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Abstract: For target detection in complex scenes of synthetic aperture radar (SAR) images, the false
alarms in the land areas are hard to eliminate, especially for the ones near the coastline. Focusing on
the problem, an algorithm based on the fusion of multiscale superpixel segmentations is proposed in
this paper. Firstly, the SAR images are partitioned by using different scales of superpixel segmentation.
For the superpixels in each scale, the land-sea segmentation is achieved by judging their statistical
properties. Then, the land-sea segmentation results obtained in each scale are combined with the
result of the constant false alarm rate (CFAR) detector to eliminate the false alarms located on the
land areas of the SAR image. In the end, to enhance the robustness of the proposed algorithm, the
detection results obtained in different scales are fused together to realize the final target detection.
Experimental results on real SAR images have verified the effectiveness of the proposed algorithm.

Keywords: synthetic aperture radar (SAR) images; target detection; superpixel segmentation; fusion

1. Introduction

Synthetic aperture radar (SAR) is different from optical sensors, and is capable of
penetrating rain, snow, cloud, and fog, providing high-resolution images under severe
weather conditions [1–3]. As a result, SAR has been widely exploited in various appli-
cation fields [4–6]. Thanks to a large number of collected SAR images, automatic target
recognition (ATR) of SAR images have attracted increasing popularity in recent years. SAR
ATR provides the basis of the reconnaissance of interested regions or the precise strike of
threatening targets for both civil and military applications [7–9]. A commonly used scheme
of SAR ATR proposed by the Lincoln laboratory mainly consists of three consecutive stages,
which are detection, discrimination, and classification, respectively [10,11]. Many effec-
tive algorithms utilizing various advanced models have been proposed for classification,
achieving overwhelming performance [12–14]. However, problems still exist for the first
two stages before classification. This paper focuses on the detection stage, which aims to
eliminate the false alarms in the images and reduce the pressure of the following stages of
SAR ATR.

Due to the advantages of low-cost computation and adaptive threshold determination,
the constant false alarm rate (CFAR) based methods have been the most popularly used for
target detection. Focusing on target detection under different backgrounds, various CFAR-
based algorithms have been proposed, such as the two-parameter CFAR detector [15],
the cell-averaging CFAR (CA-CFAR) detector [16], and the smallest of CFAR (SO-CFAR)
detector [17]. The two-parameter CFAR detector is suitable for simple scenes with high
signal-to-clutter ratio (SCR), but its performance will degrade dramatically when the image
scene is complex. Satisfying detection performance can be achieved by the CA-CFAR
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detector when the background clutter is homogeneous. The SO-CFAR detector leads to
an increased false alarm rate, since its threshold is determined by choosing the smallest
mean value of the divided background windows. Plenty of disturbances will exceed the
threshold. In other words, different CFAR detectors are suitable for different image scenes.
However, for complex scenes, the performance of all these detectors will degrade.

Essentially, the key point of the CFAR detection is the precise modeling of the back-
ground clutters. Plenty of advanced statistical models have been proposed, such as the
generalized Gamma distribution [18], the K distribution [19], and the G0 distribution [20].
Better descriptions lead to better detection performances. The reason why the CFAR detec-
tor cannot perform well for all of the scenes is that it is very difficult to achieve accurate
statistical modeling of the background clutters, especially for complex backgrounds, such
as the images covered by both sea and land. The distribution of mixed textures is hard
to describe precisely. Moreover, since only the intensity difference is taken into account
under the CFAR detection, it is difficult to distinguish the manmade clutters, such as the
buildings from the interested targets. Moreover, for complex image scenes with both land
and sea, disturbances near the coastline, are hard to exclude.

