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Abstract: The semantic segmentation of small objects in point clouds is currently one of the most
demanding tasks in photogrammetry and remote sensing applications. Multi-resolution feature
extraction and fusion can significantly enhance the ability of object classification and segmentation,
so it is widely used in the image field. For this motivation, we propose a point cloud semantic
segmentation network based on multi-scale feature fusion (MSSCN) to aggregate the feature of a
point cloud with different densities and improve the performance of semantic segmentation. In our
method, random downsampling is first applied to obtain point clouds of different densities. A Spatial
Aggregation Net (SAN) is then employed as the backbone network to extract local features from
these point clouds, followed by concatenation of the extracted feature descriptors at different scales.
Finally, a loss function is used to combine the different semantic information from point clouds of
different densities for network optimization. Experiments were conducted on the S3DIS and ScanNet
datasets, and our MSSCN achieved accuracies of 89.80% and 86.3%, respectively, on these datasets.
Our method showed better performance than the recent methods PointNet, PointNet++, PointCNN,
PointSIFT, and SAN.

Keywords: LIDAR point cloud; semantic segmentation; feature fusion; deep learning; computer vision

1. Introduction

Deep learning algorithms have achieved significant success in many remote sensing
image analysis tasks, including object detection, semantic segmentation and classification.
On the one hand, the purpose of semantic segmentation is to assign a land cover label
to each pixel in an image. Facilitated by deep convolutional neural networks (CNNs),
especially end-to-end fully convolutional networks (FCN) [1], interest in the semantic seg-
mentation of remote sensing images has increased in recent years. Furthermore, semantic
segmentation focusing on the detection of small objects in remote sensing images [2–6] and
in point clouds covering global navigation satellite system (GNSS) indoor and underground
environments [7] has become a very attractive research topic.

In the research of a 3D point cloud, semantic segmentation is a hot research topic in
the field of autonomous driving and robot localization. Segmentation algorithms that take
input in the form of point clouds can be roughly divided into three categories: multiview-
based [8–13], voxel-based [14–18], and raw-point-cloud-based algorithms [19–27]. The
transformation of point clouds to a regular 3D voxel or images usually leads to serious loss
of geometric information and increases the calculation complexity. Therefore, algorithms
based on an original point cloud have become a hot research field recently. The original
point cloud contains rich geometric and semantic information, so it is easier for algorithms
to realize scene perception. Typical algorithms include PointNet [19], PointNet++ [20],
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PointCNN [28], and PointSIFT [29]. Although the point-based deep learning models have
made remarkable progress in the past three years, they still face difficulties related to
the avoidance of information loss in the process of down-sampling. Objects with fewer
points will keep fewer points in the final sampled points. Different densities of classes will
increase the difficulty of segmentation.

In the field of image, multi-resolution feature extraction and fusion [30] can signif-
icantly enhance the ability of object classification and segmentation. Motivated by this
phenomenon, we propose a point cloud semantic segmentation network based on multi-
scale feature fusion, which can aggregate features of different densities and improve the
performance of semantic segmentation. Firstly, point clouds of different densities are ob-
tained by changing the sampling ratio. Low-density point clouds in the proposed network
are suitable for extracting global shape features of a target, while high-density point clouds
are suitable for extracting detail from local features. Then, features are extracted from point
clouds of different scales. Finally, a new feature set is obtained from the extracted features
by applying the feature fusion operation. To sum up, there are three main contributions in
our work:

Firstly, we propose a multi-scale feature fusion architecture that is suitable for point
clouds. The multi-scale point cloud is obtained via stepwise downsampling from the
same original point cloud. We set different sampling ratios for different datasets and
achieve promising segmentation accuracy compared to state-of-the-art methods on both
the ScanNet and Stanford Large-Scale 3D Indoor Spaces (S3DIS) datasets.

Secondly, our MSSCN fuses point features extracted from different network levels
through direct mapping and concatenation. This feature fusion method not only allows the
advantages of the feature representations extracted at each level to be combined, but also
avoids error propagation at each level.

Finally, we design a loss function for MSSCN, which is used to train the network by
combining losses at different scales. Experimental results demonstrate that each component
of the loss function influences the final segmentation accuracy of MSSCN.

The rest of the paper is organized as follows. In the Section 2, the literature on point
cloud segmentation and classification is reviewed. Section 3 introduces the proposed deep
learning network structure MSSCN in detail. In the Section 4, the experimental setup is
introduced and the results are discussed. The Section 5 is a summary of the paper.

