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Abstract: Early detection of Rheumatoid Arthritis (RA) and other neurological conditions is vital 

for effective treatment. Existing methods of detecting RA rely on observation, questionnaires, and 

physical measurement, each with their own weaknesses. Pharmaceutical medications and proce-

dures aim to reduce the debilitating effect, preventing the progression of the illness and bringing 

the condition into remission. There is still a great deal of ambiguity around patient diagnosis, as the 

difficulty of measurement has reduced the importance that joint stiffness plays as an RA identifier. 

The research areas of medical rehabilitation and clinical assessment indicate high impact applica-

tions for wearable sensing devices. As a result, the overall aim of this research is to review current 

sensor technologies that could be used to measure an individual’s RA severity. Other research teams 

within RA have previously developed objective measuring devices to assess the physical symptoms 

of hand steadiness through to joint stiffness. Unfamiliar physical effects of these sensory devices 

restricted their introduction into clinical practice. This paper provides an updated review among 

the sensor and glove types proposed in the literature to assist with the diagnosis and rehabilitation 

activities of RA. Consequently, the main goal of this paper is to review contact systems and to out-

line their potentialities and limitations. Considerable attention has been paid to gloved based de-

vices as they have been extensively researched for medical practice in recent years. Such technolo-

gies are reviewed to determine whether they are suitable measuring tools. 

Keywords: rheumatoid arthritis; smart sensing; data gloves; joint measurement; rehabilitation; 

range of motion 

 

1. Introduction 

The sense of touch allows us to interact with the environment effectively and effi-

ciently. Our hands are a complex structure in the human body that helps us move through 

a vast amount of activities in our daily lives. Likewise, the muscles and joints in the hand 

and forearm allows us to move with great range and high precision [1]. Additionally, 

thanks to its structure, humans can perform a wide range of tasks, such as grasp and lift 

objects as well as guide a fine thread through a small eye of a needle [2]. Sadly, hand 

function damage induced by diseases such as rheumatoid arthritis (RA) and Parkinson’s 

disease (PD) and other neurological conditions have a detrimental effect on the quality of 

life of the people affected [3]. Physical exercise therapies have primary clinical significance 

for improving motion recovery [4]. Therefore, wearable devices should simultaneously 

monitor all finger movements dynamically to assist with the diagnosis process of the dis-

eases at early onset stages, and extract objective measurements of slight improvements in 

the hand and limb mobility during rehabilitation activities [5]. Similarly, wearable 
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technologies (smart gloves) ought to continuously monitor the hands without being a nui-

sance to a patient’s daily activities [6]. 

This paper has the goal to provide a review of contact systems for medical applica-

tions and to provide state-of-the-art research guidance in smart wearable systems in the 

clinical field. The paper is organized into three main sections: an overview of the problem, 

a discussion on the background around RA and also diagnosis/rehabilitative methods re-

viewed. This leads into the second section, where various sensor technologies and other 

key features linked to sensory gloves is presented. The third section discusses the history 

behind data gloves from the early 1970s, but more importantly, reviews current state-of-

the-art solutions that could be used in the clinical practice for hand functional assessment. 

Here, an extensive overview of the sensor positions and joints monitored on each device 

is discussed. Other key features, including sensor holding materials and sensor/device 

calibration, is also reported. 

1.1. Problem Background 

In medical applications, such as hand function assessment and rehabilitation, captur-

ing hand kinematics is necessary [5]. RA is an autoimmune disease that mistakenly attacks 

multiple joints causing persistent pain, swelling and stiffness [7]. Inflammation causes the 

joints to degenerate, which leads to disabilities, deformities and progressive joint damage 

that cannot be reversed [1]. 

The resulting inflammation seen in Figure 1 causes the synovial membrane, which 

lines the inside of the joints to thicken [8]. 

 

Figure 1. Rheumatoid arthritis (RA) joint breakdown. 

Early presentation of RA can be recognized as the appearance of an asymmetrical 

form of arthritis [9]. Symmetry is the key determent for the diagnosis of the autoimmune 

condition [10]. However, at the onset of the disease, a person may not have symptoms on 

both sides of the joint making it difficult to diagnose. As the disease progresses, it will 

only become symmetrical [11]. A sufferer with RA uses their hands to interact with the 

environment each day for a huge number of complex tasks and RA is the most destructive 

in the small joints of the hands [12,13]. Consequently, the loss of hand function caused by 

RA has a detrimental effect on the quality of life of those affected [14]. Therefore, intense 

research and clinical work has focused on the understanding of the initial onset and symp-

tom regulation as the disease progresses. Rheumatologists need to reliably control the dis-

ease of an RA sufferer, where rehabilitation exercises can be monitored daily to reduce 

the disease progression rate and to move towards remission [10]. 
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Currently there is no cure for RA, but it is commonly treated using disease-modifying 

antirheumatic drugs (DMARDs) and physical therapy exercises that reduce the disease 

progression, whilst improving overall long-term prognosis [15,16]. Regardless of this im-

provement, RA has a major impact on a person’s activities of daily living (ADL) [17]. There 

is no single test that confirms the presence of RA, although there are several RA diagnosis 

measures to test grip, strength, range of motion (ROM), dexterity, hand pain, hand swell-

ing and finger stiffness [18]. There are several validated assessment methods used by cli-

nicians to investigate symptoms of RA, such as the health assessment questionnaire 

(HAQ) and the ‘disease activity score 28’ (DAS28) [19–21]. X-rays (radiographs) are a suit-

able outcome measure in patients with RA, although in the early stages of the disease, X-

rays may appear normal although the disease activity is high [8]. Grip strength, pinch 

strength and ROM are the most used outcome measures for planning treatment of RA 

[13,16,18,22]. Correspondingly, capturing hand functionality is necessary in clinical set-

tings for hand evaluation and rehabilitation. 

ROM is the amount of measured movement around a specific joint within the body 

and is commonly measured with a device known as the universal goniometer (UG). A UG 

shown in Figure 2 is a two-armed, metal or plastic handheld device containing a gauge 

that represents an angular number much like a protractor [23].  

 

Figure 2. Universal goniometer (UG) [24]. 

Physical therapists align the arms of the UG around the joint, and then shift the body 

in a direction to calculate the amount of motion that occurs [23,25]. These simple devices 

assist in the diagnosis of RA and physical therapy techniques. However, the devices give 

little or zero improvements in self-management activities as they require a clinician to 

perform measurements of the patient’s joints [26]. More generally, these two-armed de-

vices still present several limitations even within the clinical practice. Certain factors be-

tween clinicians (inter-rater reliability) such as the positioning of the device, the thera-

pist’s own technique (intra-rater reliability) in the interpolation of anatomical landmarks 

seen in Figure 3 can also cause a lack of consistency when using a UG device [27]. It fol-

lows that the issues found with the usage of the UG in the evaluation of static joint ROM 

can be further worsened by novice practitioners who have little experience in accurately 

identifying anatomical landmarks. In addition, the reliably of both the intra-observer and 

inter-observer is debatable. Special training is set to follow standardization through group 

agreement, which improves the clinical measures in Rheumatology [27]. 

In the discussion of Keogh et al. [28], researchers confirm that the UG has been a 

commonly used tool for measuring joint ROM in clinical practice due to its low cost and 

ease of use; dependability and validity has been established in numerous studies. Their 

findings suggest that the evolution of technology provides researchers and clinicians with 

smart devices along with complex applications with more measurement options than 
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previously available. However, the durability and reliability of these devices and applica-

tions remains somewhat unclear [18].  

 

Figure 3. Landmarks of the palmar hand. 

Any measurements that are used for planning clinical care must be accurate and re-

liable [18,29]. There has been a great deal of research conducted using various instruments 

to investigate the reliability of goniometry [23]. In an earlier report, Salter [30] emphasized 

the importance of a standardized procedure for use of UGs as they found that the inaccu-

racy between clinicians is due to the lack of consistency using the device. In addition, the 

positioning of UGs involves four factors: the patient, the joint, UG and the clinician [23]. 

