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Abstract: In order to suppress the strong clutter component and separate the effective fretting com-
ponent from narrow-band radar echo, a method based on complex variational mode decomposition
(CVMD) is proposed in this paper. The CVMD is extended from variational mode decomposition
(VMD), which is a recently introduced technique for adaptive signal decomposition, limited to only
dealing with the real signal. Thus, the VMD is extended from the real domain to the complex domain
firstly. Then, the optimal effective order of singular value is obtained by singular value decomposition
(SVD) to solve the problem of under-decomposition or over-decomposition caused by unreasonable
choice of decomposition layer, it is more accurate than detrended fluctuation analysis (DFA) and
empirical mode decomposition (EMD). Finally, the strongly correlated modes and weakly correlated
modes are judged by calculating the Mahalanobis distance between the band-limited intrinsic mode
functions (BLIMFs) and the original signal, which is more robust than the correlation judgment meth-
ods such as computing cross-correlation, Euclidean distance, Bhattachryya distance and Hausdorff
distance. After the weak correlation modes are eliminated, the signal is reconstructed locally, and the
separation of the micro-motion signal is realized. The experimental results show that the proposed
method can filter out the strong clutter component and the fuselage component from radar echo more
effectively than the local mean decomposition (LMD), empirical mode decomposition and moving
target indicator (MTI) filter.

Keywords: narrow-band radar; micro-motion; signal separation; optimal decomposition layer;
complex variational mode decomposition; signal reconstruction

1. Introduction

Micro-motion [1–4] refers to the vibration, rolling and rotation of the target in addition
to rigid motion. Since the concept of micro-motion was proposed by professor V.C. Chen
of the US military laboratory, the micro-motion characteristics in narrow-band radar
echo have been widely studied and it provides a new solution for radar target detection
and recognition. In practical application, radar echo is usually mixed with noise and
clutter, and the traditional clutter suppression method of moving target indicator (MTI)
combined with coherent accumulation usually causes excessive attenuation of doppler
components of target near-zero frequency, which leads to the degradation of radar detection
performance [5], and it is difficult to obtain effective target information. Therefore, it is of
great significance to use effective echo separation method to suppress clutter and fuselage
components, extracting fretting component of a target for improving the recognition ability
of narrow-band radar.

Radar echo is a case in non-linear and non-stationary signal. In order to separate
these signals, subspace-based clutter suppression and adaptive time-frequency analysis are
widely used. The typical methods of subspace-based clutter suppression are singular-value
decomposition (SVD) [6], principal component analysis (PCA) [7] and independent com-
ponent analysis (ICA) [8]. Reference [9] comprehensively compares the application of the
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above-mentioned three methods of clutter suppression and validates the effectiveness of
these methods through the measured data. However, most subspace-based clutter suppres-
sion methods still have several typical problems: (1) Supposing the environment model,
once the target’s environment and assumptions do not match, the clutter suppression
performance will be less effective. (2) It is assumed that the signal subspace and the clutter
subspace are independent, but in fact, the two subspaces are usually multi-dimensional
and have some correlation [10,11]. (3) The clutter subspace is constructed by assuming
the eigenvectors corresponding to the largest eigenvalues of echo’s co-variance matrix,
which are usually selected by manual or simple threshold setting. The typical adaptive
time-frequency analysis methods are empirical mode decomposition (EMD) [12–14] and lo-
cal mean decomposition (LMD) [15–17]. Taking advantage of the time-scale characteristics
of the signal, these methods do not need to set the basis function to decompose the signal
in advance, and these methods have unique advantages in stabilizing the unstable signal.
However, due to the use of recursive decomposition, the estimation error of decomposition
will be continuously transmitted, that results in modal aliasing and end-point effect. It is
difficult to decompose the adjacent frequency components. Moreover, these methods need
large amounts of calculation, and the reconstruction method can only be used for a few
special occasions. In order to solve these problems, Reference [18] proposed the variational
mode decomposition (VMD) method, which is a non-recursive adaptive time-frequency
analysis method. The method assumes that each mode is tightly clustered around a central
frequency, then the solving of mode bandwidth is transformed into a constrained optimiza-
tion processing. Not only can the mode aliasing and the end-point effect be solved well,
but also the calculation amount is small. But this method also has some defects: (1) Only
real signals can be processed, (2) the number of decomposition layers needs to be set in
advance, and unreasonable layers will lead to over-decomposition or under-decomposition
situations, and (3) mode selection is difficult in signal reconstruction.

Aiming at the deficiency of VMD in processing narrow-band radar echo, this paper
proposes an adaptive complex variational mode decomposition method, which combines
VMD with SVD and Mahalanobis distance (MD). The method extends VMD from the
real domain to the complex domain to adapt for radar echo processing firstly. Then, the
complex signal is used to construct Hank matrix, and SVD is implemented to obtain the
optimal decomposition layer of the CVMD method. After that, the correlation is judged
by calculating the MD between band-limited intrinsic mode functions (BLIMFs) and the
original signal to distinguish the strong correlation mode and the weak correlation mode.
Finally, the local reconstruction of the strong correlation mode is implemented to separate
the micro-motion signal from clutter and fuselage signal.