2. Related Work

Point clouds do not have a regular structure, whereas the input data for traditional
CNNs [31–34] must have a regular format; consequently, traditional CNNs are not suitable
for extracting the features of a point cloud. Previously, researchers have been working to
transform 3D point clouds into regular formats that are similar to images or voxels. For
example, in the multi-view based methods [35], the original point cloud is projected into the
image plane based on its depth or intensity values, and the projection views are generated
from a virtual camera posture. A typical example of this approach is MVCNN [8]. Since
2018, projection-based methods have been widely concerned. For instance, the Pointwise
Rotation-Invariant Network [36] framework was proposed to achieve rotation invariance
in point clouds. RotationNet [37] is effective for real scenes, because it only uses a part
of the original multi-view images to perform the inference process. However, due to the
loss of local geometry during the compression of 3D data to 2D data, methods based on
the projection of point clouds still face some limitations. Ref. [38] uses multiple clues
to integrate range and color content, in order to retain local geometric information. In
this context, Ref. [39] maps an input point cloud to a scanning pattern grid. Virtual
MVFusion [40] provided additional channels to render virtual views, which exceeds the
limitations of existing RGB-D sensors. At the same time, Virtual MVFusion designed the
backside culling scheme and multi-scale view sensing sampling. Therefore, the occlusion,
narrow view and scale invariance problems that plagued most previous multi-view fusion
methods were improved.
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Voxel, as small units of points set in 3D space, can be used to divide a point cloud into
a regular 3D subspace. Most voxel-based deep learning architectures are inspired by 2D
CNNs. Generally, 0–1 discrete values are used to confirm whether there are any points
in a specific voxel. As a typical method of this type, 3D ShapeNet [15] employed binary
voxels for three-dimensional filtering. However, this scheme always leads to an increase in
computational complexity. Therefore, researchers are attempting to improve the network
structure of voxel CNNs, as in [41,42].

Recently, researchers have paid increasing attention to semantic segmentation net-
works that take the original point cloud as the initial input. In this case, the input vector for
the deep neural network can be composed of coordinates or a combination of coordinates,
intensity, and color information. For algorithms based on raw point clouds, it is necessary
to solve the problem of achieving invariance in the order of input points. The representative
method for settling this conundrum is PointNet [19]. This networks use global feature
pooling to make the output vector invariant to the sequence of the input point. However,
it is difficult to extract local geometric features for each point since max-pooling layers
can be applied only to all points. To effectively overcome this challenge, PointNet++ [20]
used a multilevel network structure for the extraction of local features. That being said, the
max-pooling operation is also adopted in PointNet++. As a consequence, the network only
retains the maximum feature feedback from global and local regions, resulting in a loss of
useful geometric information that adversely affects the segmentation task. PointCNN [28]
used different levels of representative points to realize the feature extraction schemes pro-
ceeding from local regions to the global point cloud. However, this method may introduce
a new problem. In most cases, the distribution of the point cloud is uneven, which will
lead the selected representative points to gather in a small space. Consequently, after
several convolution operations, the reception range will be limited. To handle this problem,
PointSIFT [29] selected points adjacent to the representative points in a specified direc-
tion. The purpose is to acquire a complete description of the spatial structure features
around key points. The disadvantage of PointSIFT is the relatively high time complexity.
Recently, [43] designed the novel PointConv operation to achieve network expansion and
improve segmentation performance. Ref. [44] proposed a multi-directional convolutional
network—called a Spatial Aggregation Network (SAN)—which can utilize local spatial
structure information to achieve relatively high efficiency and accuracy.

However, due to the complexity of the point cloud distribution, the features of the
chosen alternative points may not be representative of the original features. In this situation,
the geometric information for each point will be ignored, which may lead to the loss of
local feature information. To extract local geometric and global features synchronously, the
authors of TGNet [45] proposed a novel convolution filter that extracts point features in a
hierarchical and multiscale manner. Experimental results showed that this strategy effec-
tively combines features from different scales and improves the performance of local region
segmentation. The authors of DGCNN [46] proposed an innovative edge convolution that
can extract the geometric features of local neighborhoods while maintaining permutation
invariance. However, this edge-based convolution obtains neighborhood points based only
on distance, which may still lead to local geometric information loss. GeoCNN [47] ex-
tracted features based on the angle aggregation between edge vectors and orthogonal bases,
so as to keep the geometric structure in the whole feature extraction process. However, it is
worth noting that GeoCNN needs to recalculate the K nearest neighbors for all points in
each stage, resulting in higher complexity. KPConv [48] can be expanded to deformable
convolutions by adapting the kernels to local geometries. Any number of kernel points
can be used, giving KPConv more flexibility than grid convolutions. Furthermore, these
locations are spatially continuous and can be learned by the network. A new convolution
operator learned from relationships in RS-CNN [49] is called relational shape convolu-
tion, which can encode the geometric relationship of points and expand the configuration
of regular grid CNNs to achieve context-aware learning of point clouds. FPConv [50]
proposed the surface style convolution operator. The operator disperses the convolution
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weight of each point along the local surface, so it is robust to input data. Finally, points are
projected onto the 2D grid by predicting projection weights, and regular 2D convolution
can be used for feature learning. However, CNNs may not correctly solve the problem of
non-Euclidean data. Therefore, graph convolutional networks (GCNs) were developed
to overcome this challenge by creating graphs representing non-Euclidean data. With the
help of techniques for increasing the depth of CNNs, DeepGCNs [27] were developed
using not only residual/dense connections but also dilated convolutions. Residual/dense
connections can solve the problem of gradient disappearance caused by an increase of
network depth. By expanding the convolution kernel to increase the receptive field without
increasing the number of parameters, the dilated convolutions help to solve the problem
of spatial information loss caused by pooling. Finally, a 56-layer GCN was constructed in
this way, which offered significantly improved performance in the semantic segmentation
of point cloud. Grid-GCN [51] proposed Coverage Aware Grid Query (CAGQ), which
samples representative center points and queries adjacent points. CAGQ implements data
structuring and makes full use of grid space efficiency, thus increasing space coverage and
reducing theoretical time complexity. CAGQ is up to 50 times faster than the most popular
sampling methods such as farthest point sampling and spherical query. A Graphic Convo-
lution Module Grid Context Aggregation (GCA) is proposed to integrate context features
and coverage information into computation. SPVNAS [52] proposed Sparse Point-Voxel
Convolution (SPVConv), which is equipped with a high-resolution point-based branch for
sparse convolution. It then introduced the first 3D Neural Architecture Search (3D-NAS)
for 3D scene understanding, a framework that searches for the optimal network structure
within a given resource constraint. JSENet [53] introduced semantic edge detection into se-
mantic segmentation. Semantic edge detection provides detailed edge location information
and can generate accurate edges. At the same time, dual semantic edge loss is proposed to
improve the segmentation effect of the edge position.