Salter believed that a device designed to calculate the magnitude of a joint angle should 

not interfere with joint motion. Hence, to improve the validity and reliability of the device, 

a UG requires special attention during the assessment of each joint. These findings are 

congruent with Milanese et al. [23] who detailed that intra and inter-tester reliability of a 

UG between clinicians can affect the overall outcome of the observation. 

Burr [31] carried out an excessive study to establish if the inter-rater and intra-rater 

reliability of measurement differs between a team of therapists when measuring the finger 

joints using a hand-held UG. Their findings demonstrated the value of one therapist to 

assess the same individual and how other clinicians may be constantly low or high in their 

readings. Interestingly, their report also found that the therapists were usually more ac-

curate with the UG device than 75% of the regular staff workers. Other researchers Ellis 

and Bruton [32] found that a skilled observer varied 7–9 degrees or less than 95% of the 

time whilst using a UG. In addition, the universal UG has certain drawbacks, even when 

assessing static movement [28]. 

Like joint pain, joint stiffness gets worse in the morning or after a time of inactivity. 

Morning stiffness which is a symptom of another form of arthritis called osteoarthritis 

normally wears off within 30 min of waking up, but morning stiffness in RA sometimes 

persists longer than that [10]. Impartial measurement of morning/joint stiffness in a clini-

cal practice is not assessed, despite its importance given the repeated occurrence of the 

symptoms [7]. Connolly’s [22] findings indicate that early morning stiffness is generally 

reported by the patient. However, their estimated pain can be confused with other unex-

plained pain caused by non-inflammatory conditions and depression adding to under or 

over prescribing medication. Several researchers acknowledged the fact that RA affects 

the manipulation of objects as grip strength can be dramatically reduced [13,33]. Object 

handling with a comfortable handgrip is one of the most common gestures in everyday 

life and occupational practices. Hence, the reduction in grip strength dramatically affects 

a person’s ADL leaving them with a long-term disability [34]. 
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Many patients with RA have more common effects as well as complications with the 

joints, such as tiredness, lack of energy, lack of strength, high fever, nausea, loss of appe-

tite and weight loss [35]. Inflammation that is characteristic of RA may often cause com-

plications in other parts of the body, such as dry eyes and chest discomfort [36]. Bakir, 

Samancioglu and Gursoy [37] have carried out an extensive study on RA patients’ pain 

and how it effects their sleep quality. Patients complain of exhaustion not only because of 

their illness, but also because of insufficient sleep. Their study discussed non-pharmaco-

logical approaches such as reflexology, massage, physiotherapy, gentle touch, acupunc-

ture and music therapy been used in RA patients to monitor and enhance their functioning 

reducing the need for aggressive DMARDs. However, whilst their study on the effect of 

therapy on pain symptoms has been measured in patients with RA, no research on sleep 

quality has been undertaken. Researchers Kerschan-Schindl and MacHold [34] found that 

various physical symptoms contributed to inactivity including discomfort, swelling, in-

jury to the joint, low bone density and muscle fatigue. Their study of physical activity for 

RA also found that various physical symptoms may cause the patient to stop exercising if 

they aggravate their condition. Metsios and Kitas’s [38] recent study specifies how inac-

tivity of the affected joints decreases ROM and reduces the ability to perform the move-

ments needed for ADL. Their findings indicate that patients with RA are typically directed 

to complete therapy with low impact activity to maintain cognitive ability and to enhance 

their functional capability. 

Several researchers have recognized the importance of hand dexterity and how pa-

tients can benefit by completing daily hand exercises. Specifically, Smolen et al. [15] rec-

ognized that physicians can reliably evaluate the condition by monitoring and recording 

hand functions on a daily basis. Similarly, the study carried out by Majithia and Geraci 

[10] discussed how it is vital to diagnose RA at early stages to prevent the development 

of joint erosion. Therefore, clinicians seek a reliable and practical device to replace tradi-

tional methods that could assist in the diagnosis measures of RA at early stages. Given the 

above, a realistic and accurate device that can monitor many parameters of hand function 

assessment and rehabilitation activities is therefore necessary. 

1.2. Hand-Based Functional Assessment 

Hand-based functional assessment is used to assist in the diagnosis of RA and other 

neurological conditions to start effective treatment [39]. Clinical applications and in par-

ticular, rehabilitation activities are mainly concerned with hand-based functional assess-

ment [7,25,33,40]. To clarify, the assessment of hand functionality for clinical purposes 

requires the gathering of several data forms, including for example, resting state, grip 

strength, velocity, acceleration, and hand joint ROM, etc. Several researchers have con-

ducted investigations into contact systems [22,25,41–47]. However, current research seems 

to indicate that contact systems are more sought-after for monitoring hand functionality 

[1,5,9,29,48,49]. Several types of sensors have been used to measure the quantitative meas-

urements of interest, with complex architectural and circuit designs. Solutions offered by 

wearable devices eliminate the inter-tester and intra-tester reliability issues that originate 

with the UG. In addition, the devices have the capability of increasing the accuracy and 

repeatability measures within the clinic, whilst enhancing the complexity of measure-

ments due to the continuous operation of multiple sensors. 

The human hand comprises 27 bones of approximately 25 degrees of freedom (DOF) 

guided by 17 inner muscles in the hand and 18 outer muscles in the forearm [44]. Conse-

quently, the grasping hand is a valuable source of inspiration for engineers and scientists 

to develop human-like robotic and prosthetic hands and to research and improve human 

hand function capabilities. Several researchers have focused mainly on assessing the ROM 

on the fingers and thumb. Reports by O’Flynn et al. [48] have found that Rheumatologists 

specifically measure the metacarpophalangeal (MCP) joints, proximal interphalangeal 

(PIP) joints and the distal interphalangeal (DIP) joints of the fingers. Additionally, their 

study also measured the thumb, which contains the carpometacarpal (CMC) joint, MCP 
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joint and an interphalangeal (IP) joint. The study by Ruffing [50] indicates that RA often 

appears in one or more of the MCP and PIP joints. Anuj P Netto [51] claimed that the DIP 

joints are affected less frequently. However, if they are affected, it is typically only after 

RA symptoms of the MCP and PIP joints. While osteoarthritis is the most prevalent cause 

of thumb arthritis, RA can often impact the CMC joint, typically to a lesser degree than 

the finger joints [51]. Figure 4 demonstrates the DOF of each of the hand joints. 

 

Figure 4. Degrees of freedom (DOF) of hand joints. 

The CMC joint of the thumb has three DOFs, unlike other joints, whilst the MCP 

joints have two DOF, the PIP and the DIP joints having just one DOF [33]. Clinicians and 

researchers have recognized the importance of hand kinematics to benefit the assessment 

criteria needed for diseases such as RA [52]. This includes accurate measurement of flex-

ion, extension, adduction, abduction of all finger and thumb joints, including the complex 

web space movement measurement of the CMC joint [41]. The ROM is the most com-

monly useful way of monitoring the functionality of the hand for RA measures [52]. Cli-

nicians and researchers have established tools and systems to benefit this process. 

Hand monitoring systems have been used for years throughout human computer 

interaction (HCI) [44]. However, these technologies have only been used in very stand-

ardized conditions such as research centers and experimental laboratories for medical use. 

To be valuable and broadly usable in clinical settings, devices must be precise and accu-

rate within the conditions of everyday living [53]. Likewise, their physical structure must 

be robust towards providing the desired results with the variations in hand sizes. These 

factors have often been previously discussed as disruptive for complex hand monitoring 

systems used in the medical field. Furthermore, these challenges are an important attrib-

ute to data glove technologies because participation in physical activity is recommended 

for rehabilitation without complications, resulting in both psychological and clinical ben-

efits with improvements in ROM function [53]. Currently, several data gloves have been 

developed for monitoring patients’ physical activity. They have proved valuable for mon-

itoring ROM and for detecting basic hand gestures [53,54]. 

In conclusion, with the correct combination and situation of sensors on joints of in-

terest, an adoptable glove material/exoskeletal device, a system for gathering and moni-

toring the data, and it all can be used to assist with the early onset of the disease and the 

end physical activity in RA [5]. 

