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Abstract: This paper proposes a class-F synchronous rectifier using an independent second har-
monic tuning circuit for the power receiver of 2.4 GHz wireless power transmission systems. The
synchronous rectifier can be designed by inverting the RF output port to the RF input port of the
pre-designed class-F power amplifier based on time reversal duality. The design of the class-F power
amplifier deploys an independent second harmonic tuning circuit in the matching networks to indi-
vidually optimize the impedances of the fundamental and the second harmonic. The synchronous
rectifier at the 2.4 GHz frequency is designed and implemented using a 6 W gallium nitride high
electron mobility transistor (GaN HEMT). Peak RF-dc conversion efficiency of the rectifier of 69.6% is
achieved with a dc output power of about 7.8 W, while the peak drain efficiency of the class-F power
amplifier is 72.8%.

Keywords: wireless power transmission; RF synchronous rectifier; class-F power amplifier; GaN
HEMT device; time reversal duality; independent harmonic tuning circuit

1. Introduction

As interest increases in wireless power transfer techniques and RF energy harvesting
systems for various mobile/wearable or wireless sensor applications, highly efficient RF-dc
converters or rectifiers are rapidly growing in importance [1–4]. Rectifiers can be classified
into two types: (1) rectifiers based on a Schottky diode [5,6]; and (2) synchronous rectifiers
based on a switched transistor [7,8]. While diode rectifiers have simpler structure than
the synchronous rectifiers, synchronous rectifiers have higher power handling capability,
especially for RF applications [9]. The high-power GaN HEMT [10] can be an effective
choice for the synchronous rectifier design, due to its high-power and high-frequency
switching capabilities (from a few Watts to a few hundred Watts and from a few MHz
ranges to several GHz ranges, respectively) [11].

A synchronous rectifier can be designed by inverting the RF output port to the RF
input port of the RF power amplifier circuit based on the time reversal duality [12]. The
dc output of the rectifier can then be obtained from the load in the dc supply network to
the drain of the power amplifier. To convert the power amplifier to the rectifier, the RF
signal should be applied to the gate of the transistor for synchronous switching. To provide
the gate with an RF signal, the feedback capacitance, Cgd, of the transistor can be used to
couple the signal from the drain to the gate [13]. The RF signal can be tapped by a coupler,
and, after controlling its phase using a phase shifter, it can be supplied to the gate [14].

For power amplifiers, harmonic control is important to achieve high efficiency with
high RF output power [15]. Class-F power amplifiers, which have short circuits for the
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even-order harmonics and open circuits for the odd-order harmonics, have been a good
option to obtain high efficiency [16]. An independent second-harmonic control circuit using
quarter-wave transmission lines was proposed for a harmonic tuned power amplifier [17].
Since the independent second-harmonic tuning circuit does not affect the impedance
matching circuit for the fundamental while tuning the second harmonic, it makes it much
easier to tune the overall circuits for the second harmonic and the fundamental, and to
produce optimal performances.

Several high-efficiency synchronous rectifiers have been reported using GaN
HEMTs [18–20]. Ref. [18] reported a harmonic controlled class-F rectifier at the 0.985 GHz
frequency with an RF-dc conversion efficiency of 81.3%. Ref. [19] reported a class-F−1

wideband rectifier for the 0.6–1.15 GHz frequency range with an RF-dc conversion effi-
ciency of 80.1%. Ref. [20] reported a class-F−1 rectifier using a dc polarity control at the
1.8 GHz frequency with an RF-dc conversion efficiency of 77%. These previous works
employed an external coupler and phase shifter to supply the RF signal to the gate. They
also employed harmonic control circuits that could not be tuned without disturbing the
fundamental impedance of the matching network.

In this work, we propose a class-F synchronous rectifier employing an independent
second harmonic tuning circuit that uses a GaN HEMT with integrated coupler and phase
shifter on a module. The independent second harmonic tuning circuit was designed
for class-F operation in the 2.4 GHz band. With the ability to independently tune the
fundamental and second harmonic impedances of the proposed circuits, it becomes easier
to experimentally achieve high efficiency and high output power of the power amplifier
and the rectifier, where fine tuning after implementation is inevitable, due to the error in
the large-signal model of the transistor, and inaccuracy in the RF simulation of the passive
circuits. Experimental results are presented and compared to the results of previous work.