Algorithms based on raw point clouds [20,28,29,43] typically require several down-
sampling operations. In this scheme, objects with fewer points will keep fewer points
at the final sampled points. Different density of categories will increase the difficulty of
segmentation [27,45–49].

3. The Proposed Approach

The network structure of MSSCN is shown in Figure 1. First, downsampling is applied
to obtain the point cloud. Then, we extract features from the point clouds at each scale
using the network architecture proposed in our previous work, SAN. Finally, feature fusion
and optimization are performed on the extracted features.

3.1. Multiscale Point Feature Extraction

To make our method invariant to scale changes, a multi-scale point feature extraction
method based on different densities is proposed. We find that features of low-density point
clouds are suitable to represent global shape features, while high-density point clouds are
appropriate to describe detailed local features. According to the characteristics of the point
clouds, features associated with different densities are complementary. To construct the
multi-scale feature fusion network, we perform random downsampling operations on the
input data. Specifically, three scales are used to construct point clouds via downsampling.
Thus, we obtain two point clouds P1 and P2 of different densities, representing the point
clouds after the first and second downsampling processes, respectively. We record the
position of each sampled point in the two down-sampling point clouds, which can be used
for feature fusion later. The selection of the sampling ratios for datasets with different
characteristics is discussed in Section 4.1.



Sensors 2021, 21, 1625 5 of 20

(N, 3)

(N/k1, 3)

(N/(k1k2), 3)

z

y

x

1

2

4

8

Feature Extraction Module  

z

y

x

1

2

4

8

Index1

Index2

(N/k1, d1)

(N/(k1k2), d2)

Index2
-

+
Joint Optimization Module

MLP

MLP

SAN

SAN

MLP

(N/(k1k2), K)

Original point cloud
Segmentation result

Figure 1. Illustration of the proposed multi-scale feature fusion network (MSSCN). First, downsampling is performed on
the original point cloud with sampling proportions of k1 and k2. The chosen points are stored in Index1 and Index2 for the
first and second downsampling processes, respectively. Then, feature extraction is performed using a Spatial Aggregation
Net (SAN) backbone, where d1 and d2 are the dimensionalities of the features for each downsampled point cloud. Finally,
feature fusion is performed to obtain a relevant set of features, where ‘−’ indicates the deletion of descriptors that do not
exist in Index1 according to Index2 and ‘+’ indicates feature fusion. Based on the extracted features, a multilayer perceptron
(MLP) is used to obtain the score of each point for each of the K object categories.

Then, we extract features of each point from the multi-scale point clouds. Since
SAN achieves an effective balance between efficiency and accuracy, it is deemed a good
backbone network for abstracting features from P1 and P2. In particular, SAN uses a
hierarchical structure that combines small area features into semantic features. It contains
not only several Directional Spatial Aggregation (DSA) components but also some feature
unencoding (FP) modules. The DSA module is the core module of SAN. It is divided
into three steps for extracting the features of sampling points. First, point downsampling
is performed using the farthest point sampling (FPS) [54]. Secondly, the neighboring
points around each sampling point are captured by octant search [29]. Finally, the multi-
directional convolution operation is performed on the sampling points. This convolution is
followed by max pooling to aggregate features from different directions. The point cloud
P1 contains N/k1 points. The SAN network extracts features for each point in P1, and the
feature dimension of each point is d1. The point cloud P2 contains N/(k1k2) points, and
the SAN network extracts d2 dimension features for each point in P2.