2. Sensors Characteristics & Signal Processing & Output 

Sensor gloves have been widely researched in applications such as robotics and VR, 

and they have gained increased significance in recent decades for medical applications 
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[49]. This paper emphasizes the importance of research in sensor glove devices for medical 

and health care domains. Research evidence proposes that sensory data gloves are the 

state-of-the-art technology for RA goniometric measurement and for the rehabilitation of 

diseases requiring quantification of finger joint flexibility [48]. Even though sensor gloves 

are relevant in the assessment of hand dexterity, their medical use is limited by a number 

of issues, including accuracy, repeatability, and connectivity to internet of things (IoTs) 

[44], as well as their usability and comfort [22]. 

2.1. Sensor Topologies 

There are promising opportunities for data gloves to assist in RA diagnosis and re-

habilitation measures, and monitoring of other mobility diseases within the health care 

environment [43]. The sensor is one of the core data glove technologies that provides 

measurement of hand dexterity, and is capable of measuring bend, motion, rotation, and 

hand position [55]. 

The most significant parameters for hand rehabilitation are the measured angles of 

the joints [40,52,56,57]. Likewise, a variety of movements are provided by synovial joints 

in the hand [48]. The contraction or relaxation of the muscles that are connected to the 

bones on either side of the articulation results in each motion at a synovial joint [58]. Flex-

ion and extension movements of the MCP, PIP and DIP occur in the sagittal (anterior-

posterior) plane of motion. Abduction and adduction of the digits occur on the coronal 

(medial-lateral) plane of motion [22,58]. Correspondingly, the sensors generally used to 

monitor hand function belong to the following categories. 

2.1.1. Sensors Used to Monitor Finger ROM 

The most prominent action that can be accomplished by all digits (little, ring, middle, 

index finger and thumb) is to bend them to the palm (flexion) and then back (extension) 

to the original position. The thumb has unique advantages over all other fingers with a 

complex CMC joint that has three DOF allowing it to move freely in six DOF counting the 

other two joints [33]. In particular, the prevailing movement required to detect stiffness 

and to assist RA diagnosis and rehabilitation is related to the bending of all digits [7]. 

Finger bend can be observed using a variety of sensor technologies, as seen in the litera-

ture. 

The most popular sensor used in a data glove is a flex sensor (resistant transducers). 

This type of sensor measures the degree to which the sensor curve deviates from a straight 

line, and is commonly used by researchers and engineers [9,41,52]. Resistant transducers 

are lightweight, low cost, and vary in size to suit applications [59]. The flex sensor is there-

fore quite easy to implement within existing technologies, and can be customized for var-

ying user requirement [60,61]. Resistant flex sensors have increasingly been used in vari-

ous cases [62]. Similarly, static and dynamic postures can be documented in medical ap-

plications when used in a glove device [29]. Given their interesting properties, such as 

robustness, low price and long life, they frequently show non-linear response and lower 

sensitivity, particularly at small bending angles [5,22]. Nevertheless, a research clinical 

glove developed by ActionSense [60] uses multiple Flexpoint bend sensors [61] to monitor 

hand function. Figure 5 shows two custom 2-in-1 combined flex sensors (two sizes, short 

5” and long 6”) that have two outputs to monitor two finger joints on one sensor. The 

internal flexible layer (seen in Figure 6) protected by carbon-ink measures the difference 

in resistance to the bending angle of the transducer [44,61]. 

As shown in Figure 7, the substrate is bent from position dA to dE. The resistance 

performance of the sensor is proportional with the bend radius as the smaller the radius, 

the higher the resistance value. Likewise, the flatter the sensor substrate is, the lower the 

resistance (nominal resistance). As the angular position reaches 45 degrees, the sensor re-

sistance rises to twice the nominal resistance. Additionally, as the sensor is bent to 90 de-

grees, its output resistance can increase to four times the nominal resistance [63]. 
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Figure 5. Flexpoint 2-in-1 sensor. 

 

Figure 6. Flex sensor characteristics [22]. 

 

Figure 7. Flexpoint deflection. 

The flex sensor is usually connected to a voltage divider circuit, shown in Figure 8. The 

illustration presents two sensors incorporated into one Flexpoint sensor, where an electri-

cal potential at the output of the flex sensor is collected by an analog-to-digital converter 

(ADC) circuit and then sent to the processing unit where it is monitored by a controlling 

algorithm. Generally the flex sensor uses a buffer (op-amp) circuit to enhance/amplify the 

signal at the output of the sensor (not in illustration) [44]. 
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Figure 8. Custom 2-in-1 combined Flexpoint sensor with voltage divider circuits. 

An optical sensor uses the characteristics of optical technology to determine the cur-

vature angle of a bend [64]. The sensor measures infrared (IR) light emitted from a diode 

transmitted through a fiber core to a detector (photo diode) [64,65], as shown in Figure 9. 

When the fiber core is bent, the photo diode experiences changes in the received light 

within the signal processing circuitry (Vo). Fibre optic sensors have conventionally been 

used as a luminescent source that is transmitted via an optical fiber to a light dependent 

resistor. Both optical technologies operate on the measurement of light intensity so that 

when the sensor is flat, as representative of a “flat hand” position in a data glove, the 

intensity of the light measured by the Vo will be significant. Additionally, the inverse will 

be true once the sensor becomes bent [66]. Optical fibers are lightweight, flexible, reliable, 

and immune to electro-magnetic interferences, making them well suited for wearable de-

vices [44,56,58,67,68]. Pasquale’s [44] findings suggest that optical fiber sensors are well 

suited for application in cutting-edge wearable systems. However, additional stresses in-

duced into the fibers whilst placed on a textile substrate can cause them to be sensitive, 

causing light attenuation resulting in sensor inaccuracy [44,66]. The 5DT (Fifth Dimension 

Technologies) commercial glove [69] has 14 unique fiber optic bend sensors presented in 

Figure 10. For instance, each sensor is strategically placed inside individual small pockets 

of a textile glove that monitor all the digits except for the DIP joints of the fingers and the 

CMC joint of the thumb [41]. Similar to the flex bend sensors, they do not have the ability 

to detect hand orientation with only one DOF available between each sensor. 

 

Figure 9. Fiber optic circuit. 
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Figure 10. Fiber optic sensor. 

Hall effect sensors are based on the variation of the output voltage in response to a 

magnetic field [45]. The SS490 series are lightweight, flexible, linear devices powered by 

a magnetic field from a permanent magnet or an electromagnet [70], as shown in Figure 

11. The Hall Effect sensor (SS495B) responds to either positive or negative Gauss (north 

and south poles) [71]. Moreover, these sensors have been previously placed on the tips of 

the fingers with a magnet on the palm of the hand [59]. Changes in the proximities of each 

sensor to the magnet vary the output voltage. There is little evidence of Hall effect tech-

nologies being used in commercial or research data gloves except for the Human Glove 

[25]. 

 

Figure 11. (SS495B) Hall effect sensor. 

Hall effect sensors are characterized as analogue or digital, depending on their feedback 

signal. In an analogue sensor, the feedback signal is of a constant type and is directly pro-

portional to the force of an applied magnetic field [1]. In addition, the increase in the force 

of the applied magnetic field increases the resultant output voltage until it is saturated by 

the restriction applied to it by a power source [71,72], as shown in Figure 12. Likewise, a 

digital sensor acts like a switch; if the magnetic field reaches a predetermined value, the 

output of the sensor changes from “OFF to “ON” [1]. Hall effect sensors are usually inte-

grated into an exoskeleton device similar to the early Human data glove [25], [40]. Owing 

to their small size and the concept of contactless operation, these sensors allow the device 

to operate smoothly, preventing frictional resistance [72]. A main disadvantage of this 

technology is that they cannot sufficiently provide accurate orientation information, since 

the sensors measure only one DOF of the joint [73]. 
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Figure 12. Hall effect characteristics at max 5 V. 

Capacitive Bend Sensors are not commonly used in research or commercial gloves. 

However, the manufacture StretchSense (Auckland, New Zealand) is the first to commer-

cialize a product with capacitive technology with their most recent uniquely designed 3-

in-1 sensor [74], shown in Figure 13.  

 

Figure 13. StretchSense capacitive sensor [74]. 

