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Abstract: Recently, the interest in biometric authentication based on electrocardiograms (ECGs)
has increased. Nevertheless, the ECG signal of a person may vary according to factors such as the
emotional or physical state, thus hindering authentication. We propose an adaptive ECG-based
authentication method that performs incremental learning to identify ECG signals from a subject
under a variety of measurement conditions. An incremental support vector machine (SVM) is
adopted for authentication implementing incremental learning. We collected ECG signals from 11
subjects during 10 min over six days and used the data from days 1 to 5 for incremental learning, and
those from day 6 for testing. The authentication results show that the proposed system consistently
reduces the false acceptance rate from 6.49% to 4.39% and increases the true acceptance rate from
61.32% to 87.61% per single ECG wave after incremental learning using data from the five days. In
addition, the authentication results tested using data obtained a day after the latest training show the
false acceptance rate being within reliable range (3.5–5.33%) and improvement of the true acceptance
rate (70.05–87.61%) over five days.

Keywords: ECG; authentication; biometrics; incremental learning; SVM; incremental SVM

1. Introduction

Biometrics has been widely applied in various consumer electronic products such as
mobile phones and wearable devices to authenticate users with high performance [1,2].
For example, authentication systems based on fingerprint, iris, and face recognition are
replacing passwords, given their reliability with adequate processing speed and better
security than traditional authentication methods [3–7]. However, such biometric informa-
tion is vulnerable to external attacks because common biometric features are physically
exposed [8–11].

In contrast, electrocardiogram (ECG) signals, which exhibit unique physiological
characteristics across subjects related to the placement and size of the heart, are difficult
to spoof because the underlying biometric features are concealed during authentication
and can only be obtained from physical measurements on the subject [12–14]. Since Biel
et al. [15] first studied using ECG signal processing for the biometric recognition, ECG-
based biometric authentication has received great attention as a next-generation promising
technique and been implemented with various approaches to improve the authentication
performance for the past few decades [16–18]. However, ECG signals of a person may vary
according to his/her physical state or health condition, possibly leading to authentication
failure in some cases [19–21].

Therefore, it is essential to design a robust method that handles the ECG intrasubject
variability for accurate authentication. In order to achieve a reliable authentication result
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with the robustness to the non-stationarity of ECG, continuously recording and learning
ECG data from the user can be one of the solutions. In this study, we applied incremental
learning to efficiently and continuously update the user recognition model after every
authentication attempt by the user. To the best of our knowledge, no study has considered
incremental learning for ECG-based authentication.

Incremental learning performs continuous training as more input data become avail-
able to the existing model for extending its knowledge [22]. In recent years, large amounts
of data or the data stream are produced constantly, thus raising the importance of efficiently
training these data. The trained model can efficiently learn new patterns embedded in such
data with the incremental learning while simultaneously preserving the previous model
and preventing performing the retraining process from scratch. The main advantage of this
method is that it can reduce the scale of the large size training set in the restricted memory
and shorten the training time [23]. Furthermore, a system implementing incremental
learning can accumulate knowledge throughout its life cycle. To date, incremental learning
has been successfully integrated into various machine learning algorithms such as decision
trees, neural networks, and support vector machines (SVMs) [24–28].

We propose a method for ECG-based biometric authentication with incremental
learning of features. The method provides continuous training using new ECG signals
as they become available and dynamically updates the existing authentication model
while maintaining the previous authentication knowledge by implementing an incremental
SVM [29].

The rest of this paper is organized as follows. In Section 2, we present the background
and related works of ECG authentication and an incremental SVM algorithm for the
proposed authentication method. The authentication scheme comprising acquisition and
preprocessing of ECG signals, feature extraction, and incremental learning is detailed in
Section 3. In Section 4, we report and analyze the experimental results. Section 5 provides
a discussion of the proposed method and findings, and we draw conclusions in Section 6.