3.2. Feature Fusion and Loss Function

Many methods can be used to fuse features from point clouds of different densities,
such as descriptor interpolation based on the distances between adjacent points, as shown
in Figure 2a. In this method, the information of one point is combined with information
from its neighboring points, and weighted according to distance. However, two points
belonging to different classes may be aggregated using this method, which leads to unstable
segmentation. Figure 2b shows a direct mapping method for feature fusion, which aims to
alleviate this problem. As shown in Equations (1) and (2). F1 and F2 represent the feature
descriptors of the points of P1 and P2, respectively. Index1 is the index set of the points in
P1. Index2 is an index set of points in P2. Feature fusion combines the point feature F1 of P1
with the feature F2 from P2. The process of feature fusion is divided into two steps. First,
we delete the points not in Index2 from P1 according to Index2, so that P1 and P2 retain
the same points. At this time, the indexes of the points of P1 and P2 are both Index2. But
because SAN extracts features from point clouds of different densities, the features are not
the same. Therefore, the feature descriptor corresponding to the point of P1 is re-expressed
as F

′
2. In the second step, we perform feature fusion through the consistency of the point

index. By concating the point features with the same index in P1 and P2, we obtain a set of
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features with d1 + d2 dimensions, named F3. Finally, the score of each point in K categories
is obtained through the Multilayer Perception (MLP) operation.

(a) (b)

Figure 2. Feature fusion process: (a) feature interpolation based on distance and (b) direct mapping.

F
′
2 = F1[Index1 − Index2], F

′
2 ∈ Rd1 (1)

F3 = F2 ⊕ F
′
2, F3 ∈ Rd1+d2 (2)

Because we maintain the point index correlations in the process of downsampling,
feature fusion via direct mapping will not lead to redundant calculation. However, the
direct mapping scheme has some disadvantages, one of which is that not all points in the
high-density set have multi-scale descriptors. To work around this problem, the sampling
rate was set to be greater than or equal to 1/2 in our experiments. Therefore, the lowest
density of P1 was half the original density, as shown in Figure 3b, while the lowest density
of P2 was 1/4 the original density, as illustrated in Figure 3c. We applied SAN extraction to
the point clouds at each scale. The corresponding segmentation results from redlevel 1 and
level 2 are presented in Figure 3b,c, respectively. Although the densities of the point clouds
are different, the segmentation results are stable. Figure 3d shows the segmentation results
of MSSCN.

We also present a loss function that incorporates a different loss for each density to
increase the robustness of MSSCN for multiscale point cloud scenes. The loss function
is shown in Equation (3). Equations (4)–(6) are annotations for each variable in the loss
function. The loss function has four components. α1, α2, α3, and α4 are parameters that
determine the trade-off among the four components. The first and second components,
respectively, use the cross-entropy loss Lseg to penalize the wrong segment labels in the
level 1 and level 2 predictions. Lseg denotes the cross-entropy classification loss. The third
component punishes points with incorrect segmentation labels in the final predictions. pre1,
pre2, and pre3 represent prediction results. label1, label2, and label3 represent ground truth
labels. In an ideal environment, the predictions obtained for P2 using F2 and F

′
2 should

be consistent. Therefore, the fourth component is used to enhance the consistency of the
predictions using F2 and F

′
2. Index1 represents the indexes of points downsampled from

the primitive input data. Index2 denotes the indexes of points obtained via the second
downsampling process from P1. N is the number of points in the original point cloud. S1 is
the ratio of the first down-sampling, and S2 is the ratio of the second down-sampling. The
loss function is shown as follows:

Loss = α1Lseg(pre1, label1) + α2Lseg(pre2, label2)+

α3Lseg(pre, label2) + α4
1

N ∗ S1 ∗ S2
∑(0.5

∗ (pre2! = label2) + 0.5 ∗ (pre
′
2! = label2))

(3)

pre
′
2[i] = pre1[Index2[i]], i = 0, ..., N ∗ S1 ∗ S2 (4)

label1[i] = label[Index1[i]], i = 0, ..., N ∗ S1 (5)

label2[i] = label1[Index2[i]], i = 0, ..., N ∗ S1 ∗ S2 (6)
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(a) (b) (c) (d)

wall floor door table chair bookcase column clutter
Figure 3. Segmentation results of point clouds with different densities: (a) ground truth; (b) point
cloud at Level-1 (P1), where the sampling proportion is 1/2; (c) point cloud at Level-2 (P2), where the
sampling proportion is 1/4; and (d) MSSCN.