2. Brief Description of Variational Mode Decomposition

VMD is a solving process of variational problem based on Wiener filter, Hilbert
transform and mixed frequency. By iteratively searching the optimal solution of the
constrained variational model, a real signal is adaptively transformed into K band-limited
intrinsic mode functions with special sparsity and independence. Then, the signal is
separated to different frequency components, namely the low-frequency components and
the high-frequency components are separated effectively. On the basis of the hypothesis
that each mode surrounds a central frequency in the frequency domain and the frequency
bandwidth is compact, therefore, the key to the implementation of the VMD method is to
calculate the center frequency and bandwidth of each mode, and the center frequency is
affected by the number of decomposition layer K. The steps for solving the constrained
variational problem [18] are as follows:

(1) Firstly, the original signal is transformed by Hilbert transform to obtain the analytic
signal of each mode component, and the single side spectrum is obtained.

ξ
′
k(t) = (δ(t) +

j
πt

) ∗ uk(t) (1)
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where δ(·) is the Dirac distribution, t is the time script, j is the imaginary unit, uk(t) =
{u1(t), u2(t), · · ·, uK(t)} is the decomposed BLIMF component and ∗ denotes convolution.

(2) The center frequency ωk of each modal component uk(t) is estimated and the spectrum
is modulated to the corresponding baseband.

ξk(t) = [(δ(t) +
j

πt
) ∗ uk(t)]e−jωkt (2)

where ωk = {ω1, ω2, · · ·, ωK} is the center frequency of each BLIMF component.

(3) The square of the l2 norm of the gradient of the modulated signal and the band-
width of each mode component is estimated. The constrained variational mode is
constructed, which is described by the following equation:

min
{uk},{ωk}

{
K

∑
k=1

∥∥∥∥∂t[(δ(t) +
j

πt
) ∗ uk(t)]e−jωkt

∥∥∥∥2

2

}s.t.
K

∑
k=1

uk(t) = x(t) (3)

where ∂t represents partial derivation.

(4) By introducing the balancing parameter of the data-fidelity constraint α with great
convergence property and the Lagrange multiplier λ(t) with strict constraint perfor-
mance, the constrained optimization problem is transformed into an unconstrained
optimization problem, and the augmented Lagrange expression can be written as
follows:

L({uk(t)}, {ωk(t)}, λ(t)) = α∑
k
‖∂t(ξk(t))‖2

2 +

∥∥∥∥x(t)−∑
k

uk(t)
∥∥∥∥2

2
+

〈
λ(t), x(t)−∑

k
uk(t)

〉
≤ α∑

k
‖∂t(ξk(t))‖2

2 +

∥∥∥∥x(t)−∑
k

uk(t) +
λ(t)

2

∥∥∥∥2

2
−
(

λ(t)
2

)2
(4)

In order to solve the minimum value problem in Equation (4), the un+1
k (t),ωn+1

k (t)
and λn+1(t) are alternately updated by the alternative direction method of multipliers
(ADMM) to find the saddle point of Equation (4). The solution of constrained variational
problem is completed, and the updated formula and convergence conditions of the three
variables are shown as follows:

un+1
k (t)← argmin

uk(t)
L({un+1

i<k (t)}, {u
n
i≥k(t)}, {ω

n
i (t)}, λn(t))

ωn+1
k (t)← argmin

ωk(t)
L({un+1

i (t)}, {ωn+1
i<k (t)}, {ω

n
i≥k(t)}, λn(t))

λn+1(t)← λn(t) + τ(x(t)−∑
k

un+1
k (t))

∑
k

∥∥∥un+1
k (t)− un

k (t)
∥∥∥2

2
/
∥∥un

k (t)
∥∥2

2 < ε

(5)

where n represents iteration times, i represents the number of modes and i ∈ [1, K].

(5) The iterative update of uk(t) and ωk(t) in the frequency domain.

In view of the difficulty of updating uk(t) and ωk(t) in the time domain, thus, the
update can be realized in the frequency domain, and then transformed to the time domain
by inverse Fourier transform. Since (λ(t)/2)2 does not affect the optimization of uk(t), the
optimization problem in Equations (4) and (5) can be transformed into the optimization
problem shown in Equation (6), as un+1

k (t), for example:

un+1
k (t) = argmin

{uk(t)}
{α∑

k
‖∂t(ξk(t))‖2

2 +

∥∥∥∥∥x(t)−∑
i

ui(t) +
λ(t)

2

∥∥∥∥∥
2

2

} (6)
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For simplicity, the superscripts ·n and ·n+1 on the right-hand side of the equation are
ignored. After the Fourier transform, the frequency domain expressions of x(t), ξk(t), uk(t)
and λ(t) are x̂(ω), ξ̂k(ω), ûk(ω) and λ̂(ω). From Equations (1) and (2), we can obtain:

ξ̂k(ω) = [1 + sgn(ω + ωk)] · uk(ω + ωk) (7)

By using the Parseval or Plancherel Fourier equidistant transform, Equation (6) is
transformed to the frequency domain. Here, only the calculation of single value k is
discussed. The frequency domain expression after removing the symbol ∑

k
· is written as:

ûn+1
k

(ω) = argmin
ûk(ω)

{α‖jω[1 + sgn(ω + ωk)]ûk(ω + ωk)‖2
2 +

∥∥∥∥∥x̂(ω)−∑
i

ûi(ω) +
λ̂(ω)

2

∥∥∥∥∥
2

2

} (8)

Let ω = ω + ωk, the l2 norm of Equation (8) can be obtained:

ûn+1
k

(ω) = argmin
ûk(ω)

{
∫ ∞
−∞ {α|j(ω−ωk)[1 + sgn(ω)]ûk(ω)|2 +

∣∣∣∣x̂(ω)−∑
i

ûi(ω) + λ̂(ω)
2

∣∣∣∣2}dω}

= argmin
ûk(ω)

{
∫ ∞

0 [4α(ω−ωk)
2|ûk(ω)|2 + 2

∣∣∣∣x̂(ω)−∑
i

ûi(ω) + λ̂(ω)
2

∣∣∣∣2]dω}
(9)

It can be seen from the above equation that the integrand f (ω) is a positive function,
accordingly, the solution of ûn+1

k
(ω) = argmin

ûk(ω)

∫ ∞
0 f (ω)dω can be equivalent to the solution

of ûn+1
k

(ω) = argmin
ûk(ω)

f (ω). Let ∆(ω) = x̂(ω)− ∑
i 6=k

ûi(ω) + λ̂(ω)/2, then:


∂ f (ω)
∂ûk(ω)

= (4α(ω−ωk)
2 + 2)u∗k (ω)− 2∆∗(ω) = 0

∂ f (ω)
∂û∗k(ω)

= (4α(ω−ωk)
2 + 2)uk(ω)− 2∆(ω) = 0

(10)

The minimum value of ûn+1
k

(ω) can be modelled:

ûn+1
k

(ω) =
∆(ω)

1 + 2α(ω−ωk)
2 =

x̂(ω)− ∑
i 6=k

ûi(ω) + λ̂(ω)/2

1 + 2α(ω−ωk)
2 (11)

where ûn+1
k

(ω) is the Wiener filter of the current remainder x̂(ω) − ∑
i 6=k

ûi(ω), and ωk

represents the center of the mode power spectrum. In the same way, the minimum value of
the central frequency can be obtained, that is, the least square linear regression frequency
estimation of the center frequency in the mode can be obtained.

ω̂n+1
k (ω) =

∫ ∞
0 ω|ûk(ω)|2dω∫ ∞

0 |ûk(ω)|2dω
(12)

To sum up, the frequency domain updating formulas and convergence conditions of
ξ̂n+1

k (ω), ûn+1
k (ω) and λ̂n+1(ω) are as follow:

ûn+1
k (ω)←

x̂(ω)− ∑
i<k

ûn+1
i (ω)− ∑

i>k
ûn

i (ω)+
λ̂n(ω)

2

1+2α(ω−ωk)
2

ω̂n+1
k (ω)←

∫ ∞
0 ω|ûk(ω)|2dω∫ ∞

0 |ûk(ω)|2dω

λ̂n+1(ω)← λ̂n(ω) + τ

[
x̂(ω)−∑

k
ûn+1

k (ω)

]
∑
k

∥∥∥un+1
k (ω)− un

k (ω)
∥∥∥2

2
/
∥∥un

k (ω)
∥∥2

2 < ε

(13)
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When the end of iteration condition is satisfied, the frequency band is adaptively
segmented according to the frequency characteristics of the signal. Then, the inverse
Fourier transform is performed on ûk(ω), and the real part is the desired uk(t). The
variational mode of a real signal can be obtained by VMD, and the Hilbert transform of
BLIMF is performed to obtain the instantaneous frequency and amplitude, namely Hilbert
spectrum.

3. Complex Variational Mode Decomposition

The VMD mathematical theory demonstrates that the algorithm is only suitable for
real signal analysis. After Hilbert transform, the two-side spectrum of a real signal will be
transformed into a single-side spectrum. Due to the symmetry of the two-side spectrum
of the real signal, the spectrum structure of the reconstructed signal will not be changed
after being converted into a single-side spectrum and the amplitude will become twice as
much as before. In radar signal processing, the echo is a complex signal, and the spectrum
of that is single-side and asymmetric. If VMD were utilized to decompose the echo directly,
half of the spectrum structure of the reconstructed signal would be lost, and only the
partial signal corresponding to the positive frequency would be reconstructed. As the
simple complex signal S(t) = ej10πt + 1.5e−j12πt − 2ej15πt, for example, the time domain
and frequency domain results of the original signal and VMD reconstructed signal are
shown in Figure 1. In the reconstructed signal spectrum by VMD, the positive frequency
component is reconstructed accurately, but the frequency loss occurs at f = −6Hz, that is
to say, the reconstruction of the negative frequency component fails.

