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Abstract: In order to ensure the production quality of high-speed laser welding, it is necessary to
simultaneously monitor multiple state properties. Monitoring methods combining vision sensing
and deep learning models are popular but most models used can only make predictions on single
welding state property. In this contribution, we propose a multi-output model based on a lightweight
convolutional neural network (CNN) architecture and introduce the particle swarm optimization
(PSO) technique to optimize the loss function of the model, to simultaneously monitor multiple state
properties of high-speed laser welding of AISI 304 austenitic stainless steel. High-speed imaging
is performed to capture images of the melt pool and the dataset is built. Test results of different
models show that the proposed model can achieve monitoring of multiple welding state properties
accurately and efficiently. In addition, we make an interpretation and discussion on the prediction
of the model through a visualization method, which can help to deepen our understanding of the
relationship between the melt pool appearance and welding state. The proposed method can not
only be applied to the monitoring of high-speed laser welding but also has the potential to be used in
other procedures of welding state monitoring.

Keywords: laser welding; monitoring; deep learning; multi-output prediction; particle swarm
optimization; CNN visualization

1. Introduction

Laser welding is a complicated manufacturing process with high energy density and
high efficiency, while humans have limited understanding of the process mechanism [1,2].
The welding quality can be influenced by various factors such as the internal defects of
materials and the complex manufacturing environment. Therefore, monitoring of the laser
welding process is essential for making high quality production [3,4].

Since multiple factors influence the appearance of the melt pool, images of the melt
pool captured by a vision sensor contain rich information about the welding process [5],
and can reflect the condition of the welding process, namely welding state. In addition,
compared with other sensors like an acoustic emission sensor and photodiode sensor, a
vision sensor has advantages considering the quality of the collected information, the
position of the sensor and the industrial application. Therefore, researchers frequently used
vision sensors to capture images of the welding process and monitored the welding state [6].
Hand-crafted image processing algorithms were used to extract features from images and
machine learning methods like support vector machine [7–10], random forest [5], and
k-nearest neighbors [11] were applied to predict the welding state. However, image
data captured by vision sensors can be complex and high-dimensional. Feature extraction
methods through hand-crafted image processing algorithms require much prior knowledge
and are always specific to the task. Because deep learning methods like convolutional
neural network (CNN) rely more on real data and less on hand-crafted feature extraction
methods and have a more powerful learning ability, they are more suitable than classical
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methods for the analysis of complex high-dimensional data like image data [12]. Therefore,
researchers started to introduce deep learning to analyze image data in the research of the
welding process monitoring in recent years [13]. Zhang et al. [6] captured coaxial images of
the weld pool in laser welding and used a CNN for the penetration state diagnosis. Zhang
et al. [14,15] built a multiple-sensor system consisting of a spectrometer, two photodiodes
and two visual sensors to monitor the laser welding state and used deep learning methods
including stacked sparse autoencoder and CNN to model the relationship between the
multi-sensor features and their corresponding welding state. Liu et al. [16] combined the
CNN and long short-term memory network to realize the mapping from melt pool images
to defects in CO2 welding. Feng et al. [17] built a framework called DeepWelding, which
applies multiple deep learning techniques to achieve better performance in the monitoring
of gas tungsten arc welding. Bacioiu et al. [18,19] used CNN models to detect defects in
tungsten inert gas welding. Shevchik et al. [20] proposed a method for real-time detection
of laser welding instabilities by the application of CNN.