 

Their MoCap Pro SuperSplay glove device is also seen in Section 3. Their stretch sensors 

are flexible capacitors that can measure the stretch, bend, shear, or strain. Moreover, the 

sensors capacitance values change as the sensor deforms (due to stretching or squeezing). 

Depending on the desired use, StretchSense sensors may be developed for various sizes, 

with varying amounts of elasticity and sensitivity [74–76]. The internal sensors consist of 

a stretchable signal electrode placed between two ground electrodes, which are separated 

by dielectric silicone insulators, as shown in Figure 14. The sensor is a versatile parallel 

plate capacitor, and the thickness and area of the conductive substrate changes as the sen-

sor is extended. Stretching the sensor increases the surface area, and reduces the sensors 

thickness, leading to an increase in capacitance [76,77]. 

 

The capacitance output (farad) for a parallel plate capacitor is described by: 

� =  Ԑ�Ԑ�

��

�
 

Since the capacitors are resistant to a change in voltage, the capacitance can be determined 

by applying a small voltage. Thus, the capacitance of the sensor can be measured by add-

ing a voltage to the sensor and comparing the real voltage response to that expected with-

out a capacitor [76]. 
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Figure 14. Parallel plate capacitor model of the pressure sensor. 

 

Figure 15. StretchSense sensor illustration [74]. 

Figure 15 is an illustration (1) of a SuperSplay sensor that is attached to both the index and 

the middle finger. In the illustrations (2(a, b, c,)) is a splay sensor with 3 segment channels; 

A, B and C with the index finger in different positions. Channels A and C of the sensor 

determine the splay and MCP bend movement of the finger. Channel B is placed or 

stretched above and between channels A and C to capture 1 DOF bending of the PIP joint. 

In illustration (a), channel A decreases (compresses) in length and channel C increases 

(stretches) in length. Equally, when the finger moves to the right, channel A increases 

(stretches) in length and channel C decreases (compresses) in length, as shown in illustra-

tion (c). Examining these differences (one minus the other) measures the splay direction 

of the finger. With varying lengths and thicknesses, the capacitance values of each channel 

differ. Illustration (b) channel A and channel C are the same length, demonstrating that 

the MCP is in its normal position (finger straight). Finally, the MCP joint is monitored by 

both segments (channel A and channel C) under stretch. Both values increase, and the 

MCP bend is therefore related to the sum of both sensor segments [74]. 

2.1.2. Sensors Used to Monitor Finger ROM and Hand Orientation 

Despite the benefits of using the aforementioned sensors to determine finger bend, 

hand orientation cannot be distinguished by such sensors. The characteristics of an accel-

erometer sensor make it possible to discern the acceleration and rotation of the hand as a 

further consideration in addition to its ability to determine the bend of the finger [44]. 

Researchers, O’Flynn et al. [41], added several accelerometers (ADXL345 Adafruit 
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Industries [78]) to their device to improve the accuracy of both static and dynamic finger 

joint movements, seen in Figure 16. Likewise, the bend sensors work in collaboration with 

accelerometers to precisely measure the angle, velocity and acceleration of the finger 

joints. Thus, the same three-axis accelerometer, which supplies variations in acceleration 

along each joint is also placed on the palm of the hand. This captures the orientation and 

movement of the wrist to accurately represent the essential feature of a sensor glove [41]. 

 

Figure 16. UU/Tyndall accelerometers [41]. 

A similar device (ADXL335 Adafruit Industries [79]) is shown in Figure 17; it is a thin, 

small, low powered 3-axis accelerometer with signal-conditioned voltage output. The de-

vice measures acceleration with a full-scale minimum range of ±3 g. In tilt-sensing appli-

cations, it may calculate the static acceleration of gravity, as well as dynamic acceleration 

generated from motion, shock, or vibration [79]. It includes signal-conditioning circuitry 

for the implementation of an open loop acceleration of the measurement architecture. The 

output analog voltages are proportional to acceleration [59]. 

 

Figure 17. Adafruit ADXL335 (Breakout Board). 

 

The sensor is a surface-micromachined polysilicon structure mounted on top of a silicon 

wafer. Polysilicon springs suspend the frame above the wafer surface and are resistant to 

acceleration forces. Deflection of the structure is measured as a differential capacitor com-

posed of individual fixed plates and plates connected to the moving mass. Acceleration 

deflects the traveling mass and unbalances the differential capacitor, resulting in the out-

put of the sensor, the amplitude of which is equal to the acceleration. In contrast, to deter-

mine the magnitude and direction of the acceleration, phase-sensitive demodulation tech-

niques are then used [79]. 

The (MPU-6050 Adafruit Industries [80]) sensor shown in Figure 18 was initially used 

for smartphones, tablets and wearable sensors with low capacity, low expense, and high-

performance specifications. Additionally, the sensor integrates InvenSense MotionFusion 

and the run-time configuration firmware, allowing manufacturers to avoid expensive and 

complex collection, qualification and system level integration of discrete devices in 
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motion-enabled devices, ensuring that the fusion algorithms and calibration processes of 

the sensor provide optimum output [81].  

 

Figure 18. Adafruit MPU-6050 (Breakout Board). 

The sensor systems incorporate a 3-axis gyroscope and a 3-axis accelerometer with an 

onboard Digital Motion Processor running sophisticated 6-axis MotionFusion algorithms 

on the same silicon chip [80]. The 6 DOF unit provides data on accelerations in all three 

directions, plus angular rotation around each axis [59]. The MPU consists of three different 

vibratory MEMS rate gyroscopes that detect X-, Y-, and Z- axis rotation. A Coriolis effect 

induces a vibration detected by a capacitive pickoff when the gyros are rotated along ei-

ther of the sensory axes [22]. As a result, a voltage is generated that is proportional to the 

angular velocity; the resulting signal is amplified, demodulated, and filtered. This voltage 

is then digitized to sample each axis using individual on-chip 16-bit ADC [80]. The gyro-

scope is intended to determine the angular orientation based on the concept of spatial 

rigidity. Correspondingly, an accelerometer cannot determine the precise orientation of 

an object in motion. As a result, gyroscopes measure angular velocity and are not influ-

enced by gravity [59]. 

A nine-axis inertial measurement unit (IMU) sensor can be obtained by connecting a 

three-axis magnetometer to a three-axis accelerometer and a three-axis gyroscope. How-

ever, a IMU device generally has the three-axis gyroscope, three-axis accelerometer and 

the three-axis magnetometer all combined within one integrated chip [6]. Two popular 

IMU sensors (LSM9DS1 [82] and MPU-9250 [83]) are shown in Figure 19 and Figure 20.  

 

Figure 19. SparkFun LSM9DS1 (Breakout Board). 

These devices are very popular within the clinical environment [57]. Hence, they can mon-

itor hand kinematics precisely, whilst providing useful data such as acceleration, angular 

velocity, magnetic field and ROM as manual dexterity parameters for physicians [5,29]. 

Furthermore, the devices are the most practical for wearable sensing gloves, since they are 

lightweight, small and can accurately measure minor changes in finger movement [5]. The 

small electronic devices provide nine DOF capturing nine distinct types of motion or ori-

entation related data [48]. These devices, however, require complex programming, it can 

be costly, and require shielding from magnetic interferences [5,29,49]. The MPU-9250 
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contains a three-axis magnetometer that utilizes Hall sensor technology that is extremely 

sensitive. The magnetometer component of the IC contains magnetic sensors, a sensor 

driving circuit, a signal amplification chain, and an arithmetic circuit to detect terrestrial 

magnetism in the X-, Y-, and Z-axes to process the signal from each sensor [83]. 

 

Figure 20. SparkFun MPU-9250 (Breakout Board). 

In addition, both devices use either an inter-integrated circuit (I2C) or a serial peripheral 

interface (SPI), serial communication protocol to connect with a system and often function 

as a slave when communicating with the processor. A comparison of the aforementioned 

sensor technologies is listed in Table 1. 

Table 1. Comparison of Popular Linear Sensors. 