Focusing on this problem, we try to fuse the land-sea segmentation into the traditional
CFAR detection. In recent days, the superpixel technology has been widely used in
image processing, including optical images and SAR images. Moreover, superpixel-based
algorithms have achieved satisfying results [21–24]. Theoretically, any target in SAR images
can be described by one superpixel or some connected superpixels [21–23]. Superpixels
can produce an over-segmentation of an image, realizing clustering that contains similar
pixels. Superpixel segmentation is capable of reflecting the boundaries and local features
of images [21]. We can use superpixel segmentation to obtain a more accurate separation
between land and sea in the image. As a result, we can remove the false alarms in the land
areas from the CFAR detection results, especially for the ones near the coastline.

The main idea of the proposed algorithm is to utilize multiscale superpixel segmen-
tation to better describe the local structures and properties of the complex images. In
the proposed algorithm, we obtain the coarse detection result by using the traditional
CFAR detector firstly. Then, the land-sea segmentation is achieved based on the statistical
properties of the superpixels by using the Kullback–Leibler (KL) divergence [25] and the
Kolmogorov–Smirnov (KS) distance [26]. Thirdly, the land-sea segmentations are combined
with the coarse detection result to realize significant reduction of the false alarms. In the
end, multiscale detection results are fused together to better enhance the robustness and
accuracy of the proposed target detection algorithm.

The main contributions of this paper are summarized as follows:
1. Land-sea segmentation is realized by using the statistical property of the superpixel,

which results in a more accurate separation between land and sea.
2. Superpixel segmentations of the SAR images are obtained in multiple scales.

Different information can be obtained from different scales of the superpixel segmentations,
which provides more information than just using one scale.

3. The detection results obtained in different scales are fused together to get the final
detection result, which leads to satisfying target detection with stronger robustness and
higher accuracy.

2. The Proposed Target Detection Algorithm

The flowchart of the proposed algorithm is shown in Figure 1, in which some interme-
diate processing results are demonstrated for a better illustration. The main steps of the
proposed algorithm are given as follows.

Step 1: coarse detection.
In the beginning, we try to get the coarse target detection result by using the traditional

CFAR techniques, such as the CA-CFAR detector or the truncated statistics CFAR (TS-CFAR)
detector. We demonstrate the proposed algorithm by Figure 1 to improve clarity. The SAR
image adopted here for illustration consists of land, sea, and the interested ships. As can
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be seen from Figure 1, there are many false alarms in the land areas by adopting the CFAR
detector for the image covered by complex textures (both sea and land). Since the CFAR
detector only considers the intensity difference, it is hard to make a distinction between the
manmade clutters and the targets.
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Figure 1. The flowchart of the proposed synthetic aperture radar (SAR) target detection algorithm.

Step 2: land-sea segmentation.
The main idea of this part is to realize accurate segmentation between the sea area

and the land area. Moreover, the approach to realize the goal in this paper is to judge the
statistical property of the superpixels. The processing procedures are given in detail in the
following for this step.

(1) Multiscale superpixel segmentation.
Adopting different scales of superpixel segmentation means that the sizes of the

superpixels are different, i.e., for a fixed image, a greater number of the total superpixels
mean that the covering area of each superpixel is smaller, and a smaller number of the total
superpixels imply that the covering area of each superpixel is larger. Multiscale superpixel



Sensors 2021, 21, 1643 4 of 15

segmentation results of the SAR image can be obtained by using the simple linear iterative
clustering (SLIC) algorithm [24].

(2) Superpixel type determination.
Having the superpixel segmentation results in each scale, we will determine the types

of the superpixels by using the following method. Firstly, we extract subimages from
the original SAR image in both of the land areas and the sea areas, as indicated by the
red squares in Figure 2a. Then, we plot the histograms of the land areas and the sea
areas respectively, as shown in Figure 2b. From Figure 2b, we can see that the statistical
properties of the land areas and the sea areas are totally different. In this paper, we realize
land-sea segmentation of the SAR image based on the statistical property. Moreover, we
choose the KL divergence [25] and the KS distance [26] to determine the type (land or sea)
of a superpixel.