2. The Independent Second Harmonic Tuning Circuit
Figure 1 shows a schematic of the proposed class-F power amplifier using the inde-

pendent harmonic tuning circuits at both the input and output networks. In the output
matching network of the power amplifier, to separate the third harmonic tuning circuit
from the fundamental and second harmonic matching circuits and to realize the optimized
third harmonic load impedance for class-F operation, an optimized length of the series
transmission line (TL4) and a quarter-wave open stub (TL5) at the third harmonic frequency
are deployed before the fundamental matching network. To independently tune the second
harmonic impedance, a transmission line (TL6) is added after TL4 and TL5 to make the
overall length of the lines, TL4, TL5, and TL6, a quarter-wavelength at the second harmonic
frequency. After TL6, a quarter-wave open stub (TL7) at the second harmonic frequency
is added for the second harmonic load impedance to be open-circuited. Similarly, at the
input network, a series line of TL13 and a parallel RC network using R1 and C3 should be
designed to have a quarter-wavelength at the second harmonic frequency. A quarter-wave
open stub (TL14) at the second harmonic frequency should come for the second harmonic
source impedance to be open-circuited. A resistor RGG on the bias line and a parallel
network with a resistor R1 and a capacitor C3 on the input matching network are used to
improve the stability of the power amplifier.

For independent tuning of the second harmonic impedance and bias feeding, a series
quarter-wave line (TL1 at the output and TL10 at the input), a quarter-wave open stub
(TL2 at the output and TL11 at the input), and a series tuning line (TL3 at the output and
TL12 at the input) are used at both the input and output matching networks. Using a
series quarter-wave line and a quarter-wave open stub for the fundamental frequency, the
fundamental impedance can be allowed to be open-circuited. Since quarter-wave lines at
the fundamental frequency become half-wave lines at the second harmonic frequency, they
do not affect the second harmonic impedances. Then, the second harmonic impedances
at the input and output can be independently tuned using TL3 and TL12, by tuning
the positions of the RF bypass capacitors of C2 and C4, respectively. The fundamental
impedances at the input and output can be matched using matching networks based on a
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series transmission line (TL15 at the input and TL8 at the output) and an open stub (TL16
at the input and TL9 at the output), respectively.

Figure 1. Schematic of the proposed class-F power amplifier using an independent second harmonic
tuning circuit.

Figure 2 shows the simulated load impedances for the fundamental impedance tuning
(in Figure 2a) and for the second harmonic tuning (in Figure 2b). For the fundamental
impedance tuning, the lengths of TL8 and TL9 were tuned from 0.08 to 0.12 λ and from 0.12
to 0.16 λ, respectively. Figure 2a shows that the second and third harmonic impedances are
in almost fixed positions, while the fundamental impedances have wide variation. Other-
wise, for the second harmonic impedance tuning using the length of TL3 from 0.03 to 0.1 λ
for the second harmonic frequency, a wide variation of the second harmonic impedances
with almost fixed positions for the fundamental and third harmonic impedances can be
found (see Figure 2b).

(a) (b)

Figure 2. Load impedance tuning: (a) fundamental impedance tuning using TL8 and TL9; and (b)
second harmonic impedance tuning using TL3.

Figure 3 shows the simulated source impedances for the fundamental impedance
tuning (Figure 3a) and for the second harmonic tuning (Figure 3b). For the fundamental
impedance tuning, the lengths of TL15 and TL16 were tuned from 0.29 to 0.37 λ and from
0.12 to 0.2 λ, respectively. Figure 3a shows that the second harmonic impedances are in
almost fixed position, while the fundamental impedances have wide variation. Otherwise,
for the second harmonic impedance tuning using the length of TL12 from 0.3 to 0.5 λ for
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the second harmonic frequency, a wide variation of the second harmonic impedances with
an almost fixed position for the fundamental impedances can be found (see Figure 3b).

(a) (b)

Figure 3. Source impedance tuning: (a) fundamental impedance tuning using TL15 and TL16; and
(b) second harmonic impedance tuning using TL12.

Based on the time reversal duality, the rectifier circuit can be obtained from the power
amplifier by inverting the RF output port of the amplifier to the RF input port of the rectifier.
Figure 4 shows a schematic of the synchronous rectifier. The drain dc supply for the power
amplifier becomes a dc load (RDC) of the rectifier. Theoretically, RDC should have the value
VDD/IDC of the power amplifier in large signal condition. However, due to the loss of
circuits and the error in the device model, the value of RDC needs to be refined to achieve
high performances. To provide the RF signal to the gate, a coupler and a phase shifter are
placed on the module. The coupling factor of the coupler is 14 dB, which should be almost
equal to the gain of the power amplifier. The phase of the RF signal in the gate needs to
be adjusted for high RF-dc conversion efficiency using the phase shifter, which is a phase
shifting transmission line on the module.

Figure 4. Schematic of the proposed class-F rectifier using the independent second harmonic tuning
circuit based on time reversal duality.

3. Implementation and Experimental Results

Figure 5 shows a photograph of the fabricated synchronous rectifier module. The
module was implemented using a Cree GaN HEMT (CGH40006P) and a printed circuit
board (PCB) based on a Rogers 4350B substrate with a thickness of 20 mil and a dielectric
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constant of 3.66. The dimensions of the overall module are 121 mm × 69 mm. An AVX
CP0805B2442BW directional coupler is used to couple the signal. The drain and gate supply
voltages are set to 28 and –2.6 V, respectively.

