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Abstract: In recent decades, nanogenerators based on several techniques such as triboelectric effects,
piezoelectric effects, or other mechanisms have experienced great developments. The nanoenergy
generated by nanogenerators is supposed to be used to overcome the problem of energy supply
problems for portable electronics and to be applied to self-powered microsystems including sensors,
actuators, integrated circuits, power sources, and so on. Researchers made many attempts to achieve
a good solution and have performed many explorations. Massive efforts have been devoted to
developing self-powered electronics, such as self-powered communication devices, self-powered
human–machine interfaces, and self-powered sensors. To take full advantage of nanoenergy, we
need to review the existing applications, look for similarities and differences, and then explore
the ways of achieving various self-powered systems with better performance. In this review, the
methods of applying nanogenerators in specific circumstances are studied. The applications of
nanogenerators are classified into two categories, direct utilization and indirect utilization, according
to whether a treatment process is needed. We expect to offer a line of thought for future research on
self-powered electronics.

Keywords: nanogenerator; triboelectric; self-powered; nanoenergy

1. Introduction

Innovations in micro-/nano-fabrication technology and advanced materials have
provided positive conditions for updating electronic devices [1–3]. Nowadays, electronics
are being developed towards the goals of miniaturization, multi-functionality, high levels
of integration, and light weight [4–7]. Portable electronics have penetrated various aspects
of our daily lives and raise our quality of life. Many technologies that are supposed to
change our future, such as the Internet of Things, human–machine interfaces, and artificial
intelligence, all benefit from electronic innovation [8–11]. Among these, many specific
applications are discrete devices, so they need be powered separately. Most of the electronic
devices are portable and are carried by humans. At present, the main way to supply power
is by equipping the device with a battery. As a result, huge and heavy batteries must be
carried, which, combined with the problems of limiting use time and frequent charging,
hinder the portability and sustainability of wearable electronics.

To solve the problem of unsustainable power supplies, researchers intend to innovate
batteries [12,13] or to find another power source as a substitute. One way to substitute for a
battery is by harvesting energy from the living environment [14–18], where plenty of energy
exists in various forms, such as solar radiation, temperature gradients, and mechanical
movement. Recently, several power generation mechanisms that can convert ambient
energy into electronic energy, such as through the triboelectric effect, the piezoelectric
effect, the thermoelectric effect, the photoelectric effect, or electromagnetic induction,
have been developed for portable electronics, and these allow portable electronics to
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be self-powered. Many types of nanogenerators have also been proposed, including
triboelectric nanogenerators (TENGs) [19,20], piezoelectric nanogenerators (PENGs) [21,22],
thermoelectric generators (TEGs) [23], and so on. Considering that a nanogenerator is
realized by nanomaterials and nanotechnology, on the other hand, the energy generated by
a nanogenerator is used for micro/nanosystems [24], so we describe the nanogenerator’s
output as nanoenergy.

Previous works have reported many different types of nanogenerators and have
shown their application. Many of the applications focus on self-powered electronics [25–27].
In addition, many review articles have studied the characteristics of different nanogenera-
tors and their introduction in many specific fields, such as biomedical monitoring [28,29],
the Internet of Things [30,31], and environmental monitoring [32,33]. However, there are
few studies about how the nanogenerator can be given a specific application. In this review,
we explore the intermediate process between making a nanogenerator output and putting
the output to use, i.e., the interface between nanoenergy and self-powered electronics, and
we classify several research achievements into two categories, namely direct utilization
and indirect utilization, according to whether a treatment process is needed. Specifically,
direct utilization refers to systems in which the outputs of nanogenerators directly drive or
control actuators or directly show information on instruments, while indirect utilization
refers to systems in which there are some intermediate steps between the output of the
nanogenerator and the operation of the actuator, rather than a direct delivery of the output
to the actuators.

2. Direct Utilization

For some applications, the output of nanogenerators can be used to directly realize
some functions without additional processing. We call this method of using nanoenergy
direct utilization. In this method, the output is directly applied to the functional part
directly or is directly analyzed by instruments. Specifically, the electrostatic field and
the electrostatic force generated by the nanogenerator are used directly, or the features
of the output can directly be used to show some specific physical states. In this section,
four types of direct utilization are summarized according to the details of the functions of
the nanoenergy.

2.1. Directly Reflecting States

The ability of nanogenerators to convert external stimuli into electricity with unique
electrical characteristics provides the potential for nanogenerators to serve as self-powered
sensors. Therefore, just by directly reading the output signals of nanogenerators, people
or machines can detect environmental changes in real time. In recent years, the output
characteristics of many different types of nanogenerators have been demonstrated to
indicate motions and gestures [34,35], acceleration [36,37], force [38,39], temperature [40,41],
and humidity [42,43], according to the quantitative relationship between external stimuli
and the waveform and amplitude of the electrical output. In this section, four typical
self-powered sensors are selected, and they are summarized in Figure 1.