2. Background and Related Works
2.1. Electrocardiogram

Electrocardiogram, also known as ECG, is the record of electrical activity of the heart
including depolarization and repolarization of the atrium and ventricle. ECG is composed
of three fiducial entities: P wave, QRS complex, and T wave. The P wave and QRS complex
are produced by the depolarization of the atrial and ventricle, respectively, and the T wave
is produced by the repolarization of the ventricle. The basic waveform of ECG is shown in
Figure 1. The ECG waveform varies from person to person owing to differences in the size
and position of the heart, sex, age and other factors. Due to these characteristics, fiducial
information such as angle, amplitude and interval of the entities of ECG describes the
uniqueness of the individual [30].
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2.2. Related Works

Table 1 presents several recent works on ECG authentication. Most of the ECG
authentication methods used three well-known ECG databases: Physikalisch-Technische
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Bundesanstalt (PTB) [31], the Check Your Bio-signals Here initiative (CYBHi) [32] and
MIT-BIH [33]. Some of the methods collected ECG data sets by themselves [15,34].

Table 1. Summary of the studies of the ECG-based authentication method. SVM—support vector machine, ACC—accuracy,
CNN—convolutional neural network, DWT—discrete wavelet transform, FAR—false acceptance rate, PSD—power spectral
density, DCT—discrete cosine transform, PCA—principal component analysis.

Authors Database Feature Extraction Authentication Model Performance

Rezgui et al. [35] MIT-BIH 21 Fiducial and
10 morphological descriptors SVM ACC: 98.8%

Labati et al. [36] PTB CNN Softmax ACC: 100%

Juan et al. [20] PTB self-collected 8 Fiducial Template Matching FAR: 1.29%
1.41%

Choi et al. [37] MIT-BIH PTB 8 Fiducial SVM ACC: 95.9%

Ergin et al. [38] MIT-BIH PTB Fiducial, WT and PSD Decision tree and
BayesNet F1-score: 0.972

Hammad et al. [39] PTB CYBHi ResNet-Attention Softmax ACC: 98.85%
99.27%

Chiu et al. [40] QT DB [41] DWT Euclidean distance ACC: 81%

Biel et al. [15] Self-collected Siemens ECG apparatus PCA ACC: 98%

Pinto et al. [42] Self-collected DCT SVM ACC: 94.9%

Hammad et al. [43] MIT-BIH Fiducial CNN ACC: 99%

The extraction of features from ECG data can be classified into two categories: hand-
crafted and non-handcrafted. There are various handcrafted techniques for feature ex-
traction such as using fiducial information [44–46], wavelet transform [40,47–49], and
discrete cosine transform [42,50]. These approaches involve several processes such as
feature normalization or removal of the noise designed by subjective decisions of the re-
searchers. Thus, some researchers have implemented the authentication method with non-
handcrafted extraction. With the advent of recent works of deep learning, non-handcrafted
and data-driven feature extraction approaches using deep neural networks such as convo-
lutional neural network (CNN) [36,51] or long short-term memory (LSTM) [52] can enable
bypassing the additional steps.

Since a single biometric method cannot always guarantee high authentication perfor-
mance [53], some studies adopted a multimodal-based method in order to provide more
stable performance, such as a combination of ECG and fingerprint or photoplethysmogra-
phy (PPG) [54–56].

2.3. Incremental SVM

The SVM is a supervised machine learning algorithm for classification and regression
problems. The SVM classifier is trained using samples belonging to two or more categories
and maximizes the margin around a decision boundary. As the SVM has demonstrated
high performance without large training data sets, it has been widely used in a variety of
applications, such as spam categorization [57], object recognition [58], and cancer localiza-
tion [59]. However, the SVM training speed decreases rapidly as the size of the data set
increases [60,61].

The incremental SVM extends the original SVM formulation to enable online learning
while maintaining the previously trained model and efficiently updating it as more input
data become available. As new data arrive, the conventional SVM should fully train all the
existing data to reflect the latest information in the classifier. In contrast, the incremental
SVM is retrained only using the new data, updating the model without complete retraining.
Although the classification performance of the incremental SVM is similar to that of the
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conventional SVM, the incremental approach is more efficient in terms of training speed
and number of floating-point operations during training [62].