3.3. Algorithm Summary

The pipeline of our proposed MSSCN method is shown in Algorithm 1. The input to
the network is a point cloud scene, where each point is associated with three-dimensional
coordinate information (x, y, z), denoted by P. The other information on the points in P
is recorded as the feature set F of those points. N is the number of points in the point
cloud. The output of the network is the score of each point for each class. First, we perform
downsampling on the input data. Specifically, N × S1 indexes, denoted by Index1, are
randomly generated in the range [0, N) without duplicates. Similarly, N × S1 × S2 indexes
are randomly generated in the range [0, N× S1), which are denoted by Index2. Here, S1 and
S2 are the proportions used in the first and second downsampling processes, respectively.
In the second step, using Index1 as the indexes of the points in P, a new point cloud P1 is
generated. Similarly, Index2 is used as the indexes to generate a new point cloud P2. The
features of these point clouds of different densities are then extracted by the SAN feature
extractor in the third step.

SAN uses the FPS algorithm to obtain a new point cloud Pnew. For each point Pi in
Pnew, the adjacent 3D space centered on Pi is divided into eight octants. SAN selects the
k
8 nearest points as the representative points in each octant. In the experiments described
in the following section, to ensure that there would be four points in each direction. We
set the initial value of k to 32. Then, a feature vector fusion operation is employed for all
points in the same direction, using a convolution operator to fuse the feature vectors of
the four points into a single vector. Next, we use 2× 1 convolution operators to aggregate
the points from all eight directions into only four directions. The convolved features
representing the spatial structure information of each point are obtained through this
multi-directional convolution. An MLP is used to transform the new features, and finally,
the seven features are grouped using the max-pooling operation to obtain a new feature set
Fnew corresponding to Pnew. Then, we repeat the above operation three times to obtain Pnew1
and Fnew1, Pnew2 and Fnew2, Pnew3 and Fnew3, and we weight the corresponding features
based on distance. Finally, the newly acquired features are merged with the original
features. In detail, the feature set Fnew3 of Pnew3 is mapped to Pnew2, the feature set Fnew2 of
Pnew2 is mapped to Pnew1, the feature set Fnew1 of Pnew1 is mapped to Pnew, and the feature
set Fnew of Pnew is mapped to P1. Finally, the feature set F1 corresponding to P1 is obtained.
The feature set F2 corresponding to P2 is also obtained in this manner.

Then, feature fusion is performed as shown in steps 4 and 5. We use Index2 to
obtain the points in P1, then obtain the new feature set F

′
2 of these points and combine

the feature set F
′
2 of P2 with the new feature set F

′
2 to obtain feature set F3 for P2. Finally,

the MLP operation is performed on F3 to classify every point in P2, and the result is
recorded as Pseg. The proposed MSSCN presents many advantages. At first, MSSCN
extracts features using SAN. In addition, with the development of new algorithms based
on raw point clouds, MSSCN can be further improved. Second, our MSSCN can extract
information from different density scales and use the resulting fused features to improve
the segmentation results.
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Algorithm 1 Multi-Scale Feature Fusion Semantic Segmentation Network

Input: P (N,3)

Output: Pseg (N × S1 × S2,k)

Index1 = random(N, N × S1); Index2 = random(N × S1, N × S1 × S2);

P1=P[Index1]; P2=P1[Index2];

F1=SAN(P1,None); F2=SAN(P2,None);

F
′
2 = F1[Index2];

F3 = [F2 , F
′
2];

Pseg = MLP(F3);

function SAN(P, F):

P0=P, F0=F, N = [1024, 256, 64, 32]; // N is the number of down-sampling

for i = 4 to 1 do

Index = FPS(Pi−1, Ni);

Pi = Pi−1[Index], Fi = Fi−1[Index]

Fi = Octant_sampling(Pi−1, Pi, Fi−1, 32);

Fi = Multi_Directional_Conv(Fi);

for i = 1 to 4 do

F_interpolate = three_interpolate(Fi, Pi, Pi−1);

Fi−1 = [F_interpolate, Fi−1];

Fi−1 = MLP(Fi−1);

return F0

4. Results and Discussion
4.1. Experimental Setup

We employed two different datasets to assess the properties of MSSCN: the S3DIS
dataset [55] and the ScanNet dataset [56]. The S3DIS dataset is composed of six folders of
point cloud data from three different construction projects, including 271 rooms. S3DIS
contains 12 semantic classes, including structural elements (ceilings, doors, walls, beams,
columns, wooden boards, windows, and floors) and furniture (sofas, bookcases, chairs,
and tables). These classes are more fine-grained and challenging than those in many indoor
semantic segmentation datasets. Each point is associated with not only XYZ coordinates
but also RGB colors, and there is a corresponding space-normalized coordinate for the
room where each point is located. Due to this challenge, we chose S3DIS as one of our
experimental datasets. In the experiments described below, 16,384 points were randomly
selected from each sample. For the first level of the network framework (Level-1), 8192
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points were used as input, and for the second level (Level-2), 4096 points were used. The
output consists of the classification results for these 4096 points.

ScanNet is a point cloud scene dataset for semantic segmentation that contains 1513
scan scenes and a total of 21 class objects. There are 1201 scenes in the training set, and the
remaining 312 scenes are used for testing. We randomly sampled 16,384 points from each
sample. For Level-1 of the network framework, 16,384 points were used as input, and for
Level-2, 8192 points were used. The output consists of the classification results for these
8192 points.