Sensors 2021, 21, x FOR PEER REVIEW 4 of 16 
 

 

Step 2: land-sea segmentation. 
The main idea of this part is to realize accurate segmentation between the sea area 

and the land area. Moreover, the approach to realize the goal in this paper is to judge the 
statistical property of the superpixels. The processing procedures are given in detail in the 
following for this step. 

(1) Multiscale superpixel segmentation. 
Adopting different scales of superpixel segmentation means that the sizes of the su-

perpixels are different, i.e., for a fixed image, a greater number of the total superpixels 
mean that the covering area of each superpixel is smaller, and a smaller number of the 
total superpixels imply that the covering area of each superpixel is larger. Multiscale su-
perpixel segmentation results of the SAR image can be obtained by using the simple linear 
iterative clustering (SLIC) algorithm [24]. 

(2) Superpixel type determination. 
Having the superpixel segmentation results in each scale, we will determine the types 

of the superpixels by using the following method. Firstly, we extract subimages from the 
original SAR image in both of the land areas and the sea areas, as indicated by the red 
squares in Figure 2a. Then, we plot the histograms of the land areas and the sea areas 
respectively, as shown in Figure 2b. From Figure 2b, we can see that the statistical prop-
erties of the land areas and the sea areas are totally different. In this paper, we realize 
land-sea segmentation of the SAR image based on the statistical property. Moreover, we 
choose the KL divergence [25] and the KS distance [26] to determine the type (land or sea) 
of a superpixel. 

 
 

(a) (b) 

Figure 2. Comparisons of the land area and the sea area. (a) Extracted subimages of the land area 
and the sea area; (b) the histograms of the land area and the sea area. 

In the following, we give a brief description of the KL divergence and the KS distance. 
The KL divergence [25] can be described as 

( ) ( ) ( )
( )2|| logKL

p m
D p q p m dm

q m
=   (1)

where p  and q  denote the two measured probability density functions (PDFs), 
whereas ( )p m  and ( )q m  are the corresponding values of p  and q  at point m . 
log  is the logarithmic function. Moreover, the discrete version of (1) can be expressed as 

Figure 2. Comparisons of the land area and the sea area. (a) Extracted subimages of the land area and the sea area; (b) the
histograms of the land area and the sea area.

In the following, we give a brief description of the KL divergence and the KS distance.
The KL divergence [25] can be described as

DKL(p||q) =
∫

p(m) log2
p(m)

q(m)
dm (1)

where p and q denote the two measured probability density functions (PDFs), whereas
p(m) and q(m) are the corresponding values of p and q at point m. log is the logarithmic
function. Moreover, the discrete version of (1) can be expressed as

DKL(p||q) = ∑ p(m)∆m log2

[
p(m)∆m
q(m)∆m

]
= ∑ P(m) log2

[
P(m)
Q(m)

] (2)

where ∆m is the increment of m, P(m) and Q(m) represent the values of the probabilities.
As can be seen from (2), DKL(p||q) 6= DKL(q||p). As a result, the KL divergence is calculated
by using DKL = DKL(p||q) + DKL(q||p) in this paper. That is to say, if the measured two
PDFs are the same, the value of DKL will be zero. In other words, the smaller the value of
DKL is, the more similar the two measured PDFs will be. The land or sea judgment can be
realized by searching the smaller KL value.

Another effective way of measuring the similarity is to evaluate the differences of the
cumulative density functions (CDFs). Moreover, the KS distance is expressed as [26]

DKS(P||Q) = sup
m

∣∣cP(m)− cQ(m)
∣∣ (3)
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where sup
m

(∗) is the supremum of the function with respect to m. cP and cQ are the CDFs

of the two measured PDFs of P and Q, respectively. From (3), we can tell that just like the
KL divergence, the smaller the value of DKS(P||Q) is, the more similar the two measured
CDFs will be. For instance, if a measured superpixel belongs to the sea, the KS distance
between the CDF of the measured superpixel and the CDF of the sea area will be smaller
than the result obtained by comparing it with the CDF of the land areas.