The incremental SVM classifier is designed by solving a quadratic program on the
Karush–Kuhn–Tucker (KKT) conditions to find the optimal solution:

αi = 0→ | f (xi)| > 1
0 < αi < C → | f (xi)| = 1

αi = C → | f (xi)| < 1
(1)

where αi is the Lagrange multiplier for the constraint of the objective function, f(x) is the
optimal separating function, and C is a regularization parameter that decides the degree
of fitting to the training samples. If there is any violation of the KKT conditions during
each incremental step, the coefficients of the samples change their values for the SVM
classifier to keep satisfying the conditions. Hence, new samples are properly learned by
the previously trained classifier.

For the proposed ECG-based authentication, we adopted the incremental SVM proposed
by Cauwenberghs and Poggio [63]. This SVM manages data in four categories (Figure 2): set U
of unlearned vectors that are going to be trained, set R of reserve vectors exceeding the margin,
set S of margin support vectors within the margin, and set E of error support vectors violating
the margin. During incremental learning, new training samples with |f(x)| > 1 (i.e., correctly
classified) are assigned directly to set R, as they do not affect the SVM solution. Other samples
initially become unlearned vectors in set U and are eventually assigned to set S or E. The KKT
conditions must be simultaneously satisfied for all the training samples while integrating the
unlearned samples into the SVM solution. The KKT conditions are maintained by modifying
the coefficients of the margin vectors, and this process may result in the migration of samples
to the other category in binary classification.
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Figure 2. Sample states according to Karush–Kuhn–Tucker (KKT) conditions.

The incremental SVM stores training data because vectors other than the support
vectors may become support vectors after the boundary update by incremental learning.
As the number of trained samples increases, the memory required to store all the vectors
also increases, thus prolonging training. To improve efficiency, the reserve vectors that are
far from the decision boundary, and thus less likely to shift to the other category, may be
discarded.

3. Proposed ECG-Based Authentication

The proposed authentication method and its evaluation are illustrated in Figure 3 and
comprise acquisition and preprocessing of ECG signals, feature extraction, incremental
learning, and performance evaluation.
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3.1. ECG Signal Acquisition and Preprocessing

We recorded single-channel ECG signals from 11 male subjects aged from 22 to 42 for
10 min over six days. This experiment was conducted after obtaining the consent of all
subjects and approved by Institutional Review Board (IRB). The recording and reference
channels were placed on the left and right arms and the ground channel on the left ankle
of the subject, forming the Einthoven’s triangle. The subject sat on a chair without moving
during the ECG measurements. The MP36 system (Biopac Systems, Goleta, CA, USA) was
used for the acquisition of the ECG signals at a sampling frequency of 1000 Hz. As the pre-
processing step, we applied low-pass and high-pass filters to set a finite-impulse-response
bandpass filter of order 5383 between 1 and 35 Hz [39,43,64] for the elimination of the
baseline drift and high frequency noise.

The synchronized average of the ECG signals from each of the 11 subjects is shown
in Figure 4, showing unique features in the ECG signals. Figure 5 illustrates the variation
of the daily ECG waveform of the subject 10 for six days. Furthermore, the average root-
mean-square error of ECG from days 2 to 6 with respect to the ECG of day 1 is presented in
Table 2, showing the difference between the ECG of day 1 and those of days 2 to 6.

Sensors 2021, 21, 1568 5 of 17 
 

3. Proposed ECG-Based Authentication 

The proposed authentication method and its evaluation are illustrated in Figure 3 

and comprise acquisition and preprocessing of ECG signals, feature extraction, incremen-

tal learning, and performance evaluation. 

 

Figure 3. Scheme to implement and evaluate the proposed ECG-based authentication. 

3.1. ECG Signal Acquisition and Preprocessing 

We recorded single-channel ECG signals from 11 male subjects aged from 22 to 42 

for 10 min over six days. This experiment was conducted after obtaining the consent of all 

subjects and approved by Institutional Review Board (IRB). The recording and reference 

channels were placed on the left and right arms and the ground channel on the left ankle 

of the subject, forming the Einthoven’s triangle. The subject sat on a chair without moving 

during the ECG measurements. The MP36 system (Biopac Systems,Goleta,California, 

USA) was used for the acquisition of the ECG signals at a sampling frequency of 1000 Hz. 

As the pre-processing step, we applied low-pass and high-pass filters to set a finite-im-

pulse-response bandpass filter of order 5383 between 1 and 35 Hz [39,43,64] for the elim-

ination of the baseline drift and high frequency noise. 