To ensure the best possible performance, all training samples were divided into two
parts. The first part was used to train the SAN feature extractor, and the second part was
used to train our proposed MSSCN. Since the tensorflow framework has very efficient
computational efficiency, we used the tensorflow framework for encoding. All experiments
were run on the Ubuntu operating system. All experiments were performed on an NVIDIA
1080 Ti GPU with 11 GB of memory. All components of the framework were trained by the
Adam optimizer. On S3DIS and ScanNet datasets, we trained the models for 400 and 500
epochs, respectively.

To select the most advantageous network structure, several preliminary experiments
were performed on the S3DIS and ScanNet datasets. Finally, the SAN model was adopted
to extract features at each level of the network framework. At the same time, the network
was optimized by adjusting the loss.

4.2. Results on S3DIS

We conducted a comprehensive comparative study on PointNet, PointNet++, PointSIFT,
and SAN on S3DIS to assess the properties of MSSCN—the results of which are illustrated
in Table 1. The S3DIS dataset is a point cloud dataset, including XYZ coordinate informa-
tion, RGB color information and label information. In order to verify the robustness of our
method, we conducted two versions of experiments on the S3DIS dataset: (a) XYZ coordi-
nate information, RGB color information and label information as the network input, (b)
XYZ coordinate information and label information as the network input, RGB color infor-
mation was not input. It is worth noting that whether RGB information is used or not, the
accuracy of MSSCN in the Level-1 and Level-2 is higher than that of the above-mentioned
point-based models. Moreover, the accuracy of MSSCN is improved after feature fusion,
which shows that our MSSCN framework performs better in terms of feature extraction
than the existing models. The accuracy of MSSCN is 87.41% when RGB information is not
included, and 89.80% when it is included. The experimental results corroborate the claim
that feature fusion can further improve the precision of semantic segmentation.

Table 1. Comparison of the accuracy of different methods on the S3DIS dataset [55].

Method Accuracy without RGB (%) Accuracy with RGB (%)

PointNet [19] 70.46 78.62
PointNet++ [20] 75.66 82.23
PointSIFT [29] 76.61 82.33
SPG [24] - 85.50
SAN [44] 78.39 82.93
DGCNN [46] - 84.10
ShellNet [57] - 87.10
RandLA-Net [58] - 88.00
Level-1 84.64 88.51
Level-2 84.66 87.46
MSSCN 87.41 89.80

To enable a qualitative assessment of the methods, we present some typical segmen-
tation results in Figures 4 and 5. The scenes include tables, chairs, boards, windows,
doors, bookcases, walls, and columns. All methods have achieved satisfactory results
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for tables and chairs because these objects exhibit different spatial structures and shapes.
However, some areas of boards, windows, doors, bookcases, and columns are very similar
to the structure of the walls, which makes these objects difficult to separate. The previous
methods have difficulty separating these regions completely, whereas our method shows
higher performance in these regions. These results show that because of its multi-scale
processing ability, MSSCN can achieve better segmentation performance for objects with
similar structures and shapes.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

raw correct error ceiling floor wall beam column

window door table chair sofa bookcase board clutter
Figure 4. Segmentation results on the S3DIS-1 dataset: (a) input, (f) ground truth, (b,g) PointNet++ , (c,h) PointSIFT,
(d,i) SAN, and (e,j) MSSCN.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

raw correct error ceiling floor wall beam column

window door table chair sofa bookcase board clutter
Figure 5. Segmentation results on the S3DIS-2 dataset: (a) input, (f) ground truth, (b,g) PointNet++, (c,h) PointSIFT,
(d,i) SAN, and (e,j) MSSCN.
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As illustrated in Table 2, MSSCN shows good performance for the semantic segmen-
tation of each category in S3DIS. Good results can be obtained not only for objects which
are easy to separate (such as ceilings and floors), but also for objects which are difficult
to separate (such as beams and columns). Table 2 also shows the effectiveness of feature
fusion. Feature fusion can improve the accuracy for most objects (e.g., columns, windows,
doors, chairs, and bookcases). These results show that feature fusion can not only combine
the advantages of Level-1 and Level-2 feature representation, but also avoid the error
propagation of two levels.

Table 2. Comparison of accuracy of each category on the S3DIS dataset [55].

Level-1 (%) Level-2 (%) MSSCN (%)

ceiling 97.65 97.54 97.77
floor 99.20 98.57 98.86
wall 93.44 92.57 93.63
beam 81.05 85.92 81.99
column 70.42 74.08 76.67
window 80.33 82.15 89.11
door 83.30 85.63 85.86
table 79.50 80.65 83.48
chair 88.42 88.02 90.19
sofa 81.30 70.26 81.58
bookcase 84.28 81.40 84.16
board 75.98 73.21 77.52
clutter 80.37 79.28 80.16

The experimental results indicate that the feature fusion approach proposed here
successfully integrates the representations learned at Level-1 and Level-2. As shown in
Figures 6 and 7, separating the board from a wall is challenging task, because these two
objects have similar spatial structures. The results show that the board is not completely
segmented at either level. By contrast, although there are still some segmentation errors
for the board after feature fusion, the error rate is greatly reduced. These results show
that the features obtained from point clouds of different densities have their own advan-
tages. Thus, some previously unrecognized objects can be identified by combining these
different features.