From the definitions and analyses of the KL divergence and the KS distance, we can
see that KL evaluates the difference of two probabilities based on the PDFs, whereas KS
evaluates the difference of two probabilities based on the CDFs. Both KL and KS can realize
the land or sea judgment of a given superpixel. The type of a superpixel corresponds to
smaller values for both KL and KS evaluations.

After judging the type of each superpixel in the SAR image, the land-sea segmentation
results in different scales can be obtained.

Step 3: target detection in each scale.
The land-sea segmentation result in each scale (obtained in Step 2) and the coarse

detection result obtained by using the CFAR detector (obtained in Step 1) are combined
together to eliminate the false alarms in this step. As a result, we can obtain the detection
result in each scale. Disturbances in the land areas can be suppressed by the combination.

Step 4: obtain the final detection result.
The superpixel segmentations in different scales can provide different aspects of the

local features of the SAR image. Moreover, fusing the detection results under different
scales together will lead to a better description and understanding of the image.

In the final step, we will fuse the detection results in different scales to improve
the performance of the proposed target detection algorithm. The reason why we adopt
fusion is due to the fact that some superpixels contain both land and sea, and the land-
sea segmentation results are different under different superpixel scales, especially in the
regions near the coastline. Fusing multiple detection results obtained under different scales
can further eliminate the false alarms in the sensitive regions. In other words, the fusion
can remove the disturbances derived from manmade clutters in the land area, and improve
the detection performance near the coastline. The fusion can be given by

y f inal = y1•y2• . . . •yN (4)

where y f inal is the final detection result, yi(i = 1, 2, . . . , N) is the detection result in the ith
scale obtained in Step 3, N is the number of the scales, and • denotes the element-wise
multiplication.

3. Experimental Results and Analysis

In this part, we tested the performance of the proposed algorithm. The data used in this
paper are the public SAR Ship Detection Dataset (SSDD), which consists of the SAR images
collected under different conditions (both of inshore and offshore) with all polarization
modes (HH, HV, VV, and VH, here, H is short for horizontal, and V is short for vertical) by
the satellites of RadarSat-2, TerraSAR-X, and Sentinel-1 [27]. The resolution of the images
ranged from 1 m to 15 m, and the images have been calibrated and quantified to be 0–255.
In the SSDD, the ships that covered more than 3 pixels have been annotated, which can
serve as the ground truth for performance evaluation of the target detection algorithms.

We conducted the experiments in three different cases by using different CFAR de-
tection methods to validate the robustness of the proposed algorithm on coarse detection
result. Moreover, we compared the proposed algorithm with the superpixel-based CFAR
detection algorithm [28] to validate the advantage of fusion. In the first case, we conducted
the coarse detection by utilizing the widely used CA-CFAR detector [16]. In the second case,
the TS-CFAR detector was employed [29], which was more suitable for high-target-density
situations. In the third case, considering the distribution of the sea clutter, we employed
the Weibull-CFAR detector [30] to achieve the coarse detection result.
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In the first case, we validated the effectiveness of realizing land-sea segmentation by
using the statistical property of the superpixels in the beginning. Taking a SAR image of
SSDD as an illustration, the chosen image is displayed in Figure 3, and the corresponding
ground truth is given in Figure 4. The superpixel segmentation results, under three different
scales, are shown in Figure 5. The number of the superpixels is set to be 50, 100, and 150
for Scale 1, Scale 2, and Scale 3, respectively. Actually, we can also change the number
of the superpixels. The main principle of determining the number of the superpixels is
to make sure that the target will not cover the most areas of one superpixel in case that
the type of the superpixel that contains the target be judged into land. In other words, if
most areas of a superpixel are covered by an interested target, the statistical property of
the superpixel will be more similar to land than to sea. In other words, the type of the
superpixel will be judged into land, which will result in wrong elimination of the target.
The superpixels of S1-1, S2-1, and S3-1 correspond to the same sea area, and the superpixels
of S1-2, S2-2, and S3-2 correspond to the same land area, as demonstrated in Figure 5. The
KL and KS values of the selected superpixels are shown in Table 1. (2) Corresponds to the
KL divergence, whereas (3) corresponds to the KS distance. Here, we give an example of
the KL divergence. The PDFs of the superpixel S1-1, the sea, and the land are displayed
in Figure 6. If we calculate the distance between the superpixel and the sea, P(m) will be
assigned the values represented by the red circles shown in Figure 6, and Q(m) will be
assigned the values represented by the blue rectangles shown in Figure 6. Similarly, if we
need to calculate the distance between the superpixel and the land, P(m) will be assigned
the values represented by the red circles shown in Figure 6, and Q(m) will be assigned the
values represented by the green diamonds shown in Figure 6.