The synchronized average of the ECG signals from each of the 11 subjects is shown 

in Figure 4, showing unique features in the ECG signals. Figure 5 illustrates the variation 

of the daily ECG waveform of the subject 10 for six days. Furthermore, the average root-

mean-square error of ECG from days 2 to 6 with respect to the ECG of day 1 is presented 

in Table 2, showing the difference between the ECG of day 1 and those of days 2 to 6. 

 

Figure 4. Synchronized average of ECG signals from 11 subjects. The shaded areas represent the standard deviation in the signals. 

 

Figure 5. Synchronized average of ECG signals of the subject 10 for six days. The shaded areas represent the standard 

deviation in the signals. 

Figure 4. Synchronized average of ECG signals from 11 subjects. The shaded areas represent the standard deviation in
the signals.

Sensors 2021, 21, 1568 5 of 17 
 

3. Proposed ECG-Based Authentication 

The proposed authentication method and its evaluation are illustrated in Figure 3 

and comprise acquisition and preprocessing of ECG signals, feature extraction, incremen-

tal learning, and performance evaluation. 

 

Figure 3. Scheme to implement and evaluate the proposed ECG-based authentication. 

3.1. ECG Signal Acquisition and Preprocessing 

We recorded single-channel ECG signals from 11 male subjects aged from 22 to 42 

for 10 min over six days. This experiment was conducted after obtaining the consent of all 

subjects and approved by Institutional Review Board (IRB). The recording and reference 

channels were placed on the left and right arms and the ground channel on the left ankle 

of the subject, forming the Einthoven’s triangle. The subject sat on a chair without moving 

during the ECG measurements. The MP36 system (Biopac Systems,Goleta,California, 

USA) was used for the acquisition of the ECG signals at a sampling frequency of 1000 Hz. 

As the pre-processing step, we applied low-pass and high-pass filters to set a finite-im-

pulse-response bandpass filter of order 5383 between 1 and 35 Hz [39,43,64] for the elim-

ination of the baseline drift and high frequency noise. 

The synchronized average of the ECG signals from each of the 11 subjects is shown 

in Figure 4, showing unique features in the ECG signals. Figure 5 illustrates the variation 

of the daily ECG waveform of the subject 10 for six days. Furthermore, the average root-

mean-square error of ECG from days 2 to 6 with respect to the ECG of day 1 is presented 

in Table 2, showing the difference between the ECG of day 1 and those of days 2 to 6. 

 

Figure 4. Synchronized average of ECG signals from 11 subjects. The shaded areas represent the standard deviation in the signals. 

 

Figure 5. Synchronized average of ECG signals of the subject 10 for six days. The shaded areas represent the standard 

deviation in the signals. 
Figure 5. Synchronized average of ECG signals of the subject 10 for six days. The shaded areas represent the standard
deviation in the signals.



Sensors 2021, 21, 1568 6 of 16

Table 2. The average root-mean-square error of the ECG from day 2 to day 6 with respect to the ECG of day 1.

RMSE
Day 2 Day 3 Day 4 Day 5 Day 6

0.12346 ± 0.06493 0.15085 ± 0.09276 0.16848 ± 0.07744 0.25785 ± 0.30352 0.20714 ± 0.14167

3.2. Feature Extraction

Typically, an ECG wave shows five fiducial points: P, Q, R, S and T peaks. Different
combinations of peak patterns can be used as features to distinguish ECG data across
subjects. Figures 6 and 7 depict the peak detections of the QRS complex and P and T
peaks. To automatically detect the Q, R, and S peaks, we used the real-time QRS detection
algorithm proposed by Pan and Tompkins [65]. In addition, we separately extracted the P
and T peaks by searching the maxima within

Rloc −
RRint

6
< Ploc < Rloc −

RRint
10

, (2)

Rloc +
RRint

10
< Tloc < Rloc +

RRint
2

(3)

where RRint is the average length of RR interval, Rloc, Ploc and Tloc are the locations of R, P
and T peak, respectively [66,67].
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After the detection of five peaks, we extracted 13 features per ECG wave including
three angles, four amplitudes, and six temporal features, which are illustrated in Figure 8:
PR, QR, RS, RT amplitudes, PR, QR, RS, RT, ST, RR intervals, and angles of Q, R and S
peaks [68].
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3.3. Incremental Learning