Sensors 2021, 21, 1614 3 of 17
Sensors 2021, 21, 1614 3 of 17 
 

 

 
Figure 1. Nanogenerator-based self-powered sensors that directly reflect environmental status. (a) 
Graphene-based stretchable triboelectric nanogenerator (TENG): wearable self-powered touch 
sensor [44]. (b) As-synthesized Ag nanowires and PVDF(polyvinylidene fluoride)-based compo-
site: PVDF-based sensor for force sensing and body monitoring [45]. (c) Printed silk-fibroin-based 
triboelectric nanogenerators: triboelectric nanogenerator (TENG) for angle sensing [46]. (d) 
Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS)-based 3D thermoelectric 
spacer fabric: self-powered pressure-temperature sensing e-skin [47]. Reproduced with permission 
from Elsevier [44,46] and American Chemical Society [45,47]. 

Figure 1a shows a wearable self-powered touch sensor based on graphene [44], which 
is as thin and stretchable as skin. The excellent conformability of the sensor enables it to 
be attached to human skin, to recognize the position of a touch point, and to track a touch 
movement without an external power supply. This sensor is an 8 × 8 single-electrode 
TENG array. When the external force is applied to the nanogenerator, it generates an out-
put voltage corresponding to a pressure between 10.6 and 101.7 kPa. By monitoring and 
analyzing the output voltage of each unit in the array, we can recognize which unit is 
pressed and, thereby, detect the touch position and touch movement in real time. Re-
cently, many works have focused on the measurement of force. For example, Sang et al. 
developed a PVDF-based sensor for force sensing and body monitoring [45], as shown in 
Figure 1b. In this work, PVDF was used as the piezoelectric material. If an external force 
is applied on the sensor, the PVDF will be deformed, and a voltage will be generated 
through an electrode composed of silver nanowires and multiwall carbon nanotubes in-
side the PVDF. The output voltage and the force have a linear relationship, so we can 
measure the force by directly reading the output voltage. In addition, different body mo-
tions lead to different deformations of the PVDF; therefore, this sensor also has a body 
monitoring ability. In addition, Wen et al. demonstrated that a TENG can be utilized to 
detect changes in angles, as shown in Figure 1c [46]. In this work, a printed silk-fibroin-
based TENG was fabricated. The device was flexible and conformable, and could be at-
tached to mobile joints. The author attached this device to a human’s wrist. Bending the 
wrist at different angles of 15°, 30°, 45°, and 60° induced the single-electrode TENG to 
generate distinctive outputs due to the different friction intensities and contact times. 

Figure 1. Nanogenerator-based self-powered sensors that directly reflect environmental status. (a) Graphene-based
stretchable triboelectric nanogenerator (TENG): wearable self-powered touch sensor [44]. (b) As-synthesized Ag nanowires
and PVDF(polyvinylidene fluoride)-based composite: PVDF-based sensor for force sensing and body monitoring [45].
(c) Printed silk-fibroin-based triboelectric nanogenerators: triboelectric nanogenerator (TENG) for angle sensing [46]. (d)
Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS)-based 3D thermoelectric spacer fabric: self-powered
pressure-temperature sensing e-skin [47]. Reproduced with permission from Elsevier [44,46] and American Chemical
Society [45,47].

Figure 1a shows a wearable self-powered touch sensor based on graphene [44], which
is as thin and stretchable as skin. The excellent conformability of the sensor enables it to be
attached to human skin, to recognize the position of a touch point, and to track a touch
movement without an external power supply. This sensor is an 8 × 8 single-electrode
TENG array. When the external force is applied to the nanogenerator, it generates an
output voltage corresponding to a pressure between 10.6 and 101.7 kPa. By monitoring
and analyzing the output voltage of each unit in the array, we can recognize which unit is
pressed and, thereby, detect the touch position and touch movement in real time. Recently,
many works have focused on the measurement of force. For example, Sang et al. developed
a PVDF-based sensor for force sensing and body monitoring [45], as shown in Figure 1b.
In this work, PVDF was used as the piezoelectric material. If an external force is applied
on the sensor, the PVDF will be deformed, and a voltage will be generated through an
electrode composed of silver nanowires and multiwall carbon nanotubes inside the PVDF.
The output voltage and the force have a linear relationship, so we can measure the force by
directly reading the output voltage. In addition, different body motions lead to different
deformations of the PVDF; therefore, this sensor also has a body monitoring ability. In
addition, Wen et al. demonstrated that a TENG can be utilized to detect changes in
angles, as shown in Figure 1c [46]. In this work, a printed silk-fibroin-based TENG was
fabricated. The device was flexible and conformable, and could be attached to mobile
joints. The author attached this device to a human’s wrist. Bending the wrist at different
angles of 15◦, 30◦, 45◦, and 60◦ induced the single-electrode TENG to generate distinctive
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outputs due to the different friction intensities and contact times. Based on the quantitative
relationship between the output voltage and the bending angle, the nanogenerator can
sense changes in the angle. Moreover, Figure 1d illustrates a thermoelectric generator-based
self-powered pressure–temperature-sensing e-skin derived from a spacer fabric modified
with an organic thermoelectric polymer, poly(3,4-ethylenedioxythiophene):poly(styrene
sulfonate) (PEDOT:PSS) [47]. Due to the thermoelectric characteristics of PEDOT:PSS, the
temperature gradient in the sheet-thickness direction of the device results in a voltage
signal. In addition, the deformation of PEDOT:PSS that results from external pressure
changes the conductivity of the PEDOT:PSS fibers, which will change the current output
under a constant voltage, thereby converting the pressure stimulus into a current signal.
By analyzing the output voltage and the change in the output current, we can obtain the
temperature and pressure information, respectively.