Figure 1. Original signal (blue solid line) and reconstruction signal by VMD (red dashed line).

In view of the defect that VMD cannot process complex signals, Reference [19] ex-
tended the VMD algorithm to the complex domain by decomposing the complex signal into
real part and imaginary part. After VMD processing twice, the decomposed modes were
linearly superimposed to reconstruct the original signal successfully. However, this CVMD
method needs to construct a band-pass filter to separate the real part and the imaginary part
of the complex signal. Not only is this method more complicated, but it also causes phase
difference between the reconstructed signal and the original signal. In this paper, a novel
CVMD method is proposed by analyzing the spectrum of complex signals. In frequency
spectrum analysis, the major difference between the real signal and the complex signal
is that the complex signal has negative frequency component. If the negative frequency
component is converted into a real signal separately through frequency spectrum analysis,
then the complex signal can be converted into two real signals for further processing. The
proposed method can complete complex signal processing. The steps are as follows:

(1) The complex signal S(t) can be transformed into frequency domain by Fourier trans-
form, which is recorded as S(ω). By setting the negative frequency axis or positive
frequency axis of S(ω) to zero respectively, the positive frequency part S+(ω) and
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negative frequency part S−(ω) of S(ω) are taken out, and the signal length cannot be
changed, written as:

S(ω) = S+(ω) + S−(ω) (14)

At this time, S+(ω) and S−(ω) are a typical single-side spectrum. But for real signals,
the negative frequency is meaningless. Therefore, it is necessary to preprocess S−(ω). The
simplest processing method is rearranging S−(ω) in reverse order. After this step, the
negative frequency component is mapped to the corresponding positive frequency, namely:

S′−(ω) = S−(−ω) (15)

This method can ensure that the spectrum structure does not change, and all the
original negative frequencies are symmetrically placed on the positive frequency axis.

(2) After inverse Fourier transform of S+(ω) and S′−(ω), the corresponding time domain
signals S+(t) and S′−(t) can be obtained to decompose, this is because both S+(t)
and S′−(t) are real signals at this moment. Besides, since the signal length is not
changed during spectrum processing, the corresponding time domain signals S+(t)
and S′−(t) have the same length as the original signal S(t).

(3) VMD is used to decompose S+(t) and S′−(t) to get the corresponding BLIMF com-
ponents û+(ω) and û′−(ω). Since û+(ω) and û′−(ω) only contain positive frequency,
if the inverse Fourier transform were applied to BLIMF component directly, the re-
constructed signal would still contain positive frequency, which is inconsistent with
the real situation. This is caused by making S′−(ω) = S−(−ω). Therefore, in order
to ensure that the reconstructed signal is consistent with the original signal, it is
necessary to carry out reverse order rearrangement to signal û′−(ω), namely:

û−(ω) = û′−(−ω) (16)

Finally, the inverse Fourier transform is implemented on û+(ω) and û−(ω) to obtain
u+(t) containing only positive frequency and u−(t) containing only negative frequency.
Thus, the constructed signal can be written as:

S(t) = u+(t) + u−(t) (17)

As seen in Figure 2, both positive frequency components and negative frequency
components are reconstructed correctly. Therefore, the CVMD method proposed in this
paper can extend the VMD method to the complex domain and process the complex signal
without interference on the phase of the original signal. Due to the fact that the CVMD
algorithm is based on VMD algorithm, there are no drawbacks such as modal aliasing
or end-point effect. But since the VMD algorithm is used twice in this processing, the
calculation amount of the CVMD algorithm is about twice as much as the VMD algorithm.

Figure 2. Original signal (blue solid line) and reconstruction signal by CVMD (red dashed line).
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4. Adaptive Complex Variational Mode Decomposition
4.1. Solution of Optimal Decomposition Layer K