As can be seen from Table 1, the KL and KS values calculated among the histograms of
S1-1, S2-1, S3-1, and the land area are greater than those of the sea area. As a result, the type
of S1-1, S2-1, and S3-1 will be judged as sea. Moreover, the KL and KS values calculated
between the histograms of S1-2, S2-2, S3-2, and the land area is smaller than those of the
sea area. Therefore, the type of S1-2, S2-2, and S3-2 will be judged as land, accordingly.
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As can be seen, all types of the superpixels are correctly judged, leading to accurate
land-sea segmentations. Satisfying land-sea segmentation results can be obtained by using
the statistical property of the superpixels.
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Table 1. The Kullback–Leibler (KL) and Kolmogorov–Smirnov (KS) values for different superpixels under different scales.

Measures KL KS
DecisionType Land Sea Land Sea

Scale 1
S1-1 0.3512 0.0484 0.3808 0.0891 Sea
S1-2 0.0400 0.8206 0.0417 0.3839 Land

Scale 2
S2-1 0.3534 0.1068 0.3455 0.1209 Sea
S2-2 0.0607 1.2281 0.0602 0.4482 Land

Scale 3
S3-1 0.3270 0.0511 0.3707 0.0997 Sea
S3-2 0.0725 1.0640 0.0401 0.3811 Land

The detection result of the chosen SSDD image obtained by using the CA-CFAR
detector is demonstrated in Figure 7. The key parameters of the CA-CFAR detector are
given as follows: the size of the guard area is set to be 80 × 80 pixels, the size of the
background area is set to be 100 × 100 pixels, and the false alarm rate is set to be 0.001.
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From Figure 7, we can see that the interested target in the sea area can be detected accurately.
However, there are still many false alarms, by only considering the intensity differences
under the CA-CFAR detection. We should eliminate as many false alarms as possible.

Land-sea segmentation results under different superpixel scales are given in Figure 8.
Moreover, the detection results obtained under different scales by fusing the corresponding
land-sea segmentation result with the CA-CFAR detection result are displayed in Figure 9.
From Figure 9, we can see that many false alarms that existed in Figure 7 have been
eliminated. Inspecting Figure 9, we can further find that most of the left false alarms, after
combining the land-sea segmentation with the CA-CFAR detection in different superpixel
scales, lie in different locations, as shown in the red circles in Figure 9a, the yellow circles in
Figure 9b, and the blue circles in Figure 9c. The reason why this happens lies in the fact that
the land-sea segmentation results are different under different superpixel scales. Different
scales provide different information of the local features. Single scale information is not
sufficient to describe the sensitive regions. In other words, fusion of multiscale results in
better descriptions of the sensitive regions. The final detection result obtained by fusing
the detection results obtained in different scales together is demonstrated in Figure 10. As
can be seen from the comparison between Figures 7 and 10, explicit improvements can be
achieved by using the proposed superpixel-based fusion detection algorithm.
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To show the effectiveness of fusion more clearly, we compare the proposed algorithm
with the cell-averaging superpixel-level CFAR (CA-SPCFAR) detection algorithm presented
in [28], in which the guard area and the background area are determined by using the super-
pixel technology. The detection result obtained by using the CA-SPCFAR is demonstrated
in Figure 11. The key parameters are set as follows, the number of the superpixels is set to
be 150, the compactness is set to be 40, and the false alarm rate is set to be 0.001. Comparing
Figure 11 with Figure 7, we can see that the performance of the CA-SPCFAR is much
better than the CA-CFAR, because superpixels can provide more precise information, with
respect to the normal rectangular areas. As for the proposed algorithm, it outperforms the
CA-SPCFAR, which demonstrates the effectiveness of multiscale fusion. The comparison
further validates the fact that single information extraction is not sufficient for satisfying
target detection results.
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To show the advantage of the proposed algorithm more quantitatively, we use some
scientific indicators here. We evaluate the proposed algorithm based on the detection rate
Pd, the false alarm rate Pf and the F1 score, respectively. The indicators can be expressed
as [31,32]