The production efficiency of laser welding can be improved with the improvement of
welding speed. Although many defects can occur in laser welding, like spatter and mis-
alignment, humping is one of the most typical defects in high-speed laser welding [21,22].
In addition, because of performance problems of the equipment or the misoperation by
workers, the actual welding parameters including laser power, welding speed and defo-
cusing amount may deviate from the required values. For example, the aging of the laser
can make the output laser power smaller than the setting power, and a speed sensorless
motion device cannot ensure steady welding speed [23,24]. These problems are difficult
to find in high-speed laser welding with naked eye as the welding process can be very
quick. Under such circumstances, even no obvious defect appears, the performance of the
weld can also be substandard. Therefore, in order to achieve comprehensive monitoring of
the high-speed laser welding, it is necessary to simultaneously monitor the occurrence of
defects and welding parameters. In this research we focus on the occurrence of humping, as
well as the values of laser power and welding speed. Generally, the occurrence of humping
is related to laser power and welding speed. However, if we predict the laser power and
welding speed first and then predict the occurrence of humping according to the predicted
values of the laser power and welding speed, the result will be influenced by prediction
errors of laser power and welding speed. If all outputs are predicted directly from the input
data, the output could be more accurate. Therefore, a multi-output model able to perform
classification and regression simultaneously is required. However, in the existing research
of welding state monitoring, researchers mainly built CNN-based single-output models to
analyze collected image data. To build a multi-output model, one way is to build a series
of single-output sub-models to predict each of these properties, respectively, as shown in
Figure 1a. However, if the multi-output model is designed in this way, each sub-model
needs to extract features from the original data by itself and cannot share features with
other sub-models, so the building and using of the model can be tedious and inefficient. In
order to simplify the model and improve efficiency, another way is to build a public feature
extractor to extract features from the original data, and then input features to several
predictors to make prediction of multiple properties, as shown in Figure 1b.

Based on this idea, in this paper we propose a multi-output model based on CNN, to
simultaneously monitor multiple state properties of high-speed laser welding according to
images of the melt pool. A lightweight CNN architecture MobileNetV2 is adopted as the
public feature extractor, followed by several fully connected layers in parallel to output
predictions of multiple properties. What is more, particle swarm optimization (PSO) is
introduced to optimize the loss function of the network, and the network achieves better
performance after the optimization. Images of melt pool are collected through high-speed
imaging of high-speed laser welding of AISI 304 austenitic stainless steel, and the dataset is
established. Then the proposed model is applied to simultaneously monitor multiple state
properties of high-speed laser welding. Performances of the proposed model and other
models are compared and analyzed. In the end, a CNN visualization technique Grad-CAM
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is applied to interpret the decision of the model, which can deepen our understanding of
the melt pool appearance of high-speed laser welding. This paper is organized as follows.
Section 2 introduces the architecture of the proposed model. Section 3 presents welding
experiments and data processing. Section 4 gives analyses and discussions on test results.
Section 5 presents the summary.
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2. Architecture of the Model
2.1. Multi-Output Model Based on MobileNetV2

The proposed model is based on MobileNetV2 [25], an efficient lightweight CNN
architecture, which performs well on ImageNet classification, COCO object detection and
VOC image segmentation. Compared with other modern networks, it decreases the number
of operations and the memory needed while retaining high accuracy and is especially
suitable for resource constrained environments like industrial environments. The basic
building block of MobileNetV2 is a bottleneck depth-separable convolution with residuals,
whose structure is shown in Figure 2, and it has the following characteristics. First, it
replaces the standard convolution operation with the depthwise separable convolution
which consists of two separate layers. The first layer is called a depthwise convolution
that performs lightweight filtering by applying a single convolutional filter per input
channel, and the second layer is called a pointwise convolution that performs 1 × 1
standard convolution. The computational cost of the depthwise separable convolution is
much smaller than that of the standard convolutions at only a small reduction in accuracy.
Second, the linear bottleneck layer is inserted into the end of the building block to prevent
non-linearities from destroying too much information. Third, an inverted residual structure
is introduced. The shortcut connection is inserted between the building blocks, as shown
for the block with stride = 1 in Figure 2. This design can improve the ability of a gradient to
propagate across multiplier layers. In addition, in the building block the input is expanded
to high dimension at the start and projected back to low dimension at the end, in order to
make it possible for the network to represent more complex functions. The architecture
of MobileNetV2 contains the initial fully convolution layer with 32 filters, followed by
19 residual bottleneck layers. What is more, the original MobileNetV2 is aimed at color
images with 3 channels, but in this research the input image is grayscale images with a
single channel, so the input channel of MobileNetV2 is changed from 3 to 1.
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Figure 2. Structure of the building block of MobileNetV2.