2.2. Directly Driving Movable Structures

There are electrostatic fields and charges that exist during the operation process of
a TENG. These electrostatic forces are powerful enough to directly drive or move some
lightweight structures without any other power supply. According to this mechanism,
nanogenerators can be used to make microstructures move in specific forms. Several works
reported the use of TENGs to drive movable structures, and four typical examples are
shown in Figure 2.
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Figure 2. Examples of movable structures directly driven by nanogenerators. (a) Motion-triggered 
cantilever beam: self-powered cantilever system [48]. (b) Self-powered micro-cantilever system: 
micro-cantilever driven by a TENG [49]. (c) Self-powered nerve stimulator: stimulation of the sci-
atic nerve of a frog by the output of a TENG [50]. (d) Self-powered electrowetting-on-dielectric 
actuator: TENG-powered micro-bot [51]. Reproduced with permission from Elsevier [48–50] and 
American Chemical Society [51]. 

Figure 2a,b illustrate cantilevers driven by TENGs. Traditionally, the cantilever is 
driven by an alternating current (AC), and the voltage frequency must match the intrinsic 
resonant frequency of the cantilever [52]. As a result, cantilever systems with different 
parameters require drivers with varying frequencies. In contrast, these two works used 
TENGs as universal drivers for cantilevers with different resonant frequencies. A free-
standing-mode TENG was used as a high-voltage source, as shown in Figure 2a [48]. In 
this work, a steel cantilever was fixed at one end, and the other end was close to a trigger 
electrode. The steel cantilever and the trigger electrode were connected to the two 

Figure 2. Examples of movable structures directly driven by nanogenerators. (a) Motion-triggered cantilever beam: self-
powered cantilever system [48]. (b) Self-powered micro-cantilever system: micro-cantilever driven by a TENG [49]. (c)
Self-powered nerve stimulator: stimulation of the sciatic nerve of a frog by the output of a TENG [50]. (d) Self-powered
electrowetting-on-dielectric actuator: TENG-powered micro-bot [51]. Reproduced with permission from Elsevier [48–50]
and American Chemical Society [51].

Figure 2a,b illustrate cantilevers driven by TENGs. Traditionally, the cantilever is
driven by an alternating current (AC), and the voltage frequency must match the intrinsic
resonant frequency of the cantilever [52]. As a result, cantilever systems with differ-
ent parameters require drivers with varying frequencies. In contrast, these two works
used TENGs as universal drivers for cantilevers with different resonant frequencies. A
freestanding-mode TENG was used as a high-voltage source, as shown in Figure 2a [48].
In this work, a steel cantilever was fixed at one end, and the other end was close to a
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trigger electrode. The steel cantilever and the trigger electrode were connected to the two
electrodes of the TENG. When the TENG was operated by hand, opposite charges would
flow from the two electrodes and accumulate at the cantilever and the trigger electrode,
respectively. Due to the electrostatic force, the cantilever would bend towards the trigger
electrode until making contact and discharging; then, the cantilever would spring back.
With the cyclical accumulation and disappearance of charges, the cantilever was able to os-
cillate regularly at a high frequency, which was related to the operation speed of the TENG.
As for Figure 2b, the author demonstrated that the proposed contact–separation-mode
TENG could successfully drive an aluminum micro-cantilever to approach the copper
electrode below [49]. Herein, the cantilever was fabricated with a thickness of 11 µm by
using by micro-electro-mechanical system (MEMS) technology. The cantilever and the
bottom electrode were directly connected to the two electrodes of the TENG, while the
air gap between the cantilever and the electrode was about 400 µm. Once the TENG was
pressed or released, the cantilever would be pulled downwards to the bottom electrode
by the electrostatic force. Therefore, this TENG-controlled micro-cantilever system was
supposed to be used as a non-contact-mode RF MEMS switch. Both studies utilized the
electrostatic field generated by TENGs, which can drive movable micro-structures to re-
alize simple motions. Similarly, Zheng et al. developed a dual-stimulus flexible actuator
by combining vapor-responsive PDMS and a TENG [53]. The actuator showed fast and
controllable actuation motions under the electrostatic force from the TENG without any
other power supply.

It is worth mentioning that Zhang et al. applied a TENG to stimulate a frog’s sciatic
nerve through a microneedle electrode array (MEA), as shown in Figure 2c [50]. The MEA,
which consisted of 9 × 9 Si-based tips covered by a 4 µm gold layer, was implanted into frog
tissue, and the tips pricked the sciatic nerve. The output of the TENG was directly applied
to the electrodes of the MEA without an external circuit. Once a force was applied to the
TENG, the instantaneous current flowed through the sciatic nerve via the microneedle tips.
Therefore, the sciatic nerve was stimulated by the TENG’s output current and actuated
the leg muscle of the frog. This study showed that a TENG’s output can not only drive
mechanical structures, but can also directly cause biomedical tissues to move. There have
also been many other studies on controlling biological tissues with TENGs, such as that of
Lee et al., who used a TENG to directly stimulate peripheral [54], muscle [55], and pelvic
nerves [56].