Figure Device/Sensor Cost 

Device 

Individua

l Sensor 

DOF Voltage Supply Output Type 

Figure 5. Flexpoint 2 in 1 

sensor 

N/A £5–£20 1 DOF 3.3 V–12 V Analog 

Figure 10. Fibre optic sensor N/A - 1 DOF IR = 1.2 V 

Photodiode = 2.5 V 

Analog 

Figure 11. Hall effect sensor N/A £1–£5 1 DOF 4.5 V–10.5 V Analog, 

Ratiometric 

Figure 13. StretchSense 

capacitive sensor 

N/A - 3 DOF 0–3 V Analog 

Figure 18. Adafruit 

MPU-6050 

£10 £7 6 DOF 

Acc & Gyro 

2.375 V–3.46 V Digital, I2C (400 

kHz) 

16-bit 

Figure 19. SparkFun 

LSM9DS1 

£10 £2.78 9 DOF 

Acc & Gyro & Mag 

1.9 V–3.6 V Digital, I2C (400 

kHz)/SPI 

16-bit 

Figure 20. Adafruit 

MPU-9250 

£7 £5–£8 9 DOF 

Acc & Gyro & Mag 

2.4 V–3.6 V Digital, I2C (400 

kHz)/ SPI 

16-bit 

2.2. Microcontroller/Processing Unit 

The processing of a sensors signal is aimed at optimizing the raw signal coming from 

sensors using effective filtering techniques. Depending on the sensor output, the signal 

may still be raw and thus require additional electronic processing before being processed 

by a microcontroller. A signal conditioning circuit consisting only of resistors and opera-

tional amplifiers can be used with flex sensors to achieve a stronger linear relationship 

between the resistance of the sensor and the angle of bending [41,44]. Moreover, the signal 

coming from the conditioning (analog) circuit is sent to the ADC then to the microcontrol-

ler. On the microcontroller, a developed program converts the measured inputs into 
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angles and transmits them to a host computer or an output display [5,25,29,41,42,49]. Var-

ious digital sensors also offer onboard ADC convertors and no external conditioning cir-

cuits are required [22,33,41,44,84]. SPI, I2C and universal asynchronous receiver-transmit-

ter (UART) are the most used protocols commonly used in microcontroller systems 

[29,43]. 

The microcontroller is the brain of the device responsible for collecting data from all 

the sensors and for carrying out the necessary processing in order to identify and pass the 

signal to the output port to be displayed at the final level [59]. A high-performance Atmel 

AVR32 UC3C 32-bit microcontroller was selected by O’Flynn et al. [48] for their complex 

hand monitoring sensory device. The device has low power consumption, a 32-bit AVR 

microcontroller with a built-in single precision floating-point unit. Moreover, it was se-

lected to allow for the development of complex motion-focused embedded algorithms for 

real-time low-energy operation. Many researchers have used development microcontrol-

ler boards [16,59,85] such as Arduino Nano, Uno, Mega as they are widely available on 

open source electronics platform. The ATmega328P microcontroller is found in the Ar-

duino Uno [85] and has 14 digital inputs/outputs, 6 analog inputs, a 16 MHz quartz crys-

tal, and a USB port [59]. 

2.3. Output Display Monitor 

System developers and researchers usually attempt to communicate with sensory 

devices through a digital liquid-crystal display (LCD) or graphical displays. Connolly [22] 

implemented a graphical user interface in designing a glove-based medical system for RA. 

This platform offers a user-friendly interface for the end user (doctor, recovery trainer, 

patient, etc.) that shares information automatically. The modern mobile device is essen-

tially another option favored for sensory system outputs. The ActionSense glove [60] uses 

a user friendly app with a graphical interface used to receive, display and save data for 

the user [9]. With technological advances, the graphical user interface provides non-spe-

cialist users with animations and visual information capable of facilitating the proper use 

of the whole system [44]. 

3. Commercial and Non-Commercial Glove-Based System 

Throughout this section, several researchers have conducted investigations into con-

tact systems (data gloves/smart gloves). Recent research by Pasquale [44] discusses how 

data gloves are used for a wide range of applications, such as virtual reality (VR) and 

robotics, but have gained a lot of interest in the medical field over the last decade. Their 

findings also indicate that sensory glove devices are most appropriate for monitoring 

hand movement, although it has not yet been demonstrated how accurate these devices 

really are. Other researchers have raised doubts on whether these devices can be suitable 

in medical practice [49]. 

Without environmental limitations, wearable devices are more realistic for accurately 

recording hand kinematics. Data glove systems are preferable over visual based systems 

as they are portable, inexpensive, and require less processing power [45]. Similarly, there 

is a growing trend towards smart phone usage for the measurement of joint angles [28]; 

such goniometry applications have recently become available, but are limited to measur-

ing angular measurements on one surface giving only one DOF [23]. For this reason, data 

gloves are the most popular and researched wearable system capable of matching the 

hand’s complex structure [33]. 

Existing data gloves can be separated into two categories, commercial and research 

[41]. Gesture recognition glove-based systems are defined as hand-worn devices compris-

ing an array of sensors, specific electronic circuitry for data processing, wired or wireless 

connectivity type (Wi-Fi, Bluetooth) and a material structure to position the sensors [16]. 

Rheumatologists and physicians can observe hand motions through multiple sensors at-

tached at the joints or on the fingers of a textile or non-textile glove [56]. Likewise, sensors 

and electronic components are commonly stitched or mounted on a textile material that 
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can be placed on the user’s hand to capture data relevant to hand configuration and move-

ment [44]. 

With improvements in technology, a broad range of sensors have been integrated 

into data gloves to monitor hand kinematics, including mechanical sensors, resistive sen-

sors, optical fibre sensors, Hall effect sensors, capacitive sensors and IMUs [1,44,56,58,74]. 

However, major weaknesses in practicality, power consumption and accuracy of the sen-

sors still exist [86]. Depending on data gloves sensor types, they can have several draw-

backs: they can require substantial calibration, can be difficult to fit and doff, and can be 

difficult to fit specific hand sizes, thus requiring small, medium and large gloves to fit all 

variations [48]. 

Sturman and Zeltzer [87] found that an Electronic Visualisation Laboratory in 1977 

created the Sayre glove. The glove was based on the idea from Rich Sayres early interven-

tions using flexible tubes mounted along each finger of the glove. A light source is at-

tached to one end and a photocell is attached to the opposite end where the voltage of the 

photocell varied whilst the finger was bent. However, the glove was never used as a ges-

ture device due to its limitations. 

The Data Glove was developed in 1982 by Thomas G. Zimmerman. Zimmerman filed 

a patent (US Patent 4542291) on an optical flex sensor mounted in gloves for the measure-

ment of finger bending. The device had small plastic tubes and light sensors capable of 

measuring and storing joint angles [45]. In later years, Zimmerman partnered with Jaron 

Lanier to integrate ultrasonic and magnetic hand location monitoring technologies for the 

generation of Power Glove and Data Glove, respectively (US Patent 4988981, filed in 1989) 

[44,45]. As a result, the Data Glove was a clear improvement over existing camera-based 

hand-monitoring systems, as it did not rely on line-of-sight observation. Furthermore, the 

device monitored 10 finger joints whilst being lightweight, comfortable and unobtrusive 

to the user. It was widely used across the world in research institutions [87]. In fact, the 

accuracy of the glove was said to have a one-degree resolution informally. However, offi-

cial testing showed the inaccuracy to be more in the range of 10 degrees. Sturman and 

Zeltzer’s [87] findings indicate that the device was not suitable for accurate or complex 

hand gestures. 

Kessler, Hodges and Walker [88] carried out an extensive study of the commercial-

ised CyberGlove model CG1801 input device created by Virtual Technologies (Palo Alto, 

California). In general, they conducted an experiment to investigate the level of accuracy 

of the sensors and the factors that affected the accuracy of the flexion measurements. Tests 

were completed on 18 of the 22 sensors; there were obvious differences across each of the 

fingers at low angles. They found poor performance of non-linearity of the sensor’s re-

sponse and stated no guarantee that a joint could repeat an angle with the device’s high 

error rate. In 2010, a third advanced prototype of the CyberGlove was created known as 

the CyberGlove III [89] seen in Figure 21. To clarify, this model consists of 22 piezoresistive 

sensors that measure finger flexion, extension, abduction and adduction that is used for 

virtual modeling [44]. 
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Figure 21. CyberGlove III [89]. 