In recent years, the EMD method has been widely used in the field of signal processing.
Due to the utilization of recursive, this method can adaptively decompose the signal, and
the number of the decomposed modes is only affected by the signal itself. Unlike the EMD
method, both VMD and CVMD need to set the decomposition layer K in advance. If the
value of K is set too small, it will lead to under-decomposition. On the contrary, if it is
too large, it will lead to over-decomposition. This is one of the main limitations of the
VMD algorithm. Currently, most selection methods of K are based on experience [20,21].
Thus, the focus is how to determine the best K value. By using the method of detrended
fluctuation analysis (DFA) to calculate the long-range correlation scaling index α0 of time
series [22], the threshold of scaling index was set to judge the number of scaling indexes of
modal components which were larger than the threshold value, and then the mode number
can be ensured by the correlation model between decomposition layer K and scaling index
α0. The core of this method is DFA, but this method has some limitations in dealing with
the fluctuation trend of signal, thus it is less robust. In Reference [23], a feedback-based
variational mode decomposition is proposed, in which the initial value K = 2 is set for the
two-mode decomposition, and the similarity coefficient is used to measure the purity of
the mode, then the purest mode is fed back into the input of the signal and subtracted
from the original signal. Finally, the iterative termination condition is used to determine
whether the decomposition continues or not. This method can avoid the problem of setting
the value of K, but it uses VMD several times in iteration, therefore, the computation is
complicated. Furthermore, the performance of mode separation is worse for those with
similar fundamental frequencies. Reference [24] considered that the modes decomposed
by VMD are orthogonal, so the linear sum of each component’s energy is equal to the
energy of the original signal. When under-decomposition or over-decomposition occurs,
the linear sum of the mode component’s energy is less than or greater than the energy
of the original signal. Therefore, the optimal decomposition layer can be determined by
comparing the linear sum of the mode energy with the energy of the original signal. If the
two values are equal, the K would be ensured, but the mode decomposed by VMD is not
always completely orthogonal, and there is a large error in this method. In Reference [25],
the sample entropy of each mode is used to judge whether the over-decomposition occurs
or not, and the correlation is used to judge whether to retain the over-decomposition
modes or not, which weakens the over-decomposition to a certain extent. However, the
under-decomposition is not discussed. Reference [26] considered obtaining the K value of
VMD by using the number of modes after EMD, but the number of modes is not accurate
when the mode aliasing occurs.

According to the principle of SVD, the size of a singular value of signal directly
reflects the composition of the signal. After signal processing by SVD, the several larger
singular values reflect the principal components of the signal usually, including the clutter
and the target, and then the smaller singular values reflect the noise component. While
the CVMD algorithm divides the signal into K components according to the rules, the
residual component is the interference noise. It can be seen that SVD and CVMD have
similar functions in signal processing, so the optimal decomposition layer of CVMD can
be determined by the order of effective singular values. Then, the problem of finding
the optimal decomposition layer of CVMD can be transformed into the order of effective
singular values searching. The steps are as follows:

(1) Constructing the Hank matrix H [27] by using the signal S(t).

The signal sequence S = [s1, s2, . . . , sM] with length M is embedded into the recon-
struction m vectors Si = [s(i−1)κ+1, s(i−1)κ+2, . . . , sL+(i−1)κ+1

], i = 1, 2, . . . , m according to
a certain delay κ, where L = M − (i − 1)κ − 1. Then, the Hank matrix H with L × m
dimension is constructed as follows:
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H =


S1
S2
...

Sm

 =


s1 s2 · · · sL+1

sκ+1 sκ+2 · · · sL+κ+1
...

...
...

s(m−1)κ+1 s(m−1)κ+2 · · · sM

 (18)

(2) Implement the SVD processing on H to obtain the singular values and the slope of
the singular value.

In the construction of Hank matrix H, it usually satisfies m < L. Therefore, Hank
matrix H can be expressed as:

H = UλVH (19)

where λ is a singular value matrix with L×m dimension, its main diagonal element is λi
and other elements are equal to zero, namely λ = diag[λ1, λ2, . . . , λm] and λ1 ≥ λ2 ≥ . . . ≥
λm ≥ 0. The matrix U is eigen-column vectors of λ, and matrix VH is eigen-row vectors of
λ.

According to the curve of singular value distribution, the slope gm of the correspond-
ing singular value is calculated by:

gm =
dλ

dm
(20)

(3) Setting the amplitude ratio threshold to search the steady-state starting position of
the slope, that is the effective singular value order.

At present, many scholars still rely on experience to find the effective singular value
order. This is for the reason that the mutation point of the actual signal singular value
curve is not easy to be realized by the algorithm, and it is sensitive to noise. Thus, it
is not rigorous to set the threshold to find the effective singular value order directly. In
other words, the order of the effective singular value is the position where the trend of the
singular value curve changes. The problem can be transformed into searching the starting
position where the slope tends to be stable.

Firstly, finding the maximum gm−max and minimum gm−min of slope gm and defining
the amplitude ratio function z and the amplitude ratio threshold γ1:

z =
gm−min

gm−max
(21)

When z < γ1, the slope gm fluctuates greatly, and gm−max will be set to zero. Then, a
new slope g′m is obtained, and new amplitude maximum of g′m−max and amplitude ratio
z′ = gm−min/g′m−max will be generated again. Until the slope g′m amplitude ratio function
satisfies z′ ≥ γ1, the iteration stops. It is considered that the new slope g′m tends to be
stable, and the position of the minimum non-zero point in the slope g′m is the searched
order of the effective singular value.

4.2. Principle of Signal Reconstruction

Another serious problem faced by time-frequency analysis methods is the selection of
the signal reconstruction mode. At present, there are mainly the cross-correlation (CORR)
judgment method [28], information entropy judgment method [29], energy proportional
judgment method [30], and probability density function judgment method [31]. Among
these, the cross-correlation judgment method and probability density function judgment
method have better robustness. The judgment method of the probability density function is
discussed in Reference [32]. Firstly, the probability density functions of the original signal
and each mode are estimated. Then, the Euclidean distance (ED), Bhattacharyya distance
(BD), and Hausdorff distance (HD) between the probability density functions of the original
signal and each mode are calculated respectively to measure the correlation. Finally, it
gives the conclusion that the Hausdorff distance has the optimal effect on measuring the
correlation of the two probability density functions. However, in the field of radar signal
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processing, in addition to the effective target signal, there are also noise and clutter in the
signal. In this case, Hausdorff distance can easily cause mismatching.