Figure 2d shows a TENG-powered electrowetting-on-dielectric (EWOD) micro-bot [51].
This micro-bot consisted of an EWOD actuator stuck to a floating part and a freestanding-
mode disc TENG as a power source. The indium tin oxide (ITO)-coated PET layer played a
major role in the EWOD actuator. The positive electrode of the disc TENG was connected
to the ITO, which acted as the electrode of the EWOD actuator, while the negative electrode
of the disc TENG was immersed in water as a ground electrode. The working TENG
alternately generated charges on the ITO, thus changing the surface energy of the EWOD
actuator and leading to capillary wave propagation. The reaction force of the capillary
wave drove the micro-bot to move on the water’s surface.

2.3. Directly Controlling Particles

TENGs are known for their high voltage output, which enables them to operate like
pumps in order to move particles, including solid particles and liquid particles. The
particles are forced to move in a direction decided by the electric field generated by
the TENG. Many efforts have focused on this mechanism and realized particle control
technologies, including for air purification [57], microfluidics [58], and drug delivery [59].
Four particle control technologies are illustrated in Figure 3.



Sensors 2021, 21, 1614 6 of 17
Sensors 2021, 21, 1614 6 of 17 
 

 

 
Figure 3. Direct control of solid particles and liquid droplets by nanogenerators. (a) Gas purifica-
tion system based on a TENG [60]. (b) TENG-based liquid droplet control device: control of liquid 
droplets with a TENG [61]. (c) Self-powered transport system based on microfluids: PVDF pallet 
with four droplets can be manipulated to move on aluminum foils [62]. (d) Electric-stimulated 
porous polypyrrole film: self-powered drug delivery system [63]. Reproduced with permission 
from Elsevier [60,61,63] and American Chemical Society [62]. 

A gas purification system is shown in Figure 3a [60]. There are two copper sheets 
connected to the electrodes of the TENG, which offers a high voltage for electrostatic pre-
cipitation. The freely diffusing particles are usually charged positively or negatively. 
When the charged particles flow between metal sheets, the electric field generated by the 
TENG will force the positively and negatively charged particles to move towards the cath-
ode and anode, respectively, according to Coulomb interactions. As a result, the above 
principle can be applied to air purification and electrostatic precipitation. Figure 3b shows 
an example of the control of liquid droplets with a TENG [61]. A conductive needle that 
was connected to a TENG’s output electrode was inserted into a droplet of NaCl solution. 
The droplet was placed on a Teflon tape covering a metal sheet. When the output charges 
of the TENG were transferred to the surface of the droplet, the opposite charge appeared 
on the surface of the metal sheet below the droplet due to the electrostatic induction effect. 
Then, the shape of the droplet changed. In addition, the droplet was able to move in dif-
ferent directions depending on the relative positions of the needle and droplet. In this 
way, the author made two droplets move towards each other, and they were eventually 
mixed. 

Based on droplet control, some researchers realized the transportation of larger ob-
jects. For example, Nie et al. designed a self-powered microfluidic transport system based 
on an electrowetting technique and a TENG [62], as shown in Figure 3c. This system con-
sisted of a freestanding-mode TENG and two rows of grating track electrodes covered 
with a hydrophobic layer. The track electrodes were connected to the TENG’s electrodes 
in the proper order. First, a droplet was placed on the hydrophobic layer. Due to the fric-
tion, the droplet was positively charged, while the track electrode just below it was nega-
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tive. Then, the droplet was driven by Coulomb forces and moved toward the right elec-
trode. Hence, the author manipulated a mini-vehicle with this microfluidic transport sys-
tem. The mini-vehicle was composed of a PVDF pallet with four droplets at the four cor-
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Figure 3. Direct control of solid particles and liquid droplets by nanogenerators. (a) Gas purification system based on a
TENG [60]. (b) TENG-based liquid droplet control device: control of liquid droplets with a TENG [61]. (c) Self-powered
transport system based on microfluids: PVDF pallet with four droplets can be manipulated to move on aluminum foils [62].
(d) Electric-stimulated porous polypyrrole film: self-powered drug delivery system [63]. Reproduced with permission from
Elsevier [60,61,63] and American Chemical Society [62].