Figure 22 depicts the Humanglove that was fitted with 20 Hall-effect sensors that 

measured flexion/extension and adduction/abduction of finger joints [1]. It is known that 

these devices vary widely in data richness (resolution and bandwidth), device complexity 

and mechanical robustness [25]. However, no detailed information about the sensors is 

available around performance in a data glove. 

 

Figure 22. Depicts the Humanglove having 20 Hall effect sensors [1]. 

Wu et al. [86] presented a non-contact glove mechanism based on electrostatic induc-

tion and triboelectric effects. They directly captured the strain or pressure information 

from the sensors. Their results demonstrated a novel approach for detecting one-dimen-

sional movements and basic hand gestures.  

A number of researchers, including NASA, created data gloves in the early 1980’s to 

interact with the simulated airflow around an aircraft [45]. Current research from NASA 

and partners (Ntention) proposes a ground-breaking smart glove seen in Figure 23 for 

human exploration to Mars [90]. Their device uses human machine interface (HMI) to al-

low humans to communicate with machines using hand movements. Specifically, their 

glove is designed to control drones and other robots with simple hand gestures. For this 

reason, the smart glove proposes good finger dexterity for the wearer [45]. Furthermore, 

astronauts can effectively monitor a variety of robotic assets, making research and discov-

ery activities on the Moon, Mars and other destinations more successful and profitable 

[90]. No information about the sensors type is available. 
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Figure 23. NASA (Ntention) –smart glove [90]. 

 The 5DT data glove seen in Figure 24 was designed by Fifth Dimension Technologies 

and uses 14 proprietary optical-fiber flex sensors placed in a textile substrate. The glove 

was designed to satisfy the stringent requirements of modern motion capture and anima-

tion professionals [91]. In addition, the sensors are placed across the MCP, PIP of the fin-

gers and the IP, MCP of the thumb in small fabric pockets. Furthermore, the abduction 

and adduction movements of the thumb are monitored and between each finger using the 

same type of optical-fiber flex sensors placed on the same textile substrate [42]. Moreover, 

the CMC joint is not monitored or is the DIP joints [41]. Hence, the loose CMC capsule 

permits rotational movement in its unique plane, making it difficult to monitor, unlike 

other joints of the hand. 

 

Figure 24. Fifth Dimensions–5DT smart glove. 

Many data gloves have been proposed so far using IMUs as they are small, light-

weight and are one of the most realistic sensors as they can reliably record subtle changes 

in finger movements [49]. Recent commercialized and research data gloves have been 

acknowledged and examined to see if they are fit for clinical practice. O’Flynn et al. [48] 

carried out extensive research on modern data gloves such as the 5DT (fibre optic) and 

their proprietary IMU glove (Smart Glove rev 2) [68] seen in Figure 25.  
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Figure 25. IMU Smart Glove rev 2 [68]. 

The IMU Smart Glove rev 2 has been developed using a combination of bendable and 

lightweight technologies. Additionally, the glove comprises 16 9-axis IMU’s strategically 

positioned to compensate for the DOF of each hand finger joint. To assess orientation and 

biomechanical parameters of each joint, IMUs are placed on the extendable interconnect 

and are situated on the phalange of each finger segment. Furthermore, the relative direc-

tion of each IMU is measured and used to produce angular and velocity motion during 

the flexion and extension exercise of each finger joint. The rev 2 smart gloves quantita-

tively monitor finger joint ROM, including flexion, extension, adduction and abduction of 

the MCP, PIP and DIP. Moreover, the thumbs CMC, MCP and IP joint are monitored to-

gether during thumb-index web spacing and palmar abduction movements [22,42]. 

Lastly, their rev 3 VR glove is a similar device seen in Figure 26, but does not monitor the 

DIP of the fingers or the CMC of the thumb [67]. Both Tyndall/UU smart gloves have the 

potential to assist medical clinicians with precise measurements of the common condition 

loss of mobility in patients with RA [25]. 

 

Figure 26. VR glove [67]. 

O’Flynn et al. [48] results found that the IMU data glove had repeatable data similar to 

the UG, but with the removal of intra-tester and inter-tester reliability issues. Several stud-

ies by Connolly [22], O’Flynn et al. [42,48] and Fuchun Sun [52] found that IMUs are the 

key technologies to fiber optic devices used in the 5DT glove. Similarity, Connolly [22] 

found that the IMU glove had similar accuracy to the Vicon motion system, whilst requir-

ing no calibration and having less overall error than the 5DT data glove. In addition, Wang 

et al. [56,64] findings indicate that IMUs can be used to monitor and measure ROM during 

rehabilitation. Moreover, they found that IMU-based gloves can record hand kinematics 

accurately and are lightweight and could be easily worn. 
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Data gloves are typically controlled with a microcontroller, which can translate many 

sensor outputs into a recognizable form of information to monitor hand function [44]. 

Commercialized data gloves are quite cost prohibitive compared to the traditional UG 

[23]. Depending on the sensor technology and the connection type between the glove and 

the computer collecting the data, different technologies can significantly increase the over-

all expense of the device [58]. Furthermore, a glove with wireless connectivity using a 

Bluetooth or WIFI module would benefit the wearer by allowing them to move around 

their home more freely [16]. Whilst commercially available data gloves are quite advanced 

and can provide a broad array of information, they may not be the best solution when 

only certain types of information are required in hand function [42]. Most of the afore-

mentioned devices contain sensors mounted on cloth (textile) support known as the glove 

skin [42]. However, a common drawback in this approach is a lower level of comfort and 

an obtrusive nature of the glove as donning and doffing of the device is affected; it can 

cause obstructions to flexion/extension movements [45]. 

More recent developments have led to the creation of a smart glove that examines 

the flexibility and limitation of an RA patient’s hand joints by measuring angular and 

velocity data [9]. The ActionSense team [60] have created the smart glove that contains 

multiple flex bend sensors that are placed in a textile substrate seen in Figure 27. Their 

clinical glove monitors the MCP and PIP joints, although the digits DIP joints, the thumbs 

CMC joint and the abduction and adduction movements between digits are not moni-

tored. Hence, these movements are important to benefit the early recognition of RA 

[22,33,58,92]. 

 

Figure 27. ActionSense smart glove [60]. 

A high-tech exoskeleton device that fits over the patient’s hand and wrist, seen in 

Figure 28, was developed by Neofect to improve the patient’s neuroplasticity and to re-

store the function of stroke survivors [93,94]. The Rapael smart glove is a neurological 

rehabilitation system that is combined with a data-based digital activity system [16]. Fur-

thermore, the smart device measures movement of the digits wrist and forearm using a 

combination of bend sensors and IMU’s [93,94]. Details of the level of accuracy, the finger 

joints measured, and the resolution of the device are limited or not available. However 

well the device works as a rehabilitative device for post stroke, its capabilities of assisting 

the diagnosis of RA patients may be sacrificed due to the sensor monitoring technique of 

the digits. 
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Figure 28. Neofect’s Rapael smart glove [93]. 

A recent commercialized smart glove created by StretchSense (MoCap Pro Super-

Splay) [74], seen in Figure 29, provides a solution for film and gaming animation [75]. The 

second generation of MoCap Pro gloves features a (variable capacitance) splay sensor 

with three sensing areas to capture the bend of each MCP and PIP joint as well as the 

sideways splay or finger spread of each digit. Additionally, the IP, MCP joints of the 

thumb and the abduction and adduction movements are monitored using the same 3-in-

1 sensor all positioned in a textile substrate [74]. Generally, the outer segment of the sensor 

sits mainly over the PIP joint and across part of the DIP joint where the DIP value is ulti-

mately an average of both. 

Finally, another recent commercialized glove (Manus Prime II Xsens) seen in Figure 

30 provides finger tracking [95]. Their device supports 11 DOF for full finger spread track-

ing ensuring the finest motor movements. In addition, the Prime II Xsens gloves have been 

specially designed to work smoothly with Xsens software industry professionals around 

the world. Manus look to merge robustness with precision. Hence, all their Prime II series 

gloves contain industrial grade flex sensors placed across two joints of each finger [96]. 

Additionally, their Prime II Xsens device contains IMUs to ensure fine finger movement. 

