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Abstract: Designing wearable systems for sleep detection and staging is extremely challenging due
to the numerous constraints associated with sensing, usability, accuracy, and regulatory requirements.
Several researchers have explored the use of signals from a subset of sensors that are used in
polysomnography (PSG), whereas others have demonstrated the feasibility of using alternative
sensing modalities. In this paper, a systematic review of the different sensing modalities that have
been used for wearable sleep staging is presented. Based on a review of 90 papers, 13 different
sensing modalities are identified. Each sensing modality is explored to identify signals that can
be obtained from it, the sleep stages that can be reliably identified, the classification accuracy of
systems and methods using the sensing modality, as well as the usability constraints of the sensor
in a wearable system. It concludes that the two most common sensing modalities in use are those
based on electroencephalography (EEG) and photoplethysmography (PPG). EEG-based systems are
the most accurate, with EEG being the only sensing modality capable of identifying all the stages of
sleep. PPG-based systems are much simpler to use and better suited for wearable monitoring but are
unable to identify all the sleep stages.

Keywords: sleep; wearables; sleep staging; sleep sensors; sleep scoring

1. Introduction

It is estimated that more than 3.5 million people in the United Kingdom and more
than 70 million people in United States suffer from some sort of sleep disorder [1,2].
Apart from having a major impact on the quality of lives of individuals, sleep disorders
also result in a huge financial impact on the economy stemming from expensive treat-
ments, reduced productivity, road accidents, and many other areas that involve alertness
and quick judgement [3,4]. Diagnosis of sleep disorders is an expensive procedure that
requires performing a sleep study known as polysomnography (PSG) to monitor multiple
parameters and physiological signals during sleep [5]. These may include neural activity
(EEG), eye movements (EOG), muscle activity (EMG), heart rhythms (ECG), and breathing
functions. Together these signals, or a combination of them, are used to perform sleep
scoring and to identify, or rule out, the presence of multiple sleep disorders.

Polysomnography is usually performed at sleep clinics in the presence of trained
technicians, typically using four to six EEG electrodes; two EOG electrodes; four EMG elec-
trodes; two ECG electrodes; and additional sensors such as pulse oximeter, sound probes,
etc. The signals obtained from these sensors are analysed and scored into one of the dif-
ferent stages of sleep. Human sleep is broadly classified into into Wake, REM (rapid eye
movement), and NREM (non-rapid eye movement) stages [6]. The NREM stage is further
divided into N1, N2, and N3 stages (or S1, S3, S3, and S4 based on the older Rechtschaffen
and Kales (R&K) rules for classification) [7]. The process of assigning a sleep stage to each
block of 30-second PSG signal is known as sleep staging or sleep scoring.

Despite the importance of PSG for the diagnosis of sleep disorders, its high cost
coupled with the necessity of clinical admission and long waiting lists [8] limits its usage
outside of specialised clinics. Additionally, manual analysis and scoring of sleep from PSG
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traces is a tedious task that can take 2–4 h for scoring data from an entire night sleep [9].
The advent of low-power wearable sensors and edge computing has resulted in several
systems being developed to make PSG easier and to make it possible to perform sleep
monitoring with automatic sleep detection and staging over multiple nights at the home of
patients [10]. Researchers have used several sensors to obtain physiological parameters
during sleep and developed various methods for their processing to classify them into sleep
stages. Two intrinsically linked areas of research have emerged, with one focusing on signal
acquisition and the other on signal processing. In the case of signal acquisition, there is
a push towards finding alternative sources of sleep information than those traditionally
used for PSG. This involves developing new sensors, interfacing circuitry, inplementing
low-power hardware, as well as integrating everything into smaller packages. The signal
processing research focuses heavily on using techniques to perform feature extraction and
on taking advantage of the advances in machine learning for classification.