A gas purification system is shown in Figure 3a [60]. There are two copper sheets
connected to the electrodes of the TENG, which offers a high voltage for electrostatic
precipitation. The freely diffusing particles are usually charged positively or negatively.
When the charged particles flow between metal sheets, the electric field generated by
the TENG will force the positively and negatively charged particles to move towards the
cathode and anode, respectively, according to Coulomb interactions. As a result, the above
principle can be applied to air purification and electrostatic precipitation. Figure 3b shows
an example of the control of liquid droplets with a TENG [61]. A conductive needle that was
connected to a TENG’s output electrode was inserted into a droplet of NaCl solution. The
droplet was placed on a Teflon tape covering a metal sheet. When the output charges of the
TENG were transferred to the surface of the droplet, the opposite charge appeared on the
surface of the metal sheet below the droplet due to the electrostatic induction effect. Then,
the shape of the droplet changed. In addition, the droplet was able to move in different
directions depending on the relative positions of the needle and droplet. In this way, the
author made two droplets move towards each other, and they were eventually mixed.

Based on droplet control, some researchers realized the transportation of larger objects.
For example, Nie et al. designed a self-powered microfluidic transport system based on an
electrowetting technique and a TENG [62], as shown in Figure 3c. This system consisted
of a freestanding-mode TENG and two rows of grating track electrodes covered with a
hydrophobic layer. The track electrodes were connected to the TENG’s electrodes in the
proper order. First, a droplet was placed on the hydrophobic layer. Due to the friction,
the droplet was positively charged, while the track electrode just below it was negatively
charged. When the freestanding layer of the TENG moved right, the right track electrode
became negative and the track electrode right below the droplet became positive. Then,
the droplet was driven by Coulomb forces and moved toward the right electrode. Hence,
the author manipulated a mini-vehicle with this microfluidic transport system. The mini-
vehicle was composed of a PVDF pallet with four droplets at the four corners, and the four
droplets were on the two rows of track electrodes. By sliding the freestanding layer of the
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TENG, the droplets were able to control the mini-vehicle to move left or right without an
external power supply.

Self-powered drug delivery is a typical application of particle control in the biomedical
field. Ouyang et al. reported a self-powered transdermal drug delivery system based on
a TENG, as shown in Figure 3d [63]. This drug delivery system mainly consisted of a
radially arrayed TENG and a drug-loaded porous polypyrrole film. The TENG acted as a
voltage stimulation, while the porous polymer film acted as a drug carrier. Polypyrrole
is a kind of electricity-stimulated polymer; the drug molecules that were initially loaded
into the polymer matrix were released if the proper negative voltage was applied on the
polypyrrole film. When drugs were demanded, simply rotating the TENG by hand would
trigger the electricity-responsive drug carrier to release drugs. In addition, the drug release
rate could be controlled by adjusting the TENG operation duration.

2.4. Directly Modulating Electric Characteristics

In some applications, the output of a nanogenerator is utilized to modulate electric
characteristics, especially the current and charges. For example, a new research field called
“tribotronics” [64] focuses on controlling and tuning the transport of semiconductors by
using triboelectricity. Herein, a TENG is integrated with a field-effect transistor (FET), and
the output voltage of the TENG acts as the gate voltage of the FET to modulate the current
between the drain and source. [65].

Figure 4a shows a tribotronic thin-film transistor (TFT) developed by Cao et al. [66].
Differently from traditional TFTs, this tribotronic TFT has no gate electrode, but the source,
drain, and channel are covered with Al2O3. The Al2O3 layer is combined with an Al foil to
form a contact–separation-mode TENG. When an external force causes the Al foil and the
Al2O3 layer to make contact and then separate, charges will be generated on the surface
of the Al2O3 layer, leading to a repulsion effect on electrons in the channel, which will
change the conductivity of the channel, thus modulating the TFT’s drain–source current.
Moreover, this kind of tribotronic TFT was used to create a monolithic sensing array that
was able to realize tactile perception. In another study, researchers used a TENG to control
the threshold voltage of a two-dimensional MoS2 channel, and further designed a zero-
writing-power touch memory technology, as shown in Figure 4b [67]. By touching the
PDMS friction layer, triboelectric charges will appear on the PDMS layer and remain for
about one hour. The electrostatic potential generated by triboelectric charges acts as a
gate bias to modulate the electronic transport in the MoS2 channel. If a constant voltage
is applied on the drain and source electrodes, the drain–source current will be different
depending on whether the PDMS layer is touched. Thus, a touch motion can be memorized
by this device without external power.

In addition to triboelectric effects, piezoelectric effects can also be used to modulate
certain electronic characteristics, thereby structuring piezotronic logic devices. In 2013,
Yu et al. reported GaN nanobelt strain-gated transistors [68]. The transistors consist of a
polystyrene (PS) film substrate and a GaN nanobelt attached to the substrate. The two ends
of the nanobelt are covered with a silver paste in order to act as source and drain electrodes.
Once a compressive strain is applied on the transistor, a positive potential is induced in the
GaN nanobelt due to the piezoelectric effect. Thus, the Schottky barrier height is reduced,
which will increase the current in the transistor, presenting the “on” state. Alternatively, if
a tensile strain is applied on the transistor, the strain-induced potential results in a decrease
in the current, thus presenting the “off” state. Based on this GaN nanobelt strain-gated
transistor, a GaN nanobelt inverter was designed by packaging two transistors on the top
and bottom surfaces of the same substrate, as shown in Figure 4c(i). Similarly, an AND
gate and an XOR gate were also designed and combined to construct a GaN nanobelt
piezotronic half-adder, as shown in Figure 4c(ii).
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3. Indirect Utilization

The output of nanogenerators is normally intermittent and irregular, so it is hard to
directly power or control traditional electronics. On the one hand, for the utilization of
energy that is generated, the generated power first needs to be stored, and then the power
storage module outputs stable voltage to power the functional electronics. On the other
hand, if the output is used as a control signal, a collection, analysis, and identification
process is necessary because the machines under control cannot recognize the instructions
contained in the raw output signal of a nanogenerator.