Figure 5. Photograph of the fabricated synchronous rectifier module.

Figure 6 shows a photograph of the test bench. An RFHIC RWP2060050-48 exter-
nal drive amplifier is used to drive the input RF signal for the test. An RF-Lambda
RFCD9M9G35 external directional coupler with a power meter is used to observe and to
adjust the input RF power. The dc output port of the rectifier is connected to an electrical
load to measure the delivered dc power to the load.

Figure 6. Photograph of the test bench for the synchronous rectifier.

Figure 7 shows simulated and measured results of the class-F power amplifier. After
implementation, the power amplifier was additionally optimized by independently tuning
the fundamental and second harmonic impedances. The measured drain efficiency and
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gain of the fabricated power amplifier are 72.8% and 11 dB at the peak output power of
40 dBm, respectively. The simulated and measured performances show good agreement.

Figure 7. Simulated and measured gain and drain efficiency of the class-F power amplifier as a
function of the output power at 2.4 GHz.

Figure 8 presents the measured RF-dc conversion efficiency and the dc power according
to the load resistance values. The RF-dc conversion efficiency is obtained as follows.

RF-dc conversion efficiency =
PDC
Pin

, (1)

where Pin is an input RF power and PDC is an output dc power delivered to the load
resistance of RDC. PDC is obtained using the dc voltage at the load resistance as follows.

PDC =
(VDC)

2

RDC
. (2)

Figure 8. Measured RF-dc conversion efficiency and output dc power of the synchronous rectifier as
a function of load resistance.
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The measurements were done at the 2.4 GHz frequency and 11.22 W RF input power.
Figure 8 shows that the optimum load resistance is about 100 Ω, where an RF-dc conversion
efficiency of 69.6% and an output dc power of 7.81 W were obtained. From Equation (1),
it can be found that the RF-dc conversion efficiency and the output dc power should be
directly proportional when the RF input power is fixed.

Figure 9 shows the RF-dc conversion efficiency and output dc power of the syn-
chronous rectifier according to the input power at the 2.4 GHz frequency with the 100 Ω
load resistance. Considering the loss of the coupler and the phase shifting lines that are
added to the rectifier, more RF input power of the rectifier should be supplied than the RF
output power of the class-F power amplifier. An RF-dc conversion efficiency of 69.6% for
an 11.22 W (40.5 dBm) input power was achieved. The RF-dc conversion efficiency was
sustained above 50% for input power level of no less than 35 dBm, and the maximum dc
power obtained was 9.89 W with an efficiency of 65.3%.

Figure 9. Measured power efficiency and output dc power according to the input power.

Table 1 summarizes the performances of the implemented synchronous rectifier and
compares them to the previous works. This work achieved a relatively high output dc
power (7.81 W) with very high RF-dc conversion efficiency in the relatively higher 2.4 GHz
frequency, using a transistor with a relatively low power capacity (6 W). In contrast, the
authors of [18–21] used a transistor with a relatively higher output power capacity (10 W).

Table 1. Summary of the measured results for the synchronous rectifiers compared to the previous works.

Ref. Device
(Part Number)

Circuit
Topology

Freq.
(GHz)

Eff.
(%)

Output dc Power
(W)

Coupler Phase
Shifter

[18] GaN HEMT
(CGH40010F)

Class-F 0.985 81.3 8.7 External External

[19] GaN HEMT
(CGH40010F)

Class-F−1 0.6-1.15 80.1 8 External External

[20] GaN HEMT
(CGH40010F)

Class-F−1 1.8 77 6.9 External External

[21] GaN HEMT
(CGH40010F)

Class-F−1 1.17 78 5.1 Integrated
on module

Integrated
on moduleClass-F 2.4 75.5 7.18

This
work

GaN HEMT
(CGH40006P)

Class-F,
independent

second harmonic
tuning circuit

2.4 69.6 7.81 Integrated
on module

Integrated
on Module
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4. Conclusions

A class-F synchronous rectifier with an independent second harmonic tuning circuit
was designed and implemented at the 2.4 GHz frequency. The synchronous rectifier was
implemented by reconfiguring the class-F power amplifier based on the time reversal
duality. It also includes a coupler and a phase shifting line that are integrated on the
module. The peak drain efficiency of the fabricated class-F power amplifier was 72.8%,
while the peak RF-dc conversion efficiency of the synchronous rectifier was 69.6% with
a high dc output power of about 7.8 W using a transistor with a relatively low power
capacity, compared to the previous works. The maximum dc output power of the rectifier
was 9.89 W with an RF-dc conversion efficiency of about 65.3%. Since the size of the
synchronous rectifiers is generally larger than that of the diode rectifiers, one of the future
research topics could be size reduction of the synchronous rectifier circuits.
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