For the segmentation of some objects, the features of high-density regions are com-
plementary to those from low-density areas. As shown in Figure 8, part of the chair is
incorrectly segmented at Level-1, which is not the case in the segmentation obtained at
Level-2. On the other hand, these two levels show errors in door segmentation, although
these errors occur in different locations. After feature fusion, the segmentation effect of
chairs and doors has been greatly improved. This discovery demonstrates that MSSCN can
exploit the feature abstraction and representation capabilities of both Level-1 and Level-2
to improve the results.

MSSCN also has disadvantages. The scene shown in Figure 9 contains a table, several
chairs, and a black object on the wall. It can be seen that at both Level-1 and Level-2, the
black object is completely absorbed into the wall. Therefore, feature fusion cannot yield
any additional information about the black object, and it still fails to be distinguished from
the wall after feature fusion. Therefore, the performance achieved through feature fusion is
limited by the performance of the backbone network to some extent.
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(a) (b) (c) (d)

(e) (f) (g) (h)

raw correct error ceiling floor wall column door board clutter

Figure 6. Segmentation results on the S3DIS-3 dataset: (a) input, (e) ground truth, (b,f) Level-1,
(c,g) Level-2, and (d,h) MSSCN.

(a) (b) (c) (d)

(e) (f) (g) (h)

raw correct error ceiling floor wall door chair board clutter

Figure 7. Segmentation results on the S3DIS-4 dataset: (a) input, (e) ground truth, (b,f) Level-1,
(c,g) Level-2, and (d,h) MSSCN.



Sensors 2021, 21, 1625 13 of 20

(a) (b) (c) (d)

(e) (f) (g) (h)

raw correct error floor wall door table chair clutter
Figure 8. Segmentation results on S3DIS-5 dataset: (a) input, (e) ground truth, (b,f) Level-1,
(c,g) Level-2, and (d,h) MSSCN.

(a) (b) (c) (d)

(e) (f) (g) (h)

raw correct error floor wall column table chair bookcase door clutter
Figure 9. Segmentation results on S3DIS-6 dataset: (a) input, (e) ground truth, (b,f) Level-1,
(c,g) Level-2, and (d,h) MSSCN.

4.3. Results on ScanNet

The comparison of our method with other recent works is presented in Table 3.
3DCNN is a semantic segmentation baseline trained on ScanNet. Our MMSCN has
achieved better performance than these methods. Compared with PointNet++ and
PointCNN, the segmentation accuracy of MSSCN is improved by more than 1%, and
it is also slightly improved compared with PointSIFT. While we use SAN for feature extrac-
tion, the segmentation accuracy of MSSCN still achieves a 1.2% improvement over that
of SAN alone. These experiments show that the proposed MSSCN architecture has good
performance on the ScanNet dataset.
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Table 3. Comparison of the accuracy of different methods on ScanNet [56].

Method Accuracy (%)

3DCNN [56] 73.0
PointNet [19] 73.9
PointNet++ [20] 84.5
PointCNN [28] 85.1
SAN [44] 85.1
PointSIFT[29] 86.0
MSSCN 86.3

Figures 10 and 11 show the segmentation results obtained on the ScanNet dataset
using our MSSCN method and other methods. As shown in Figure 10, due to the similar
appearances of the table and the tea table (which belongs to the other furniture category),
PointNet++, PointSIFT, and SAN cannot segment the table and the tea table effectively,
whereas MSSCN shows a good segmentation effect. As shown in Figure 11, the wall next
to the table is incorrectly segmented to the sofa or bed category by PointNet++, PointSIFT,
and SAN due to the similarity of the corresponding spatial structures. It is expected that
the presence of the table will interfere with the segmentation of the wall, but the proposed
MSSCN method can avoid this interference to some extent and correctly segment the wall.
This robust performance can be attributed to the multiscale point feature extraction and
feature fusion capabilities of MSSCN.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

raw correct error floor wall sofa table

chair other bed floor bookshelf window unannotated

Figure 10. Segmentation results on ScanNet-1 dataset: (a) input, (f) ground truth, (b,g) PointNet++,
(c,h) PointSIFT, (d,i) SAN , and (e,j) MSSCN.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

raw correct error wall sofa table chair bed floor unannotated
Figure 11. Segmentation results on ScanNet-2 dataset. (a) input, (f) ground truth, (b,g) PointNet++,
(c,h) PointSIFT, (d,i) SAN, and (e,j) MSSCN.