IMU drift is avoided by their recently introduced automated filters, improved by the ref-

erence points of powerful flex sensors. This allows for detailed finger spread calculation 

without loss of continuous consistency during live performances. Their gloves are im-

mune to magnetic interference. 

 

Figure 29. StretchSense [74]. 
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Figure 30. Manus Prime II Xsens) [95]. 

Table 2 and Figure 31 show a summary of recent commercialized and research smart 

gloves created by well-known research and commercial companies around the world. The 

commercial data gloves frequently use expensive motion analyzers and sensing fibers and 

can be quite costly for the consumer/health care market. Some research institutes (Action-

Sense) aim to lower the cost of the data glove for the health care industry, but this tends 

to have a negative impact on the overall accuracy and resolution of a device. In conclusion, 

several technologies have been proposed to monitor the hand over the years for HMI and 

in the clinical practices. They have been created with the expectation of generating accu-

rate and reliable real time data measurements. Additionally, they provide more effective 

diagnosis procedures, whilst bringing efficient self-monitoring activities to a patient’s 

home. These technologies show potential for diagnosis and rehabilitation of neurological 

conditions, since gestures and movements are observed accordingly. Such hand functions 

can be detected based on both analog and digital technologies each with their own weak-

ness and strengths. 
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Table 2. Modern commercialized and research smart gloves. 

Data Glove Use Market 
Number of 

Sensors 
Cost 

Sensor 
Technology 

Sensor 
Description 

Joints Monitored 
(Refer to All Glove Image 

for Illustration) 
Legend 

5DT Ultra 14  

Motion 

capture and 

animation 

Commercial 14 £5000 Fibre Optic 
5DT’s own 

sensor 

All MCP & PIP joints of 

fingers. MCP & IP joints 

of thumb. Splay of all 

digits. 

 

Tyndall/UU: 
Version 2 

Clinical Research 16 £26000 IMU (9 DOF) MPU-9150 

All MCP, PIP & DIP joints 

of fingers. IP, MCP & 

CMC joints of thumb. 

Splay of all digits. 
 

Tyndall/UU: 
Version 3 VR  

Clinical/VR Research 12 £12000 IMU (9 DOF) MPU-9250 

All MCP & PIP joints of 

fingers. IP & MCP joints 

of thumb. Splay of all 

digits & wrist movement. 
 

Cyber Glove III 

Motion 

capture 

environment 

Commercial 22 $15000 Flex bend  Unknown 

All MCP, PIP & DIP joints 

of fingers. IP, MCP & 

CMC joints of thumb. 

Splay of all digits, wrist & 

palm arch movement. 

 

ActionSense Clinical Research 5 £400 Flex bend 

Flexpoint’s 

2in1 combined 

sensor  

All MCP & PIP joints of 

fingers. IP & MCP joints 

of thumb. 
 

Neofect: Rapael Clinical Commercial 
5 Flex bend 

2 IMU 
$15000 

Flex bend & 

IMU 
Unknown 

Fingers, wrist & forearm 

movement.  

Manus: Prime II 
Xsens 

Character 

animation 
Commercial 

10 flex bend 

5 IMU 

$5000–

$6000 

Flex bend & 

IMU 

(Combined 

sensor fusion) 

Unknown 

All MCP & PIP joints of 

fingers. IP, MCP & CMC 

joints of thumb.  

StretchSesne: 
MoCap Pro 
SuperSplay  

Film and 

game 

animation 

Commercial 6 $7150 Capacitive 

StretchSense’s 

own 

SuperSplay 

sensor 

All MCP & PIP joints of 

fingers. MCP & IP joints 

of thumb. Splay of all 

digits & wrist movement. 
 

Note: Please refer to Figure 31 for sensor positioning and arrangement on the hand joints.



Sensors 2021, 21, 1576 25 of 32 
 

 

 

Figure 31. Modern commercialized and research smart gloves. 

3.1. Glove Materials 

With any smart glove, a substrate material is used to contain all the sensors, wires, 

circuitry and other components [48]. One of the first questions that a designer or manu-

facturer of a wearable device needs to answer in the design process is: Can the product be 

worn on the hand [88,97]. As discussed in the earlier literature, the human hands come in 

all different shapes and sizes. Thus, this makes the design process quite challenging for 

the designers of wearable technology. Additionally, the substrate material must be de-

signed to meet the demanding value in terms of wearability, hard wearing and washable 

[57]. In addition, the wearable material must include good skin adhesion, so that sensor 

accuracy is not disadvantaged, whilst being flexible and lightweight [44,58]. The Covid-

19 pandemic has put an increased focus on the need for hand hygiene. To reduce any 

potential spread of the virus between glove users, the substrate material must be washable 

whilst having good chemical and physical stability during the washing process [58]. 

Moreover, the substrate material must allow the sensors, components and accessories to 

be removed beforehand if they do not meet the Ingress Protection (IP) IP68 requirements 

[98]. Water pretentious components must be removed if they are not protected whilst be-

ing immersed in water under pressure for a long period of time. 

Textile substrates—Most of the sensory gloves reviewed in Table 2 are developed 

using a textile material such as, Lycra/spandex, nylon or other polymer materials which 

provides the desired mechanical properties for a smart glove [16,18,22,42,44,56]. However, 

in the modern era, nanotechnology can be used to create fabrics with unique functions for 

wearable technology, including UV defense, water and stain resistant, anti-bacterial, and 

much more [86,99]. This technology helps to incorporate the electrical elements into the 



Sensors 2021, 21, 1576 26 of 32 
 

 

textile. In addition, by manipulating the fabric surface, nanotechnology offers various ef-

ficient techniques and resources to produce the necessary fabric attributes. Moreover, de-

mand for wearable devices and smart textiles in all segments has increased with the min-

iaturization of electronic components [100]. 

Exoskeleton Design—In recent commercialized products, the design developed by 

Neofect have moved in a different direction developing an exoskeleton rehabilitation 

glove [93,94]. Their glove is soft, flexible, allows the wrist to travel unrestrictedly, and 

leaves the palm free for grabbing and handling objects. Furthermore, an exoskeleton de-

vice has the components and sensors embedded onto the exoskeleton body, which closely 

follows the joints of the hand [101]. Lastly, such a device is clipped on to the hand and has 

the main advantages of being adjustable and easily wiped down without the need for any 

dismantling, unlike a textile glove [56]. 

3.2. Sensor and Device Calibration 

Hand motion is an important component, which plays a key role in hand function 

assessment. As discussed in the literature, it is difficult to capture accurate hand motion, 

particularly in combination with sensor topologies placed on a textile or an exoskeleton 

device. Smart gloves require time-consuming and monotonous calibration to increase the 

devices overall accuracy during operation [5,29]. For this reason, frequent calibrations 

from data gloves require opening and closing the hand or even pre-set hand gesture pa-

rameters [102]. 

One constraint on the practical use of full-hand feedback is the challenge of under-

standing the motion. Hand tracking technology must take into consideration the context 

of the gesture and the movement of the participant’s hand position. The values recorded 

can differ depending on sensor resolution, hand size, sensor strain, human variations, and 

system interference [88]. Consequently, anthropometric dimensions have significant dif-

ferences among individuals, including hand size, fingers length and thickness [33]. Glove-

based systems must then be associated with various finger joint locations for various peo-

ple, which would have an influence on the overall measurements [18,31]. Designers must 

have accurate data regarding the resolution, linearity, variability, and durability of the 

sensor information gathered by the sensory glove system before scalable and usable mo-

tion recognition applications can be written. 

The accuracy and repeatability of data gloves is commonly compromised by the non-

linear response of the sensors and any misalignment between the textile or non-textile 

holders between users. Calibration of the data glove sensor increases sensor accuracy and 

fits the limits of each sensor glove to those of the wearer. Moreover, a calibration routine 

involves the glove wearer to position their hand/finger joints in specific poses [42]. Typi-

cally, the wearer places their fingers at the minimum and maximum limits related to the 

data glove sensors. Calibration techniques imply that each finger joint can be shifted to its 

full finger joint position by the wearer. However, restricted joint mobility in RA sufferers 

render the data glove ineffective as they cannot attain the optimum movement [22]. 