In order to select the correlated modes for reconstruction after CVMD decomposition
efficiently, this paper uses Mahalanobis distance [33] to measure the correlation between
each mode and the original signal. Mahalanobis distance can fully consider the correlation
of the size and characteristics between two vectors. The Mahalanobis distance does not
distinguish data types and does not need to estimate the probability density function. The
calculation formula is as follows:

D =

√
(X− µ)TΣ−1(X− µ) (22)

where D represents the Mahalanobis distance between the sample to be tested and the
reference sample, X is the sample to be tested, µ is the mean value of the reference sample,
and Σ is the covariance estimation of the reference sample. The larger D, the weaker
correlation between the two samples, and the smaller D, the stronger correlation between
the two samples.

The Mahalanobis distance Di of each mode is calculated and compared with its mean

value D = 1
K

K
∑

i=1
Di to preliminarily judge the correlation between each mode and the

original signal. {
Pn = BLIMFiDi < D

Qn = BLIMFiDi ≥ D
(23)

In the Equation (23), Pn can be judged as strong correlation mode and Qn as weak
correlation mode. The second judge is designed to avoid the conditions where all the points
in the Mahalanobis distance curve are very close or the last point larger than mean value
on the curve is pretty close to the mean value, which will generate the error judgment of
classifying the strong correlation mode to the weak correlation mode.

This idea set the threshold value γ2 to rejudge the mode Q, which is larger than D
and closest to D, if it satisfies:

D
Qi

> γ2 (24)

The mode Q is reclassified to the strong correlation mode, otherwise the original
judgment is kept unchanged. At this time, the radar echo separation is realized by selecting
the strong correlation mode Pn and Qi for local reconstruction, written as follows:

S(t) =
N

∑
n=1

Pn + Q (25)

In summary, the flowchart of the proposed adaptive CVMD algorithm is as shown in
Figure 3.
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Figure 3. The flowchart of the adaptive CVMD algorithm.

5. Results and Discussions
5.1. Analysis of Experimental Data

In order to verify the effectiveness of the CVMD algorithm in the field of radar signal
processing, an experimental platform was built for data acquisition, as shown in Figure 4.
The experimental platform is mainly composed of radar mainframe and PC, and its target
is a rotating fan driven by a motor. The parameters of radar are as follow: carrier frequency
f c = 24 GHz, repetition frequency PRF = 4000 Hz, bandwidth B = 10 MHz and sampling
frequency f s = 500 KHz. The parameters of the fan are as follow: the number of blades
N = 3, the length of blades L = 0.6 m, the width of blades W = 0.12 m, the rated rotational
speed ω = 320 rpm. The observation time of this experiment is 0.5 s, and the observation
angle is 40◦.

Figure 4. Experimental platform.

The time domain waveform, frequency spectrum and time-frequency diagram of the
signal collected by the experimental platform are shown in Figure 5. The flicker modulation
caused by target rotation can hardly be observed in the time domain waveform, and only
a strong peak near-zero frequency can be observed in the frequency spectrum. The law
observed in the time-frequency diagram is consistent with that in the frequency domain.
Therefore, it can be seen that the target echo is completely submerged in the clutter, so it is
necessary to suppress the clutter.
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Figure 5. Experimental signal: (a) Time domain and frequency domain, (b) time-frequency domain.

The preprocessing of the signal obtains two signals to be decomposed, as shown
in Figure 6a. The obvious periodicity can be observed for both signals, and the signal
S+(t) containing only positive frequency component is stronger than the signal S−(t)
containing only negative frequency component. After the analysis of the radar signal, the
positive frequency usually means that the target is moving close to the radar, while the
negative frequency is moving away from the radar. When targets move close to the radar,
the distance between the target and the radar becomes closer and the echo intensity is
relatively strong. When targets move away from the radar, the distance between the target
and the radar becomes longer and the echo intensity is relatively weak.

The SVD processing of S+(t) or S−(t) can obtain the singular value curve, and the
slope curve of the singular value, as shown in Figure 6b. From the slope curve, it can be
seen that the slope tends to be flat after several large values. It can be judged that the
effective order of singular value is about 5–8. At this moment, the slope of singular value
changes slowly, the specific order cannot be determined directly. The amplitude ratio
function value is calculated iteratively, and the amplitude ratio threshold is set at γ1 = 0.01,
and if the point with large fluctuation is set to zero, the amplitude of the singular value
slope curve will be limited to a small range. At this time, the effective order of the singular
value is determined as 7 by finding the first non-zero position.