In order to train the authentication model per subject, we obtained 11 initial incremen-
tal SVM classifiers that were designed using the corresponding training set of day 1. As the
data set consisted of the authentication target (positive class) and 10 imposters (negative
class), there was an imbalance between two classes, which degraded the authentication
performance. In order to overcome this problem, the data augmentation for the positive
class was conducted using the synthetic minority over-sampling technique (SMOTE) al-
gorithm [69] in order to solve the imbalance. Each authentication model performs binary
classification, either recognizing the target user’s ECG data or not.

After initial training, we used the data from days 2 to 5 for incremental learning.
During this learning process, each training sample was evaluated by the existing SVM
model to check its classification correctness. If the sample was positively classified, it
became a reserve vector and the training terminated. Otherwise, margin vector coefficients
were changed to maintain the KKT conditions in response to the perturbation induced
by the misclassified sample. Then, the sample became either a margin vector or an error
vector. After learning data incrementally, new information could be integrated into the
existing SVM model without fully retraining on the complete training set.

3.4. Performance Measures

We used various evaluation measures to determine the authentication performance
based on the true positives TP, false positives FP, true negatives TN, and false negatives
FN. The true positives (true negatives) indicated the number of positive (negative) samples
that were classified correctly. The false positives (false negatives) indicated the number of
positive (negative) samples that were misclassified.

Specifically, we used three widely used evaluation measures, namely, accuracy ACC,
false acceptance rate (FAR), and true acceptance rate (TAR):

ACC =
TP + TN

TP + TN + FP + FN
(4)

FAR =
FP

TN + FP
(5)

TAR =
TP

TP + FN
(6)

where FAR reflected the incorrectly accepted attempts by an adversary, and TAR reflected
the correctly accepted attempts by the authentication target.
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4. Results

In this section, we designed two different evaluation schemes and tested our proposed
ECG-based authentication algorithm, evaluated by using the data of day 6 and data
recorded a day after the latest update as the test set. The evaluation based on the data of
day 6 was conducted to compare the proposed algorithm with the conventional SVM. As
this evaluation result could be affected by the data-to-data similarities, meaning the day 5
recordings would be more similar to the day 6 data than those of the day 1, we designed
another experiment based on the latest available data to demonstrate the effectiveness of
the incremental learning. In each evaluation, the test set consisted of data corresponding
to one authentication target and 10 imposters (i.e., data from the other subjects). The
evaluation proceeded until the classification of every single beat of the test set terminated.
This process was repeated until the data from every subject were classified against those of
all the other subjects. We evaluated the authentication method by an implementation on
MathWorks MATLAB R2019b running on a Mac OS X 10.15 computer with Intel Core i7
CPU at 2.9 GHz and 16 GB memory.

In this paper, we used the radial basis function (RBF) as kernel function of the SVM,
as it outperforms other kernel functions [70]. The hyperparameters of the SVM are box
constraint C and kernel scale σ. The optimal hyperparameters should be determined before
training the model to obtain the best performance. The search for the optimized values of
the hyperparameters was conducted using Bayesian optimization, which was applied to
the data recorded on day 1. This provided the optimal values of the hyperparameters as
C = 7 and σ = 2, which are depicted in Figure 9 [71].
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Figure 9. Objective function values for hyperparameter tuning using Bayesian optimizer. The optimal
SVM parameters are C = 7 (box constraint) and σ = 2 (kernel scale).

To visualize the updating decision boundary of the incremental SVM as more data
became available, the two most representative features obtained from the ReliefF algo-
rithm [72] (i.e., angle of S and RR interval) and the corresponding decision boundaries
for subject 4 are depicted in Figure 10. The decision boundaries changed as incremental
learning proceeded. As the incremental SVM integrated new data, the support vectors that
defined the classification boundary were updated by varying their coefficients to maintain
the KKT conditions.