The commercial glove 5DT requires calibration between every user in order to main-

tain the maximum sensitivity within an application. The range of each fiber optic sensor’s 

needs were set by the user flexing and unflexing each of their fingers. Furthermore, the 

calibration process is quite tedious as the user must keep the motion natural and unforced. 

Calibrations can be loaded at any time for a user but for optimum results, it is best to 

complete the calibration process every time the glove is put on [69]. Hence, as the 5DT sits 

snuggly to the user’s hand, and can be quite tricky to don and doff, as the positioning of 

the 14 sensors may not always be in the exact same position. 

Recent innovations like the Stretchsense’s MoCap Pro SuperSplay gloves also require 

calibration [74]. However, much like 5DT, there is no need to constantly re-calibrate the 

gloves due to the stretchy snug textile surrounding the hand. The increased signal to noise 

ratio means that gloves can be calibrated even faster than the previous MoCap Pro because 

considerably fewer poses are necessary, saving time and money [75]. Additionally, there 
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is a better probability of a good output and a good interaction between the data collected 

by the glove and the mocap software if a user does not train the device properly. Since the 

MoCap Pro SuperSplay sensors are non-optical, there are no issues in relation to occlu-

sion, drift or constantly trying to re-calibrate your gloves like you would with an IMU 

device [42]. 

The ActionSense smart glove has five sensors, with each having two integrated flex 

sensors [9]. To calibrate each sensor, only two voltage points are required for this trans-

ducer typology which correspond to the flat hand position and the fist closed position 

[44]. As the sensors have only 1 DOF, this does benefit the calibration process unlike other 

sensors that output more detailed data. Other commercial data gloves, such as the Cyber-

Glove III and Neofect’s Rapael glove, require similar monotonous sensor calibrations 

[88,103]. 

Data gloves that contain IMU typologies also require calibration in order to provide 

accurate orientation in three-dimensional space. Within these complex devices, IMUs con-

tain triads of gyroscopes, accelerometers and magnetometers each requiring calibration 

[22,42,44,58]. Gyroscopes are prone to drift over a certain period of time and preventative 

corrections and calibrations are commonly used to combat this issue [5]. Some systems 

use various built-in drift-detection features such as sensor fusion [29]. For example, each 

sensor may be unreliable on its own, though when fused together with software, the over-

all system may become stable and accurate. Advanced smart gloves containing multiple 

IMUs may require a complete calibration process of all its devices, which can be quite 

tedious and substantially processing heavy [17]. 

Drawing attention to the work of Connolly et al. [42], their findings suggest that com-

plex calibration is not needed for the IMU sensors on the iSEG-Glove. An IMU device 

mounted on each of the phalanges of the finger automatically provides information inside 

a complete sphere on the inclination and gravity orientation. 

Depending on the sensor technology used within a device, a calibration method to 

set a distinctive sampling process of all the sensors may be required. A glove device that 

requires zero calibration would hugely benefit its use in and out of clinical practice for RA 

assessment. 

4. Discussion 

Recognizing early signs of RA from similar diseases at the onset of illness is not easy, 

as issues related to hand function assessment exist. Clinicians and researchers and have 

found issues related to inter-rater and intra-rater reliability measurement when using a 

hand-held UG. Research on the effectiveness of the UG report a difference of 7–9° between 

therapists when measuring joint ROM, leading to a 27° difference over the three finger 

joints. More detailed and less laborious approaches are required to record joint move-

ments if patients are to get proper treatment for their condition. 

This study reviews various data gloves developed since the early 1970’s, focusing on 

the key features of glove-based systems for hand function assessment. In the modern era, 

advanced technologies have been developed and implemented to resolve issues related 

to UG, but are constrained in terms of costs, wearability and accuracy. Various electronic 

sensors and devices have been proposed in these studies, which include: flex bend, fiber 

optic, IMU/accelerometer, gyroscope, magnetometer, capacitive and Hall effect sensors. 

IMUs tend to be the most extensively used sensing devices as they yield reliable critical 

values precisely, whilst providing useful data like acceleration, angular velocity, magnetic 

field and ROM as manual dexterity parameters for the physicians. 

Many researchers have only conducted static tests on data gloves and sensors, mak-

ing the glove validation process restricted. Several researchers have used non-contact ap-

proaches to measure contact systems. This hinders the end results as non-contact systems 

[49] suffer from inaccuracy due to self-occlusion, environmental conditions and human 

error at the set up. Other researchers have used wooden blocks [22] and custom basic 

sensor testing systems [29,49] that already have a high rate of error within them. Without 
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a high precision and a dynamic authentication system, sensor verification for a hand-mon-

itoring device is unsatisfactory as movements do not mimic that of the hand function abil-

ity or finger joint movement. 

Some new nanotechnology on innovative sensing technologies provide new solu-

tions for a wide range of health assessments, providing new physical sensing solutions 

that allow for improved sensor performance, accuracy and flexibility. However, they have 

been excluded from the survey as they are only sensing technologies that have not been 

applied to past or current data gloves. Nanotechnology addresses the potential to develop 

a new generation of sensors and the difficulties of wearable electronics to keep up with 

the increasingly prominent need for nanostructured materials. 

Throughout the research, there is lack of evidence showing truthful performance of 

all sensors/technologies used to assess hand function. Therefore, a benchmark system is 

needed that closely mimics hand joint movement to evaluate all technologies dynamically 

and systematically. 

5. Conclusions 

The improvement in hand function is reported and completing general exercises is 

evidently reducing pain, stiffness and swelling of the hand. Sensory gloves have been 

used in several applications, such as robotics and VR, but researchers have turned their 

attention towards medical applications in recent years. This research emphasizes the im-

portance of early RA diagnoses and rehabilitation methods. It is necessary to recognize 

RA at its early stages in order to start treatment. Existing methods of detecting RA rely on 

observation, questionnaires, and physical measurement, each having their own weak-

nesses. A lot of research has been conducted by multiple organizations over a number of 

years; researchers and clinicians have worked together to standardize the classifiers of RA 

and to try to make the clarification of results identical; however, this is currently not the 

case. Clinicians and researchers have established ROM as the main measure of joint stiff-

ness. However, there still is a great deal of ambiguity between patient diagnosis as the 

difficultly of measurement increases throughout patients. 

Morning stiffness is currently not measured by Rheumatologists as it is only feasible 

to measure in the first 30 min of a person’s day. Sensor gloves have the capability of re-

motely monitoring morning stiffness and the assessment of hand function, although their 

realistic measures are still limited by accuracy, weight, size, wearability, and cost. This 

investigation continues and focuses on the main issues to overcome the limitations of cur-

rent research and commercially available gloves. 

Further in-depth research needs to be conducted into various types of sensors cur-

rently available for data gloves; resistance transducers, fiber optic bend sensors, IMUs, 

capacitive bend sensors and Hall effect sensors. It is important that the sensors are tested 

for static and dynamic movement away from the glove skin first to determine the sensors 

physical characteristics. Once this is complete, further investigation may be needed while 

placing the sensors on the glove skin. This research continues investigation of contact sys-

tems, carefully considering various technologies and how they can assist with the diag-

nosis of RA conditions. 

In conclusion, research needs to be carried out in the area of user personalization 

through design and production to ensure characteristics of the medical glove applications 

are more efficient and accurate. To clarify, when accurate sensor characteristics are moni-

tored and validated, the selection of the sensors for a novel smart glove to assist with RA 

and hand functional assessment can be finalized. 

6. Future Work 

A benchmark system that closely mimics hand joints dynamic movement will be pro-

duced. Please see supplementary material (ECSMS demo, Video. S1). It is important that 

the system is validated to a high level of accuracy to test advanced sensor technologies 
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and to retrieve their real characteristics. The system will perform non-obstructive rotary 

movements on sensors alone, sensors on/in different materials and sensors on a dummy 

finger with a glove device attached. Once the results are gathered using such a system 

[104], several statistical tests will be performed on the sensors repeatability and accuracy 

tests to determine how reliable they are. 

Supplementary Materials: The following are available online at https://youtu.be/yFF0Ih-

fUQFc (Video S1). 
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