Pd =
Ntd

Nground_truth
(5)

Pf =
Nfd

Ntotal_detection
(6)

F1 = 2×
Pd ×

(
1− Pf

)
Pd +

(
1− Pf

) (7)

where Ntd is the number of the correctly detected pixels in the detection result, Nground_truth
is the number of the pixels of the ground truth, Nfd is the number of the false alarms in the
detection result, and Ntotal_detection is the number of the pixels in the detection result.
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We compare these indicators obtained by using different methods; the values are
obtained by using the CA-CFAR, the CA-SPCFAR, combining the CFAR detector with
the land-sea segmentation under scale 1, combining the CFAR detector with the land-sea
segmentation under scale 2, combining the CFAR detector with the land-sea segmentation
under scale 3, and the proposed algorithm by fusing different scales, respectively. The
corresponding evaluation results under different methods are given in Table 2. As can be
seen, the performance of the proposed algorithm is the best. It can achieve the highest Pd
and the lowest Pf , which leads to the highest F1. As can be seen from Table 2, the detection
rate of the proposed algorithm is the same as the CA-CFAR detector, since the proposed
algorithm takes the CA-CFAR detector to obtain the coarse detection result. Moreover, we
can see that the fusion just eliminates the false alarms, but leaves all the true detections
successfully. As for the false alarm rate, the proposed algorithm has an explicit advantage
over the competitors; this is due to the fact that the main advantage of the proposed
algorithm is to eliminate the false alarms obtained under different scales. Inspecting Table
2 and Figure 9, we can further tell that the false alarms are different under different scales,
which further validates the significance of multiscale superpixel fusion.

Table 2. Detection performance in the first case.

Algorithms Pd (%) Pf (%) F1

CA-CFAR 87.28 44.07 0.6817

CA-SPCFAR 75.14 32.64 0.7104

Combining the CFAR detector with the land-sea segmentation under scale 1 87.28 34.91 0.7457

Combining the CFAR detector with the land-sea segmentation under scale 2 87.28 25.98 0.8011

Combining the CFAR detector with the land-sea segmentation under scale 3 87.28 24.88 0.8075

The proposed algorithm by fusing different scales 87.28 22.56 0.8207

In the following, to test the robustness of the proposed algorithm with respect to the
choice of the CFAR detectors, we conduct the proposed algorithm by using the TS-CFAR
and the Weibull-CFAR to obtain the coarse detection result. The TS-CFAR fits the situation
of high-target-density, whereas the Weibull distribution is more suitable for the description
of sea clutters. The coarse detection result obtained by using TS-CFAR is displayed in
Figure 12, and the corresponding detection results of fusing land-sea segmentation results un-
der different superpixel scales with the coarse detection result are demonstrated in Figure 13.
The final detection result is displayed in Figure 14. Similarly, we also compare the proposed
algorithm with the truncated statistics superpixel-level CFAR (TS-SPCFAR) presented in [28],
as illustrated in Figure 15. The corresponding results under the Weibull-CFAR are given in
Figures 16–18, and the result of the Weibull superpixel-level CFAR (Weibull-SPCFAR) [28]
is displayed in Figure 19. From the results, we can see that the proposed algorithm has an
explicit advantage. Many false alarms have been eliminated by multiscale fusion.
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Experimental results of all the three experiments with different coarse detection
methods demonstrate the robustness of the proposed algorithm. The proposed algorithm
is not sensitive to the coarse detector, since the information of different scales is captured
and utilized by fusion.

