 1.25. As already stressed,
the χ′-value relevant to the representation along the spiral must be properly increased
nearby the pole in order to allow the control of the bandlimitation error in that zone.

As an aid to an effective choice of the OSI parameters, the mean-square errors in the
reconstruction of Vρ have been evaluated as a function of the oversampling factor χ and
the retained sample numbers p, q and of the increase in the χ′-value around the pole. These
errors have been determined by comparing the exact and recovered Vρ values on a close
grid of the measurement zone and normalizing them to the maximum value of Vρ over the
plane. In particular, the errors shown in Figure 3i take into account that, in the zones of the
spiral determined by the 32 samples nearby the pole, the χ′-value has been augmented in
such a way to reduce the sample spacing along the spiral by a factor of 7, whereas those
in Figure 3ii have been obtained by reducing by a factor of 5 the sample spacing in the
zones of spiral determined by the 22 samples nearby the pole. As expected, such errors
decrease more and more on increasing p, q and/or χ, thus allowing one to choose them
in such a way that the reconstruction error is remarkably lower than the measurement
one. Now, set the acceptable reconstruction error threshold—a proper choice is made by
determining which combination of parameters allows one to utilize the lower number of
NF samples. As can be seen, χ = 1.20 and p = q = 8 ensure in the former case (see Figure 3i)
a mean-square reconstruction error lower than the fixed threshold −75 dB, which, in the
latter case (see Figure 3ii), is attained for χ = 1.25 and p = q = 8. Since such a threshold is
obtained at the cost of a lower number of NF samples in the former case, the corresponding
combination of parameters is adopted in the following. Note that such a choice assures
a maximum reconstruction error of about −60 dB. For the sake of comparison, Figure 4
shows the mean-square reconstruction error in the reconstruction of Vρ corresponding to
no increase in the χ′-value around the pole.

Then, the so chosen parameters have been used in the experimental testing. In order
to assess the precision of the 2-D OSI expansion based on these parameters, the amplitudes
and phases of the recovered voltages Vϕ and Vρ, relevant to the radial lines at ϕ = 0◦ and
ϕ = 90◦, are compared in Figures 5 and 6, respectively, with the directly measured ones
(references) on the same radial lines at greater resolution. For completeness, Figure 7 shows
the amplitude and phase of the recovered voltage Vρ on the radial line at ϕ = 45◦. As
can be seen, the measured voltages (solid line) and the reconstructed ones (crosses) agree
very well.
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The 2-D OSI algorithm has then been applied for the efficient reconstruction of the
plane-rectangular data needed by the NTFFT [9] from the voltages Vϕ and Vρ collected
along the spiral. The considered plane-rectangular sampling grid lies on a square with side
50 λ, inscribed in the measurement circle and spaced by 0.4 λ. Then, the adopted probe
enables the use of Equation (19) to get, in a “soft” way, the co-rotated Vy and Vx voltages
from the no co-rotated Vϕ and Vρ ones. Note that although the turntable between the probe
and the linear positioner would have made possible a “hardware” co-rotation of the probe,
its adoption would require a more complex synchronization of all the involved positioners.
The so obtained principal planes patterns are compared in Figure 8 with those attained from
the NF data directly acquired at the points of the considered plane-rectangular grid. For the
sake of comparison, the measurement of the plane-rectangular data has been performed in
such a case by acquiring the Vϕ and Vρ values through the plane-polar NF facility without
the hardware co-rotation, and then applying Equation (19) to co-rotate them. As can be
seen, the reconstruction process is very accurate everywhere, thus assessing the feasibility
of the developed NTFFT with planar spiral scanning.
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The number of NF measurements on the spiral is, for the considered example, 9812
(including 192 “extra samples” at reduced spacing around the pole). Such a number com-
pares favorably with that (15,876) of the NF data needed by the classical plane-rectangular
NTFFT [9]. It must be stressed that the developed NTFFT makes use of an increased
number of NF data with respect to that (2082) required by the NTFFT in [29], exploiting the
unified theory of spiral scans [32] for volumetric AUTs. In any case, since this last adopts a
non-uniform step, the saving in the number of needed NF samples is obtained at the cost
of a more complex control of the involved positioners.
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4. Conclusions

An efficient NTFFT technique for volumetric AUT, wherein the number of the NF
samples collected over a plane through a uniform planar spiral scan compares favorably
with that needed by the classical plane-rectangular one, has been developed in this article.
The proposed technique allows a significant saving of the measurement time both due to
the reduction in the number of required NF data and to the way of collecting them. This
spiral scanning technique, unlike those using a non-uniform step, allows one to make the
synchronization of the involved positioners simpler, since the velocity of the linear one is
constant during the acquisition on fly. In any case, although this is accomplished at the cost
of a slight increase in both the NF data number and the acquisition time as compared to the
NTFFT technique [29], the here proposed scanning technique can be easily implemented in
an existing NF plane-polar facility, since it does not require any changes in the hardware
controlling the positioners, but only in the software controlling them. The presented results
have thoroughly demonstrated the accuracy of the sampling representation and related
2-D OSI algorithm.
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