3.1. Powering Electronics through a Power Management Module

Nanogenerators have been proven to be a potential substitute for traditional batteries
in the field of portable electronics because of their sustainability, ability to harvest energy
from the living environment, and potential to be integrated into systems [69]. Many
researchers have tried to realize self-powered electronic systems by using nanogenerators.
Here, nanogenerators are regarded as a power source, and their only requirement is to
deliver power to the functional parts efficiently and stably. Usually, a power management
module serves as the interface between the nanoenergy and the electronics to maximize the
energy conversion efficiency, to provisionally store the pulsed energy in capacitors, and to
provide stable energy for systems. Figure 5 shows six examples of self-powered electronic
systems based on nanogenerators and power management modules.
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Figure 5. Self-powered systems with power management modules using nanoenergy. (a)
Triboelectric-electromagnetic hybrid nanogenerator: self-powered RFID tag integrated with a hy-
brid nanogenerator [31]. (b) Nanopatterned textile-based wearable triboelectric nanogenerator:
self-powered smart suit based on a textile-based wearable TENG [70]. (c) FPCB integrated with
TENG, PMM, MSC and functional circuit: self-powered smart bracelet based on a freestanding-
mode TENG [71]. (d) Thermoelectric grains bonding on flexible polyimide substrate: self-powered
wearable monitoring system with a flexible thermoelectric generator (TEG) [72]. (e) TENG network
with spring-assisted multilayered structure: water wave energy harvesting system that can power
electronic thermometer and RF transmitter [73]. (f) Battery-like self-charging universal module
for motional energy harvest: universal self-charging module composed of a “three-in-one” hybrid
nanogenerator (electromagnetic generator (EMG), TENG, and piezoelectric nanogenerator (PENG))
and power management unit, which can support a GPS system. [74]. Reproduced with permission
from John Wiley and Sons [73,74], Elsevier [31,71,72], and American Chemical Society [70].

Figure 5a shows a self-powered active RFID tag [31]. This RFID tag is powered by a
wearable triboelectric–electromagnetic hybrid nanogenerator. This nanogenerator, which
is embedded in shoes, can harvest mechanical energy while a person walks. The collected
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energy is stored in capacitors through a power management module, which increases
the energy conversion efficiency. Then, the energy is converted into 3.3 V DC power
with little ripples, which is suitable for powering a Bluetooth chip integrated with an
MCU. With a stable power supply from the nanogenerator, the RFID system can work
sustainably, autonomously, and omnidirectionally in a large area of up to tens of meters.
For wearable electronics, textile-based devices have attracted much attention because they
are comfortable to carry. As shown in Figure 5b, a “self-powered smart suit” integrated
with LCD, LEDs, and remote control has been reported [70]. The smart suit is powered by
a textile-based TENG. This textile-based TENG, which consists of polydimethylsiloxane
(PDMS)-coated ZnO nanorod arrays on a silver-coated textile substrate and a silver-coated
textile, is attached to the sleeve of the smart suit to harvest mechanical energy. Importantly,
a power controller is used in the smart suit to store and distribute energy.

In addition, the integration of nanogenerators into wearable devices has been pro-
posed. Figure 5c,d show two self-powered smart bracelets with integrated nanogenerators.
The device in Figure 5c harvests mechanical energy with a flexible freestanding TENG [71].
Meanwhile, a power management module and double-sided micro-supercapacitors (MSCs)
are fabricated on a flexible printed circuit board together with the TENG in order to
store energy and drive the portable electronics sustainably. This smart bracelet has been
demonstrated to harvest walking energy and to steadily drive a pedometer and humidity–
temperature meter. The power source of the device in Figure 5d is a flexible thermoelectric
generator [72]. The thermoelectric generator is designed as part of a wristband that can
be worn on the human wrist and can be attached to the skin, where continuous thermal
energy can be converted into electrical energy. However, the output voltage of the thermo-
electric generator is only in the tens of millivolts, which is too low to drive devices. Thus, a
power management module that includes a voltage booster and a nanogenerator–voltage
booster impedance-matching circuit is indispensable. Due to the use of the thermoelectric
generator and power management module, this sensory system consisting of a tempera-
ture/humidity micro-sensor, a micro-accelerometer, and an LCD can fulfill signal collection,
data processing, and display requirements in real time.