4.4. Controlled Experiment

To find a suitable backbone network for feature extraction, we chose several lightweight
networks to perform experiments, namely, SAN, PointNet and PointNet++. The experi-
mental results show that MSSCN does not achieve good performance with PointNet as the
feature extraction network, as shown in Figure 12. The reason is that MSSCN attempts to
extract multiscale point cloud features by means of the backbone network, but PointNet
employs the max-pooling operation to handle the problem of disordered points. As a
result, only the global features of the point cloud scene can be extracted. Qualitative and
quantitative experimental results demonstrate that our MSSCN can make good use of
the advantages of different backbone networks and achieve better segmentation perfor-
mance. When SAN or PointNet++ is used as the backbone network for feature extraction
in MSSCN, the segmentation accuracy is better than that achieved using only the backbone
network, and the performance with SAN is better than that with PointNet++. Therefore,
we use SAN as the backbone network in MSSCN.

Figure 12. Results by our approach on S3DIS using SAN, PointNet and PointNet++ as backbone
network. Where original is the experimental result of directly using the backbone network.

An important part of this experiment was the selection of the optimal combination
of (α1,α2,α3,α4), as mentioned in Section 3.2. As clearly displayed in Table 4, the best
parameter set (α1,α2,α3,α4) is (0.5, 0.4, 0.4, 0.1). The experimental results show that each
component of the loss function influences the segmentation accuracy of MSSCN. Therefore,
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good segmentation accuracy can be obtained by constantly adjusting the parameters and
controlling the weights of features.

Table 4. Results of our approach on S3DIS [55] with different loss functions.

α1 α2 α3 α4 Accuracy (%)

0.0 0.4 0.4 0.1 86.96
0.1 0.4 0.4 0.1 87.15
0.3 0.4 0.4 0.1 86.67
0.5 0.4 0.4 0.1 87.41
0.7 0.4 0.4 0.1 86.96
0.4 0.0 0.4 0.1 86.92
0.4 0.1 0.4 0.1 86.88
0.4 0.3 0.4 0.1 86.94
0.4 0.5 0.4 0.1 87.07
0.4 0.7 0.4 0.1 86.62
0.4 0.4 0.1 0.1 86.91
0.4 0.4 0.3 0.1 86.57
0.4 0.4 0.5 0.1 87.04
0.4 0.4 0.7 0.1 86.67
0.4 0.4 0.4 0.0 87.00
0.4 0.4 0.4 0.1 87.35
0.4 0.4 0.4 0.3 86.86
0.4 0.4 0.4 0.5 86.82
0.4 0.4 0.4 0.7 86.69

5. Conclusions

Point clouds acquired by different sensors have become very popular as a source of
representative 3D data. 3D vision research based on 3D point clouds has gradually transi-
tioned from focusing on low-level geometric features to searching for high-level semantic
understanding. The semantic segmentation of 3D point clouds is currently a popular re-
search topic, which is undergoing a transition from early multiview-based and voxel-based
processing to current point-based deep networks and graph convolution networks.

In this paper, a semantic segmentation network of a point cloud based on multi-scale
feature fusion is proposed, which can extract useful feature information from downsampled
point clouds of different densities. This is the first contribution of this paper. The second
contribution is the use of a direct mapping method to merge features from different levels
of the network framework while avoiding error propagation at each level. The third
contribution is the proposal of a new loss function for the proposed MMSCN framework.
The MSSCN can achieve good segmentation accuracy by controlling the weight of the loss
associated with different layers.

Our experimental results show that the overall accuracy of MSSCN reaches 87.41%
without RGB information and 89.80% with RGB information on the Stanford Large-Scale
3D Indoor Spaces (S3DIS) dataset. Compared with several existing methods, our MSSCN
shows remarkable performance on the S3DIS dataset. Our results further show that our
feature fusion method can not only combine the advantages of the Level-1 and Level-2
feature representations, but also avoid the error propagation of the two levels. Good
segmentation accuracy can be achieved not only for objects that are easy to separate (such
as ceilings and floors), but also for objects that are hard to separate (such as beams and
columns). Therefore, the feature fusion operation can improve the segmentation accuracy
for most objects.

Experiments and evaluations conducted on the ScanNet dataset similarly demonstrate
that MSSCN achieves better performance than other recent outstanding methods, with
significantly improved segmentation accuracy. Other current algorithms have difficulty
segmenting similar objects accurately, whereas our proposed MSSCN shows better results
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in this regard. Our results also show that although the existence of a table can interfere
with wall segmentation, MSSCN can avoid interference to some extent, and segment walls
well. This robust performance can be attributed to multi-scale point feature extraction
and fusion.

Although good results have been obtained, we acknowledge that there are still several
shortcomings. First, MSSCN relies on the backbone network used for feature extraction.
Second, through direct mapping, some of the predicted point information will still be lost
during feature fusion. In the future, we will concentrate on proposing new networks to
solve the current problems with MSSCN.
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