Figure 11 shows the individual performance (a) and the average performance (b)
evaluated using the data of day 6 in terms of the accuracy, FAR, and TAR of every subject
over the five-day incremental learning. The initial classifier trained using the data of day 1
achieved 90.62% accuracy, 6.49% FAR and 61.32% TAR, on average. As the SVM classifier
learned data incrementally on the other days, the authentication result showed enhanced
performance: the accuracy increased to 95.1%, TAR increased to 87.61% and FAR decreased
to 4.39%.
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Figure 10. Updating decision boundary of incremental SVM for subject 4 data set over five-day incremental learning. The
darker dots from days 2 to 5 represent the incrementally trained data.
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Figure 11. The accuracy, false acceptance rate (FAR) and true acceptance rate (TAR) of 11 subjects
over five days of incremental learning (a) and the average (b) tested using the data of day 6.

The experiment result over the five-day incremental learning as evaluated using the
data recorded a day after the latest training is presented in Figure 12. Although there was a
slight decrease of the performance when the evaluation was conducted using the data of
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day 5, the average accuracy across all subjects increased from 92.25% to 95.1%. The average
TAR also gradually increased from 70.05% to 87.61%. The average FAR decreased from
5.33% to 3.5% until day 3, which was evaluated using the data of day 4. Then it slightly
increased from 3.5% to 4.39% until the last incremental update.
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5. Discussion

In Figure 12b, note that in terms of accuracy the authentication performance of FAR
and TAR increased after the five days incremental learning. However, the accuracy slightly
decreased when the evaluation was conducted using the data of day 5, and FAR increased
about 0.89% from day 3 (tested using the data of day 4) to day 5 (tested using the data of day
6). Additionally, as seen in both Figures 11a and 12a, some subjects had a minor decrease of
authentication performance after training new ECG data incrementally. Since the pattern
of the ECG signal could vary, depending on various reasons such as the emotional or
physical conditions of the authentication target user, the pattern of the evaluated data
might have been slightly different from the trained ones, resulting in the deterioration in
the authentication performance. Nevertheless, FAR remained between 3% and 6% during
the total training process, which indicated the model was still stable and reliable for the
authentication task [73].

For a benchmark test, we compared the incremental SVM and the original SVM
with full training in terms of the authentication performance and the training efficiency.
Both SVMs with the RBF kernel were trained by the data of days 1 to 5 using the same
hyperparameters described in Figure 9 (i.e., C = 7, σ = 2). The evaluation results tested using
the data of day 6 are illustrated in Figure 13, showing that the accuracy of the incremental
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SVM was comparable with that of the fully trained SVM (95.1% and 95.12%). Likewise,
FAR and TAR were similar between incremental learning and fully training methods: 4.39%
and 4.4% FAR, 87.61% and 87.98% TAR, respectively.
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Table 3 lists the training time of the incremental SVM and the original SVM. The train-
ing time was obtained while varying the number of arriving samples. Overall, incremental
learning provided a much faster training than the fully training method. Specifically,
incremental learning required 0.102–0.714 s to integrate one new sample, whereas the
fully trained one required 0.713–3.294 s. When adding 100 new samples, the incremental
training required 13.015–35.133 s and the other required 82.799–401.554 s for their computa-
tions. The training time across all subjects differed slightly in both methods since the SVM
models had different numbers of the margin vectors and the error vectors and the training
time of the SVM depended on the number of those vectors [29,61]. Table 3 shows that
the difference in the training time between the two learning approaches increased as the
number of new data increased. To integrate new information into the existing SVM model,
the original SVM should repeat training using all the available data. On the other hand, the
incremental SVM only modifies the coefficients of the margin vectors if an arriving sample
is misclassified, thus reducing the training time efficiently.

Table 3. Training time (s) using the incremental learning and full training while varying the number
of arriving samples.