For an input image, MobileNetV2 outputs a feature vector with a length of 1280. In
order to achieve the multi-output prediction, we propose the MobileNetV2-C&R network
model, where 2 fully connected (FC) layers are added in parallel at the end of MobileNetV2.
One FC layer followed by a softmax function is used for the classification prediction, out-
putting the humping label (humping or no humping). The other is used for the regression
prediction, outputting values of laser power and welding speed. The output of the model
can be expressed as [humping label, laser power, welding speed]. The architecture of
the model is shown in Figure 3. In the training process of the network, a loss function is
required. Generally, a common loss function for classification problems is the cross-entropy
loss, and for regression problems is the mean square error loss. In MobileNetV2-C&R,
both classification and regression are performed, so we build a function LT as the total
loss function:

LT = 10ALC + LR (1)

where LC is the cross-entropy loss for classification, LR is the mean square error loss for
regression, A is a hyper-parameter used for adjusting the relative weight between LC and
LR in LT. Because the cross-entropy loss and the mean square error loss may be different in
order of magnitude, A is placed in the exponent.
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2.2. Optimization of the Loss Function

Hyper-parameter A in the total loss function of MobileNetV2-C&R needs to be deter-
mined. Loss functions for classification and regression have different forms, so if we simply
set A = 0, the network may not get trained effectively. Therefore, particle swarm optimiza-
tion (PSO) [26] is introduced to optimize the value of A, namely MobileNetV2-C&R-PSO
model. PSO is an evolutionary computation technique that originates from the simulation
of a simplified social model. It comprises a simple concept and is computationally inexpen-
sive, with satisfactory convergence speed and high tolerance to initial parameters and is
popular in the optimization of nonlinear functions. Main processes of PSO are as follows:

1. Set the parameters of PSO, including the number of particles n, learning factors c1
and c2, and the inertia weight w.

2. Randomly initialize the velocity and position for each particle. The velocity is vi and
the position is xi for the i-th particle.

3. Calculate the value of the fitness function for each particle.
4. According to the value of the fitness function, determine the best position for each

particle in history pbesti and the global best position for all particles in history gbest.
5. Determine whether the maximum iteration is reached. If so, output gbest and finish

the optimization. Otherwise update the velocity and position for each particle:

vi = wvi + c1r1(pbesti − xi) + c2r2(gbesti − xi) (2)

where r1 and r2 are stochastic variables between 0 and 1,

xi = xi + vi (3)

Then return to step (3).
To achieve satisfactory performance in both classification and regression, the fitness

function is designed as follows. Substitute A = xi into Equation (1) and train the network
for 1 epoch with the train set, and then test the trained network on the train set. For the test
result of classification, we use balanced accuracy for evaluation since numbers of humping
samples and no humping samples are different in the following dataset:

abalanced =
ah + anh

2
(4)

where ah and anh are classification accuracies on samples with ground-truth labels of
humping and no humping, respectively.

The test result of regression is evaluated with the coefficient of determination R2 [5]:

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (5)

where n is the number of samples, ŷi is the predicted value of the i-th sample, yi is the
corresponding true value, y is the mean value of yi of all samples. The best possible value
of R2 is 1.0.

The fitness function combines evaluation indices of both classification and regression:

f = abalanced +
R2

power + R2
speed

2
(6)

where R2
power and R2

speed are R2 of laser power prediction and welding speed prediction,
respectively.

PSO is applied to search for the optimal value of A which leads to the largest value of
f . The flowchart of the optimization process is shown in Figure 4. Then the optimal value
of A is substitute into Equation (1) and the loss function of MobileNetV2-C&R-PSO is got.
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3. Data Acquisition and Processing
3.1. Experimental Setup and Procedure

High-speed imaging experiment of high-speed laser welding is conducted to cap-
ture images of the melt pool. The welding method is bead-on-plate welding without
the application of external filler material. The experimental configuration is shown in
Figure 5. Workpieces are AISI 304 austenitic stainless-steel sheets with dimensions of
length 200 mm × width 50 mm × thickness 1 mm. AISI 304 austenitic stainless steel
is the most popular group of high-alloy stainless steels with high corrosion resistance
and good strength [2]. One workpiece is fixed on the base plate of a WN500TA electric
motion platform from Winner Optical Instruments during each experiment. The base
plate is made of 6061 aluminum alloy and has dimensions of length 300 mm × width
150 mm × thickness 10 mm. Workpieces are cleaned with absolute ethyl alcohol before the
welding process. The Argon is used as the shielding gas and supplied on the face side of
the workpiece at a flow rate of 20 L/min. A MAX MFSC 4000 W single-mode fiber laser
and a Precitec YC52 laser processing head are integrated to perform laser welding. The
maximum power of the fiber laser is 4 kW and the wavelength of the laser is 1070 nm. The
focal lengths of the collimation lens and focus lens are 150 mm and 300 mm, respectively,
and the feeding fiber core diameter is 0.2 mm. The defocusing amount of the laser spot is
set to 0. A NAC Memrecam HX-6 high-speed camera is used to record images of the melt
pool during the welding process and its frame rate is set to 5 kHz. The camera is placed in
front of the melt pool and its axis forms a 30◦ angle with the vertical direction. A Cavitar
CAVIULX HF pulsed high power diode laser light source is used as an active light source
for illumination and its central wavelength is 810 nm, and a narrow band-pass filter with
the central wavelength of 810 nm is attached on the camera lens. A total of 15 experiments
are performed. The laser power ranges from 1.5 kW to 3 kW with step of 0.5 kW and
welding speed ranges from 12 m/min to 24 m/min with step of 4 m/min. Visual tests are
carried after the welding process to judge whether humping occurs.
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3.2. Data Preprocessing