Figure 6. Solution of decomposition layer: (a) Newly constructed signal S+(t) and S−(t), (b) curve of effective singular
value.
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In order to discuss the performance of the SVD-based method under different SNR
conditions, noise is added in this experiment. Under different SNR conditions (γ1 is the
optimal threshold), 100 of Monte Carlo simulation experiments are used to compare the
K estimation effect of DFA, EMD and SVD methods. The concrete results are shown in
Table 1. The table demonstrates that SVD has the best estimation effect, and this method is
robust under lower SNR conditions.

Table 1. Comparison of the SVD with DFA and EMD for solving K.

SNR (dB) −10 −8 −6 −4 −2 0 2 4 6 8 10

DFA 12 10 9 9 7 5 5 5 4 4 4
EMD 7 6 7 7 6 6 7 6 6 6 6
SVD 1 1 2 3 3 4 4 4 4 4 4

The effective order of singular value is used as the decomposition layer number of
CVMD, that is K = 7, after decomposition of the signals S+(t) and S−(t), and the modal
components and their corresponding spectrum are shown in Figure 7. It can be seen from
the spectrum that the signals decomposed by CVMD have a certain bandwidth and different
central frequencies, and after decomposition, whether the modal components are obtained
by S+(t) decomposition or the modal components obtained by S−(t) decomposition, there
is no under-decomposition or over-decomposition in the spectrum, so we can judge that
the K is the best value, which shows that the effective order of singular values of SVD
is equivalent to the optimal decomposition layer of CVMD. Figure 8 is the Mahalanobis
distance curve of each modal component to the original signal. By comparing with the mean
of Mahalanobis distance, the strongly correlated mode and the weakly correlated mode
can be roughly identified. By setting a threshold value of γ2 = 0.99 to determine whether a
false judgment occurs, in fact, it is only when all the points on the Mahalanobis distance
curve are close to each other, or when the last point on the curve is extremely close to the
mean value, that a false positive can occur, it can be understood as a fault-tolerant threshold
with limited impact on signal reconstruction performance. Table 2 gives the exact values of
the cross-correlation coefficient, the Bhattacharyya distance, the Hausdorff distance, the
Euclidean distance and the Mahalanobis distance. It can be seen from the comparison that
the strongly correlated modes determined by calculating the cross-correlation coefficient
are BLIMF4-BLIMF7 and BLIMF3-BLIMF4 respectively, by calculating the Bhattacharyya
distance, the strong correlation modes determined by Hausdorff distance and Euclidean
distance are BLIMF5-BLIMF7, and those determined by Mahalanobis distance are BLIMF3-
BLIMF7, and it was found that only the Mahalanobis distance can accurately separate the
micro-motion signals.

Figure 7. Cont.



Sensors 2021, 21, 1637 13 of 20

Figure 7. VMD of S+(t) and S−(t): (a) BLIMFs of S+(t) in time domain, (b) BLIMFs of S+(t) in frequency domain, (c)
BLIMFs of S−(t) in time domain, (d) BLIMFs of S−(t) in frequency domain.

Figure 8. Mahalanobis distance between S(t) and the BLIMFs.

Table 2. Comparisons of different algorithms.

CORR BD HD ED MD
S+(t) S−(t) S+(t) S−(t) S+(t) S−(t) S+(t) S−(t) S+(t) S−(t)

BLIMF1 94.84 121.48 8.19 9.52 28.64 23.14 115.05 51.54 66.07 44.44
BLIMF2 114.43 132.73 8.21 9.37 45.67 40.71 170.27 122.49 64.90 32.90
BLIMF3 201.16 225.28 10.00 10.69 86.80 77.82 462.68 294.08 63.17 12.01
BLIMF4 234.21 248.68 9.68 10.49 158.36 146.12 670.03 477.20 63.08 9.20
BLIMF5 291.46 332.49 8.16 9.37 475.27 684.46 1290.7 1431.8 63.00 3.84
BLIMF6 244.87 296.81 8.02 8.68 468.58 622.35 1095.9 1266.6 63.04 4.10
BLIMF7 251.63 273.10 7.88 8.67 591.37 666.56 1231.1 1135.1 63.03 4.98

The time domain waveform, frequency spectrum and time-frequency diagram of the
reconstructed signal are shown in Figure 9. At this time, periodic peaks can be seen on
the time domain waveform, that is the flicker characteristics caused by the target micro-
motion [34]. It can be seen from the spectrum and time-frequency diagram that the signal
near the zero frequency is suppressed, that is, the clutter is suppressed successfully, and
the separation of the icro-motion signal and the clutter is realized. Due to the target
position being fixed in the experiment, the fuselage signal is still at zero frequency, thus,
the separation of the fuselage signal and the icro-motion signal has been accomplished.
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Figure 9. Reconstruction signal: (a) Time domain and frequency domain, (b) time-frequency domain.