Likewise, we evaluate the detection performance of these two cases by using Pd,Pf ,
and F1, respectively. The detection performance in the second case is given in Table 3, and
the detection performance in the third case is demonstrated in Table 4. From the results,
we can see that, just like case 1, the proposed algorithm can achieve the highest detection
rates and the lowest false alarm rates. Fusing information of different scales eliminates the
false alarms effectively.
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Table 3. Detection performance in the second case.

Algorithms Pd (%) Pf (%) F1

TS-CFAR 87.86 49.33 0.6427

TS-SPCFAR 75.14 35.96 0.6915

Combining the CFAR detector with the land-sea segmentation under scale 1 87.86 39.44 0.7170

Combining the CFAR detector with the land-sea segmentation under scale 2 87.86 29.30 0.7835

Combining the CFAR detector with the land-sea segmentation under scale 3 87.86 27.27 0.7958

The proposed algorithm by fusing different scales 87.86 25.12 0.8085

Table 4. Detection performance in the third case.

Algorithms Pd (%) Pf (%) F1

Weibull-CFAR 97.11 70.47 0.4528

Weibull-SPCFAR 91.33 58.85 0.5673

Combining the CFAR detector with the land-sea segmentation under scale 1 97.11 60.00 0.5666

Combining the CFAR detector with the land-sea segmentation under scale 2 97.11 58.52 0.5813

Combining the CFAR detector with the land-sea segmentation under scale 3 97.11 55.08 0.6143

The proposed algorithm by fusing different scales 97.11 53.97 0.6245

However, false alarms still exist after fusing multiscale information, as shown in the
white circles of Figure 10, Figure 14, and Figure 18. The phenomenon demonstrates the fact
that, although fusing the multiscale superpixel contributes to disturbance suppressing, false
alarms still exist. Fortunately, target detection is the first step of SAR ATR, which consists
of three consecutive stages. We can still eliminate the false alarms in the discrimination
stage and the recognition (classification) stage.

Finally, we give a brief discussion about the computational complexity of the pro-
posed algorithm. Since the proposed algorithm fuses the CFAR detector and the superpixel
technology together, its computational complexity depends on the computational complex-
ity of the CFAR detector and the superpixel technology. Fortunately, the computational
complexity of the CFAR detector and the superpixel technology are both low [24,33]. For
instance, the computational complexity of the CA-CFAR detector is O(n) to determine the
thresholds, whereas the computational complexity of SLIC is also O(n), where n is the
number of pixels in the image. If we combine them together, the computational complexity
of the proposed algorithm will still be O(n).

4. Conclusions

A target detection algorithm for complex SAR imaging scenes based on CFAR detec-
tors and multiscale superpixel fusion is proposed in this paper. Traditional CFAR detectors
are used to achieve the coarse detection result, and the land-sea segmentation, which can
better describe the features and the properties of the SAR images, is conducted by using
the superpixel technology. Experimental results have demonstrated that the superpixel
technology can give a precise description of the sensitive complex regions, and different
scales of the superpixels can provide different information. Fusing multiscale superpixel
can suppress the false alarms effectively, especially for the manmade clutters near the coast-
line. Making use of the statistical property can provide discriminative power for land-sea
segmentation. From the experimental results, we can find that owing to the effectiveness
of fusion, the proposed algorithm is not sensitive to the coarse detection result—or better,
different choices of the CFAR detectors will not lead to obvious differences on the final
detection result.

Moreover, the number of the scales and the number of the superpixels are not fixed,
and one can adjust them according to practical applications.
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Note that, although the proposed algorithm can achieve satisfying target detection
results for the complex imaging scenes, false alarms cannot be eliminated completely. How
to reduce the stubborn false alarms still deserves further studying.
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