Because welding speeds in experiments are high, there exist obvious acceleration and
deceleration processes when the motion platform starts and stops. Therefore, 1000 images
are selected for each experiment when the welding speed is stable. Then 800 of them are
selected randomly and added into the training set, and the rest into the test set. In total the
training set contains 12,000 samples and the test set contains 3000 samples.

For all images in the dataset, image cropping is performed. The cropping process
is shown in Figure 6a and examples of cropped images with different welding states are
shown in Figure 6b. There are two purposes of image cropping. First, it can shorten the
time cost of the training and testing processes. Second, most region irrelevant with the
melt pool is removed, so the model can focus more on the melt pool and learn related rules.
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Next, data augmentation is performed for images in the training set, which can
enhance the diversity of the data, help to overcome the overfitting in the training and
improve the robustness of the trained model [27]. Three transformations are performed in
sequence, including random horizontal flip with a probability, random color jitter (random
changing of the brightness, contrast and saturation) and random affine transformation.
The process is shown in Figure 7.
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3.3. Training of the Model

Based on the preprocessed training set, PSO is introduced to optimize the loss function
of the network, as described in Section 2.2. Parameters of PSO, including n, c1, c2, and
w, are set to 5, 0.5, 0.5, 0.8, respectively, and 30 iterations are performed. The change of
the fitness function in the optimization process is shown in Figure 8. The value of the
fitness function rises to 1.7486 and the corresponding optimal value of A is −0.9347. Then
with the optimized loss function, the network is trained for 30 epochs. In the training
process, the batch size is 20 and Adam algorithm [28] is implemented. What is more,
dropout [29] is used before FC layers to alleviate the overfitting. Finally, we get the trained
MobileNetV2-C&R-PSO model.
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In order to better evaluate the performance of MobileNetV2-C&R-PSO, we also train
other models for comparison. These models are as follows:

1. The original MobileNetV2-C&R model where A in the loss function is set to 0.
2. Two individual models based on MobileNetV2, one for classification (MobileNetV2-C)

and the other for regression (MobileNetV2-R).
3. Classical models. Two classical image feature operators, histogram of oriented gra-

dient (HOG) [30] and local binary pattern (LBP) [31], are used to extract features in
images, respectively. Then two classical machine learning methods, support vector
machine (SVM) and k-nearest neighbor (KNN), are used to make predictions. The
classification and regression forms of SVM are SVC and SVR, respectively, and of
KNN are KNC and KNR, respectively. Therefore, four models are built for classi-
fication prediction (HOG + SVC, HOG + KNC, LBP + SVC, LBP + KNC) and four
models are built for regression prediction (HOG + SVR, HOG + KNR, LBP + SVR,
LBP + KNR).

These models run on a computer with the following configuration: Intel(R) Core(TM)
i7-8700 CPU@3.20 GHz, 16.0 GB RAM, and GeForce GTX 1060 6 GB GPU. The GPU is used
for accelerating the computation of CNN models. The deep learning models are built with
Pytorch and classical models are built with Sklearn.

4. Results and Discussions
4.1. Performance Evaluation and Comparison

Through visual tests, we find that humping appears in six experiments and no hump-
ing occurs in the other nine experiments. Appearances of some welds in experiments are
given in Figure 9.
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Models are trained with the training set and then tested on the test set, and per-
formances of them are evaluated. For the classification problem, the balanced accuracy
abalanced given in Equation (4) is used as the evaluation index. For the regression problem,
besides the coefficient of determination R2 given in Equation (5), the mean absolute error
MAE is also used as an evaluation index:

MAE =
1
n ∑n

i=1|yi − ŷi| (7)

In addition, for the deep learning-based model, the average prediction time cost per
sample is also given. Results are listed in Table 1 and next we perform analyses on them.
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Table 1. Performance of different models on the test set.