Previously published works have demonstrated the feasibility of harvesting wave
energy from water with TENGs [75,76]. Figure 5e shows a water wave energy harvesting
system [73]. The part used to realize the energy conversion in this system is a TENG
network that is composed of seven spherical TENGs with a spring-assisted and multilay-
ered structure. The TENGs in the network are linked by rigid strings, and each of them
is connected to a charge excitation circuit, which increases the output performance and
transforms the output from alternating current into direct current. With the constant power
supply from the TENG network, an electronic thermometer can measure the temperature
of the environment continuously and display the temperature value on a liquid crystal
display screen in real time. Furthermore, a wireless transmitter can send an RF signal with
the support of the TENG network. A mobile phone with the corresponding receiver can
display the information sent by the transmitter from within 10 m. In order to satisfy the
power supply demands of other electronic devices, researchers have tried to enhance the
output performance of nanogenerators, and hybrid nanogenerators are a typical result.
Meanwhile, the simultaneous use of multiple types of nanoenergy in one system needs to
be considered. Figure 5f shows a self-charging universal module (SUM) that consists of
a “three-in-one” hybrid nanogenerator and a power management unit (PMU) [74]. The
hybrid nanogenerator includes an electromagnetic generator (EMG), piezoelectric nano-
generator (PENG), and triboelectric nanogenerator (TENG). The PMU is composed of three
full-wave bridge rectifiers and a miniature lithium battery, and it is used to transform the
alternating current generated by the hybrid nanogenerator into direct current, and store
it in the miniature lithium battery. This SUM is packaged in the shape of a standard AA
battery, so multiple SUMs can be used as a battery pack to provide more power. The SUM
pack was demonstrated to harvest mechanical energy during motion and to support a
GPS device.
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The above-mentioned self-powered systems all have an energy storage unit and a
power management module. Most of the power management modules are well integrated
with the device and make the power usage effective and efficient. This shows that a power
management module is a key part of the utilization of nanoenergy for powering electronics.

3.2. Controlling Machines through Signal Regulating Process

Controlling machines with motions and gestures is more intuitive and easier than
doing so by typing commands. In addition, the output of a nanogenerator can reflect an
operator’s motions to some extent. Thus, researchers have tried to utilize nanogenerators as
human–machine interfaces, which are an important part of the Internet of Things. However,
most electronics have fixed communication standards; thus, the output of nanogenerators
cannot be directly applied to electronic systems as a control signal. A signal-regulating
process where the nanogenerator’s output is collected, analyzed, and converted into
a standard control signal is essential in order for it to serve as the interface between
nanoenergy and the machine under control. Four applications of TENGs used as human–
machine interfaces are illustrated in Figure 6.

Sensors 2021, 21, 1614 11 of 17 
 

 

“three-in-one” hybrid nanogenerator and a power management unit (PMU) [74]. The hy-
brid nanogenerator includes an electromagnetic generator (EMG), piezoelectric nanogen-
erator (PENG), and triboelectric nanogenerator (TENG). The PMU is composed of three 
full-wave bridge rectifiers and a miniature lithium battery, and it is used to transform the 
alternating current generated by the hybrid nanogenerator into direct current, and store 
it in the miniature lithium battery. This SUM is packaged in the shape of a standard AA 
battery, so multiple SUMs can be used as a battery pack to provide more power. The SUM 
pack was demonstrated to harvest mechanical energy during motion and to support a 
GPS device.  

The above-mentioned self-powered systems all have an energy storage unit and a 
power management module. Most of the power management modules are well integrated 
with the device and make the power usage effective and efficient. This shows that a power 
management module is a key part of the utilization of nanoenergy for powering electron-
ics. 

3.2. Controlling Machines through Signal Regulating Process 
Controlling machines with motions and gestures is more intuitive and easier than 

doing so by typing commands. In addition, the output of a nanogenerator can reflect an 
operator’s motions to some extent. Thus, researchers have tried to utilize nanogenerators 
as human–machine interfaces, which are an important part of the Internet of Things. How-
ever, most electronics have fixed communication standards; thus, the output of nanogen-
erators cannot be directly applied to electronic systems as a control signal. A signal-regu-
lating process where the nanogenerator’s output is collected, analyzed, and converted into 
a standard control signal is essential in order for it to serve as the interface between 
nanoenergy and the machine under control. Four applications of TENGs used as human–
machine interfaces are illustrated in Figure 6. 

 
Figure 6. Nanoenergy is collected, analyzed, and converted into standard control signals through 
a signal-regulating process in order to realize human–machine interfaces. (a) Silicon rubber triboe-
lectric patch: a 3D motion control interface for a robotic manipulator based on TENGs [77]. (b) 

Figure 6. Nanoenergy is collected, analyzed, and converted into standard control signals through a
signal-regulating process in order to realize human–machine interfaces. (a) Silicon rubber triboelectric
patch: a 3D motion control interface for a robotic manipulator based on TENGs [77]. (b) PEDOT:PSS-
coated textile: an intuitive glove-based interface for machine control. [78]. (c) Flexible wearable
triboelectric patch: a wearable multi-functional human machine interface [79]. (d) Joint motion
triboelectric quantization sensor: a system for the synchronous action of a human and a robotic
hand [80]. Reproduced with permission from Elsevier [78–80] and American Chemical Society [77].