5.2. Analysis of Measured Data

In this part, two sets of measured data are directly selected and analyzed. The target
in data 1 is a helicopter, and the target in data 2 is a transport aircraft. The time domain
waveform, frequency spectrum and time-frequency diagram of the original signal of data
1 and the result of adaptive CVMD processing are shown in Figure 10a–d. Figure 10e–j
is the time domain waveform, frequency spectrum and time frequency diagram of LMD
processing, EMD processing and MTI processing. Figure 11a–d is the result of adaptive
CVMD processing of data 2, and Figure 11e–j is the result of LMD processing, EMD
processing and MTI processing of data 2.

From the processing results of two sets of radar measured data of different micro-
motion targets, it can be seen that the adaptive CVMD method can effectively separate
the clutter and the fuselage component of the target in the echo and reserve its fretting
component. In Figures 10c and 11c, the flicker of the reconstructed signal in the time
domain is obvious, a notch appears on the frequency spectrum at the zero frequency and
the doppler position of the fuselage, which means the echo is successfully separated. It is
shown that the number of decomposition modes and the selection of reconstructed modes
of CVMD are reasonable and practical. Due to the presence of high-energy clutter and
fuselage on the original time-frequency diagram of Figures 10b and 11b, the micro-motion
characteristics of the target can hardly be observed, in Figures 10d and 11d, the micro-
motion characteristics of the target are clearly visible, which provides favorable conditions
for further research on micro-motion feature extraction and target recognition.

Figure 10. Cont.
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Figure 10. Cont.



Sensors 2021, 21, 1637 16 of 20

Figure 10. Analysis of helicopter data: (a) Original signal in time domain and frequency domain, (b) original signal
in time-frequency domain, (c) reconstruction in time domain and frequency domain by CVMD, (d) reconstruction in
time-frequency domain by CVMD, (e) reconstruction in time domain and frequency domain by LMD, (f) reconstruction
in time-frequency domain by LMD, (g) reconstruction in time domain and frequency domain by EMD, (h) reconstruction
in time-frequency domain by EMD, (i) result in time domain and frequency domain by MTI, (j) result in time-frequency
domain by MTI.

Figure 11. Cont.
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Figure 11. Analysis of propeller data: (a) Original signal in time domain and frequency domain, (b) original signal in
time-frequency domain, (c) reconstruction in time domain and frequency domain, (d) reconstruction in time-frequency
domain, (e) reconstruction in time domain and frequency domain by LMD, (f) reconstruction in time-frequency domain by
LMD, (g) reconstruction in time domain and frequency domain by EMD, (h) reconstruction in time-frequency domain by
EMD, (i) result in time domain and frequency domain by MTI, (j) result in time-frequency domain by MTI.

Comparing the results in Figures 10e–h and 11e–h, the LMD and EMD methods
can only suppress the clutter to a certain extent when dealing with the separation of the
measured data. There is a certain residual clutter, and the separation effect of the fuselage
is poor. Comparing the results in Figure 10i,j and Figure 11i,j, the MTI methods can
totally suppress the clutter, but cannot separate the fuselage of the target, and this method
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has nonlinear amplification effect on high-frequency components affected by amplitude
frequency characteristics. The result shows that the adaptive CVMD method presented
in this paper is more robust and more practical than LMD, EMD and MTI methods in
narrowband radar target micro-motion echo separation.

6. Conclusions

In order to solve the problem of VMD algorithm’s inability to process complex signal,
the number of decomposition layer needs to be set manually and the signal reconstruction
mode selection is difficult, therefore, an adaptive complex variational mode decomposition
algorithm was proposed. Firstly, the complex signal was preprocessed in the frequency
domain, and two new signals containing only positive frequency components and negative
frequency components were obtained. Then, singular value decomposition was performed
on the decomposed signal. The effective singular value order was found by setting the
amplitude ratio threshold of the singular value slope as the optimal decomposition layer of
CVMD. The optimal decomposition layer was used to decompose the two decomposed
signals to obtain their respective modal components. The correlation of each mode was
judged by calculating the Mahalanobis distance between each mode and the decomposed
signal. Finally, the effectiveness of the method was verified by the experimental platform,
and the robustness and practicability of the method were verified by comparing two groups
of radar measured data with LMD, EMD and MTI methods. Through the above work,
conclusions can be obtained as follows:

(1) The positive spectrum and negative spectrum were obtained by dividing the spectrum
of the complex signal. The negative spectrum after reverse processing and positive
spectrum were converted into time domain and sent to VMD for processing. All the
decomposed modes were linearly superimposed to restore the original complex signal
and realize CVMD processing of complex signal, but the computational complexity
was doubled.

(2) The SVD was used to get the singular value vector of the decomposed signal. By
setting the amplitude ratio threshold on the singular value slope curve, the effective
singular value order can be obtained as the decomposition layer of CVMD. Under
this decomposition layer, the CVMD decomposition result did not appear as under-
decomposition or over-decomposition phenomenon, which shows that the effective
singular value order of SVD is consistent with the optimal decomposition layer of
CVMD.

(3) Mahalanobis distance can robustly judge the correlation between each mode and the
original signal and can effectively highlight the strong correlation mode. By selecting
the strong correlation mode to reconstruct the signal, it can achieve the separation of
the micro-motion signal.
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