Model
Classification Regression Average

Prediction
Time (ms)abalanced (%) R2

power R2
speed MAEpower (W) MAEspeed (mm/s)

Deep
learning

based model

Mobile
NetV2-C&R-PSO 100.00 0.9570 0.9618 83.17 8.48 2.24

MobileNetV2-C&R 100.00 0.9416 0.9091 107.83 16.78 2.24
MobileNetV2-C 100.00 - - - - 1.85
MobileNetV2-R - 0.9464 0.9806 92.63 5.84 1.88

Classical
model

HOG+SVC 98.01 - - - - -
HOG+KNC 94.81 - - - - -
LBP+SVC 69.43 - - - - -
LBP+KNC 69.28 - - - - -
HOG+SVR - 0.4400 0.5206 369.65 45.40 -
HOG+KNR - 0.5463 0.0758 294.33 47.02 -
LBP+SVR - −0.2350 −1.3134 548.53 99.88 -
LBP+KNR - 0.0100 −0.1075 414.23 61.42 -

First, we compare the performance of MobileNetV2-C&R-PSO and MobileNetV2-C&R.
In order to make comparison more intuitively, prediction results of them on the test set are
also given in Figure 10. From Table 1 and Figure 10 we can notice that these two models
both achieve 100% accuracy on the classification problem. However, MobileNetV2-C&R-
PSO performs better on the regression problem, achieving better R2 and MAE. In order
to explain this difference, loss curves in training processes of these two models are given
in Figure 11, from which we can find that classification losses of these two models both
converge quickly, but the regression loss of MobileNetV2-C&R-PSO converges obviously
faster than that of MobileNetV2-C&R and can converge to a smaller value in the end. In
the training process of MobileNetV2-C&R, the classification loss converges faster than
the regression loss. In the total loss of MobileNetV2-C&R-PSO, the classification loss has
a smaller weight, so in the training process, the network can pay more attention to the
regression problem. Therefore, the model can achieve better performance on the regression
problem while retaining good classification accuracy.

Next, we compare the performance of MobileNetV2-C&R-PSO, MobileNetV2-C and
MobileNetV2-R. From Table 1 it can be observed that on the classification problem
MobileNetV2-C&R-PSO and MobileNetV2-C both achieve 100% accuracy, and on the
regression problem MobileNetV2-C&R-PSO and MobileNetV2-R also have similar per-
formance. MobileNetV2-C&R-PSO performs slightly better on the prediction of laser
power and slightly worse on the prediction of welding speed. However, in terms of the
prediction time cost, the combination of MobileNetV2-C and MobileNetV2-R costs 3.73 ms
(1.85 ms + 1.88 ms), while MobileNetV2-C&R-PSO only costs 2.24 ms which is 40% shorter.
Hence, it can save time while retaining similar prediction performance to replace the
combination of MobileNetV2-C and MobileNetV2-R with MobileNetV2-C&R-PSO.

Then we evaluate the performance of classical models. It can be noticed that on the
classification problem, models with HOG operator both achieve high classification accuracy,
while models with LBP operator perform poorly. On the regression problem, all of these
models perform badly. In addition, the performance of these classical models is inferior to
that of deep learning-based models.

Through the above comparison, it can be found that the proposed model MobileNetV2-
C&R-PSO is able to perform the monitoring of multiple state properties of high-speed
laser welding simultaneously and has satisfactory performance both in terms of accuracy
and efficiency.
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4.2. CNN Visualization

While CNN based models enable superior performance, their decisions are always
thought to be obscure and hard to interpret. In order to explain why CNN based models
predict what they predict, several CNN visualization techniques have been proposed in
recent years, among which Grad-CAM [32] is a class-discriminative localization technique
that generates visual explanations for any CNN based network without requiring architec-
tural changes or re-training. This approach can produce a localization map highlighting
the important regions in the image for making decisions.