Figure 6a shows a wearable, flexible 3D motion control interface [77]. The wearable
interface is composed of a one-dimensional triboelectric sensor and a two-dimensional
triboelectric sensor, which can generate three-dimensional information that is used to
control the movement of a robotic manipulator in three-dimensional space. The output
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of sensors is first collected by a “signal acquisition module”; then, the signal is sent to a
computer by a “filtering and amplifying module” and is processed by an analog-to-digital
converter. After analyzing the information, the computer sends a command to the driver
to control the robotic manipulator to move as ordered. Figure 6b shows a glove-based
human–machine interface. The critical components of the device are four TENGs based
on a PEDOT:PSS-coated textile [78]. These TENGs are placed on the knuckles of the glove.
Bending the fingers in different ways can represent different commands. The four-channel
output signals of the TENGs are collected by the MCU through the processing circuit. The
MCU analyzes the signals and transmits the command to the receiver; then, the receiver
acts according to the command. The glove-based human–machine interface has not only
been demonstrated to control cars, drones, and other machines in real space, but also to act
as a mouse or keyboard for realizing cursor control and game control in cyberspace.

A wearable control patch is shown in Figure 6c [79]. The patch consists of four
aluminum electrodes that compose a splitting ring on a PET substrate and a PTFE coating.
Each electrode is composed of a main middle portion and an extrusion portion, and each
belongs to an independent single-electrode-mode TENG. The patch is divided into four
individual areas, which correspond to the main middle portion of each electrode, and
four common jointing areas, which correspond to the extrusion portions of two adjacent
electrodes. When tapping or sliding operations are performed in different areas, one
electrode or two adjacent electrodes will output a signal. By analyzing the output of the
four electrodes with an MCU, the operation on the patch can be distinguished. Then, the
operation is mapped to a specific command, and the command is transmitted to another
MCU by a pair of wireless transceivers. The MCU that receives the command controls
machines in order to realize the corresponding actions.

Figure 6d shows a system for the synchronous action of a human and a robotic hand
based on a triboelectric sensor [80]. The sensor, which has a hinge structure, is worn on
a human finger. Due to the grating/sliding mode that is adopted in the sensor, the pulse
number and the polarity of the sensor’s output relate to the flexion–extension degree,
direction, and speed of the joint. A computer collects the output and analyzes the pulse
pattern, maps the data to a finger motion, and then drives a robotic hand through a serial
port to act according to the motion of the human’s hand, thereby realizing synchronous
robot hand control.

4. Summary and Prospects

Various types of nanogenerator have been reported, and it is expected that they will
be used to realize all-in-one self-powered systems [81]. However, a practical problem is
presented by the use of nanoenergy generated by nanogenerators in real-world applications.
The characteristics of different nanogenerators vary, so their outputs are suitable for use in
different circumstances. In this review, six ways of using nanoenergy were summarized
and classified into the categories of direct utilization and indirect utilization. After new
nanogenerators are invented, a suitable usage can be found among these six ways according
to their characteristics and practical requirements. If the output directly reflects the state
of the nanogenerator and the only requirement is to know what the state is, we can
directly read and analyze the output signal of the nanogenerator. If we want to control
something with a nanogenerator, the methods vary. If the thing under control is a particle,
a movable micro-structure, or other electrical parameters, the nanogenerator’s output
can be directly applied to it. If the thing under control is a common piece of electronic
equipment, it is difficult to directly drive it with nanoenergy, and a conversion process
is necessary. Moreover, if the nanogenerator has a high power output and we want to
use it to drive electronic systems, the energy must go through storage and treatment
modules. A summary of the six ways of using nanoenergy is illustrated in Figure 7. In
conclusion, the use of nanoenergy is dependent on the characteristics of the nanoenergy
and the practical requirements.
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Here, we studied the interface between nanoenergy and self-powered electronics in
order to provide a line of thought about the practical applications of nanoenergy. Na-
noenergy brings us such an attractive vision of self-powered electronics, but there are still
challenges in the development process of self-powered electronics. For example, the output
of self-powered sensors could be affected by other factors besides the quantity to be mea-
sured, meaning that the stability and accuracy of sensing remains to be improved. As for
driving movable structures and controlling particles by nanoenergy, realizing quantitative
and precise control is a common challenge. Moreover, the power of nanoenergy is not
enough to support most microsystems with general power consumption and wearable
electronics on the market to work continuously. In addition, there are also challenges to
control machines to realize complex motion with high precision.

However, opportunities coexist with challenges. In the future, nanoenergy is predicted
to develop in the following ways. First, nanoenergy can combine with MEMS technologies
to achieve high-accuracy sensing and quantitative control. Second, advanced materials
and fabrication technologies will promote the output performance of nanogenerators to
realize sustainable power supply. Third, nanoenergy can supply a part of the energy for
ultra-low-power devices, so that it is possible to integrate nanogenerators with other ultra-
low-power technologies to further reduce the device power consumption. Fourth, machine
learning technologies can be adopted to process the output of nanogenerators and to realize
reliable human–machine interfaces with various functions. Finally, multiple approaches
summarized in the above sections can be combined to construct multi-functional smart
self-powered electronic systems.
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