Subject
Incremental Learning Full Training

1
Sample

10
Samples

100
Samples 1 Sample 10

Samples
100

Samples

1 0.541 3.995 27.184 2.022 20.279 241.554
2 0.630 3.233 25.382 0.713 7.101 82.799
3 0.213 3.320 17.190 2.570 25.502 322.653
4 0.367 5.661 35.133 1.225 12.762 192.827
5 0.289 4.347 34.006 1.901 18.343 229.996
6 0.234 2.116 13.015 1.306 13.181 161.457
7 0.252 3.208 26.130 2.185 21.436 262.371
8 0.102 2.332 20.584 1.497 15.139 187.970
9 0.156 1.994 17.990 3.294 31.457 401.554

10 0.610 4.711 28.913 0.951 9.294 107.644
11 0.714 3.381 21.442 1.120 9.227 113.987

In addition, the authentication method using the template update [74] was imple-
mented and evaluated, which was similar to the proposed algorithm in terms of the
continuous learning process. The evaluation was conducted by using the data obtained a
day after the latest training as the test set. Figure 14 presents the comparison of FAR be-
tween the two methods, showing that our proposed algorithm obtained better performance
than that using the template. Furthermore, as the model trained more data, the method
using the template update had a problem of forgetting previous knowledge. However,
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incremental SVM maintained its knowledge by categorizing all training vectors in reserve,
margin, or error sets.
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Figure 14. The result of the benchmark test with the incremental learning and template update in
terms of FAR.

Figure 15 shows the results of the proposed method and previous works [35,39] on
ECG authentication using MIT-BIH and CYBHi databases. Using MIT-BIH, the proposed
method obtained 97.7% accuracy, which was comparable (only 1% lower) with [35], al-
though our method used seven fewer features. Furthermore, the proposed method yielded
an accuracy of 99.4% using CYBHi, an almost identical performance with [39] (0.1% higher).
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Figure 15. The evaluation result of the proposed method using MIT-BIH and Check Your Bio-signals
Here initiative (CYBHi) databases. The experiment using MIT-BIH is compared with [35] and the
other using CYBHi with [39].

Table 4 details the training information of the authentication models, including the
average number of training data samples, the proportions between the two classes (au-
thentication target vs. others), and the training time of the incremental SVM per day.
Although the number of arriving samples was similar over the five days, the training
time significantly increased as more data became available and was stored, given the time
required to calculate the kernel matrix of all the data [75]. Furthermore, the more data the
incremental SVM learned, the more memory the authentication model occupied. Thus, our
further work will focus on reducing the training time and memory by discarding some
reserve vectors that are far from the decision boundary of SVM classifier.
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Table 4. Averaged characteristics of training data and training time of the incremental learning. R, S, and E indicate the
number of reserve vectors, margin support vectors, and error support vectors, respectively.

Day Positive (%) Negative (%) Total Training Time
(s) R S E

1 51.79 ± 6.2 48.21 ± 6.2 10,930 ± 1142 85.867 ± 25.6 10,348 ± 1059 37 ± 16 544 ± 420
2 51.14 ± 10.3 48.86 ± 10.3 10,525 ± 1408 157.070 ± 92.2 19,966 ± 1891 50 ± 23 1438 ± 1155
3 52.03 ± 4.65 47.97 ± 4.65 10,893 ± 914 344.520 ± 263.3 29,739 ± 2325 62 ± 33 2546 ± 1966
4 52.21 ± 3.19 47.79 ± 3.19 11,752 ± 653 525.066 ± 412.5 40,396 ± 2934 81 ± 28 3623 ± 2757
5 50.30 ± 14.49 49.70 ± 14.49 10,254 ± 1660 569.601 ± 582.5 49,808 ± 4057 85 ± 33 4461 ± 3367

6. Conclusions

We proposed an ECG-based authentication method providing incremental learning
from arriving ECG data as they became available. The proposed algorithm was compared
with the conventional ones, the original SVM and template update method. Compared
to the original SVM, the proposed algorithm yielded almost identical performance with
much a faster training process. In addition, it was demonstrated that the conventional
continuous learning algorithm, the template update method, was outperformed by the
proposed incremental learning approach. The proposed method was also compared with
the previous studies on ECG authentication using MIT-BIH and CYBHi databases. The
proposed algorithm achieved an accuracy of 97.7% and 99.4% using MIT-BIH and CYBHi,
respectively, showing that the method could be as reliable as the others. We showed that
our proposed algorithm could be reliable authentication method in terms of FAR and TAR,
with the advantage of training new data incrementally. To the best of our knowledge, this
is the first ECG-based authentication method implementing incremental learning, which is
suitable to applications with data accumulation.
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