For classification problems, in order to obtain the class-discriminative localization
map Grad-CAM Lc

Grad−CAM for any class c (humping label in our model), the gradient
of the score for class c, yc (before the softmax), with respect to feature map activations
Ak of a convolutional layer (the last convolutional layer of MobileNetV2 in our model) is
computed first. These gradients flowing back are global-average-pooled over the width
and height dimensions (indexed by i and j, respectively) to obtain the neuron importance
weights αc

k:

αc
k =

1
Z ∑

i
∑

j

∂yc

∂Ak
ij

(8)

Then a weighted combination of forward activation maps is performed, followed by a
ReLU to obtain the Grad-CAM:

Lc
Grad−CAM = ReLU

(
∑
k

αc
k Ak

)
(9)

For regression problems, Grad-CAM can also be computed by replacing yc with the
predicted regression value yr (laser power or welding speed in our model).

In order to interpret the prediction of MobileNetV2-C&R-PSO, six samples with
different welding states are selected, and their Grad-CAMs of humping label, laser power
and welding speed are computed, respectively, as shown in Figure 12. Highlighted red
regions in Grad-CAMs are regions having important influence on the prediction of the
model, which are mainly concentrated on different parts of the melt pool, indicating that
the model makes predictions mainly according to the appearance of the melt pool. Some
details are remarkable, which will be discussed next.

In Grad-CAMs of humping label, for all six samples, the highlighted region is mainly
concentrated on the melt pool region in the upper part of the image. In fact, the appearance
of this region will exactly change once humping occurs. The appearance of the melt pool
when humping occurs is shown in Figure 13, which is usually accompanied with high
laser power and high welding speed. At this time, the melt stream with high rearward
velocity exists in the melt pool, and the instability of the melt stream is the main cause of
humping [33,34]. Meanwhile, the keyhole in the melt pool will be elongated, and the liquid
level rises at the keyhole tail, which forms a bright region in the image. The highlighted
region in the Grad-CAM of humping label is exactly the bright region at the tail of elongated
keyhole when humping occurs, which means that the model predicts the occurrence of
humping mainly according to the existence this region.
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In the Grad-CAMs of laser power and welding speed, for samples A, B, and C, of
which the laser power and welding speed are both high, the highlighted region is similar
to that in the Grad-CAMs of humping label. This means that the model predicts these
samples having large laser power and welding speed also according to the bright region at
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the tail of elongated keyhole. For sample E with low laser power and high welding speed,
the highlighted region in its Grad-CAM of laser power is mainly concentrated on the top
of the image. In fact, this sample has the lowest energy density among these samples,
so the melt pool is short, and the solidified weld appears on the image top. The diffuse
reflection of the light from the auxiliary light source happens here, so this region has high
brightness in the image. The model predicts the low laser power of this sample according
to the solidified weld. For sample F with high laser power and low welding speed, the
highlighted region in its Grad-CAM of laser power is concentrated on the front and middle
of the melt pool, which is very different from other samples. In fact, this sample has the
highest energy density among these samples, and a penetration hole appears in the keyhole.
The model notices the penetration hole and takes it into consideration when predicting the
laser power.

To sum up, through the above analysis, it can be found that the model has learned
rules and knowledge closely related to the melt pool appearance. This can help us deepen
our understanding of the relationship between the melt pool appearance and welding state.

5. Summary

In this research, a multi-output model based on deep learning, MobileNetV2-C&R-
PSO, is proposed to perform monitoring of multiple state properties during high-speed
laser welding of AISI 304 austenitic stainless steel, according to images of melt pool
captured by a camera. A lightweight CNN architecture is used to extract features from
images, and then two FC layers are added in parallel to solve classification and regression
problems simultaneously. In addition, PSO is introduced to optimize the loss function of
the model. Dataset is built through the high-speed imaging of high-speed laser welding.
By comparing the test results of several models, the proposed model is proven to have
satisfactory performance in terms of both accuracy and efficiency. An accuracy of 100%
in the prediction of humping occurrence and R2 of 0.9570 and 0.9618 in the prediction
of laser power and welding speed are achieved, respectively, at an average time cost of
2.24 ms. Then the visualization of the proposed model is performed through Grad-CAM,
and the result indicates that the model has learned rules closely related to the appearance
of the melt pool. What is more, the architecture of our proposed model is convenient for
modification and expansion. By adding more FC layers in parallel, the prediction of more
state properties can be achieved, so it also has the potential to be used in other procedures
of welding state monitoring.
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