While several review papers have focused on the algorithmic accuracy of different
methods for automatic sleep detection and staging using a variety of physiological sig-
nals [11], this paper presents a systematic review of the sensing technologies available to
acquire those signals. It focuses on systems and methods that are useful for long-term sleep
monitoring through the use of home-based wearable devices. It presents a comprehensive
discussion of the relevant sensing technologies focused on their suitability, limitations,
usability, as well as their ability to extract signals that can reliably be used for automatic
sleep detection and staging. The rest of this paper is organised as follows. Section 2 de-
scribes the review methodology used to identify candidate papers for this review. Section 3
synthesises the results presenting an overview of the different sensing modalities that are
used for wearable sleep detection and staging. For each sensing modality, the challenges
associated with signal acquisition, reliability, usability, and accuracy are discussed as well
as a review of the different papers that have used the sensing modality in the context
of automatic sleep staging. Finally, Section 4 discusses the overall landscape of sensing
technologies looking at the different trade-offs that need to be taken into account when
designing a wearable device for sleep detection and staging.

2. Methodology
2.1. Data Sources

This systematic review is performed using the guidelines of the Preferred Reporting
Items for Systematic Reviews and meta-Analysis (PRISMA) statement [12]. It includes
peer-reviewed articles written in English language published between 2010 and 2021.
The lower limit of year 2010 is used because of the more recent developments in the
area of wearable computing and systems. The initial list of articles was compiled by
searching on the PubMed, SCOPUS, and IEEEXplore databases. The electronic search
terms used with PubMed (as well as other databases) included wearable sleep staging,
wearable sleep scoring, wearable sleep, wearable sleep eeg, wearable sleep ecg, wearable
sleep sensors, wearable sleep breathing, wearable sleep plethysmography, wearable sleep
ppg, wearable sleep actigraphy, and wearable sleep movement. The search made use of the
binary OR operator to look for the presence of these terms in the title, abstract, or keywords
of the articles and limited the publication year to be at least 2010. Additional articles
were obtained from the bibliographies of articles found. The date of the last search was
8 February 2021. The initial search resulted in 813 articles that were further screened to
remove duplicates and assessed against the eligibility criteria described in the next section.
A flow diagram for identification, screening, and eligibility of the papers to be included in
the review is shown in Figure 1.
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Figure 1. Study selection flow diagram.

2.2. Eligibility Criteria

The initial set of articles were filtered to remove the duplicates and to narrow down
the scope in order to include only articles that were focused on designing a system or
algorithm for wearable sleep detection and staging. This may include either a sensor
designed specifically for sleep staging, including distinction between sleep and wake, or a
method developed using data from a sensing source that could be used in a wearable
context. This resulted in 181 articles that were deemed relevant. This number was further
reduced to 90 after the full-text was assessed against the following eligibility criteria.

• Does the article present a sensor/method for sleep staging?
• Does the sensor/method in article classify at least one stage of sleep (including

wake as it is considered a distinct stage based on both the R&K and AASM rules
of classification)?

• Is the sensor/method for use for staging human sleep?
• Does the article discuss potential use of the sensor/method in wearable context? If not,

is the sensor/method obviously suitable for wearable use (e.g., wrist-based devices)?
• Is the sensor/method designed for monitoring overnight sleep (i.e., not only day-

time naps)?
• Is the sensing modality clearly defined?
• Has the work being presented been validated against a reference method?
• Does the study report at least one quantifiable measure of accuracy?

2.3. Data Extraction

Data from each study was extracted into a spreadsheet that had columns for all
the variables sought for this review. Where relevant, accuracy measures were computed
from the reported metrics in the paper and entered into this spreadsheet. From each study



Sensors 2021, 21, 1562 4 of 21

presenting a system or method for automatic sleep staging, data were sought on the sensing
modality of the system used for data collection, the classification accuracy of the method,
the sleep stages being classified, the validation reference, the location of data collection,
the age range of subjects, population size, and the source of data (i.e., an actual device or
an existing database).

2.4. Risk of Bias

There is a risk of bias in individual studies reporting results based on different val-
idation references. Even when the validation reference is the same, manual scoring by
sleep technicians is subjective and hence may have some influence on the reported results.
Additionally, sample size, study location, stages classified, and the reporting metrics them-
selves can also impact the results. To minimise these risks, two well-known measures of
overall accuracy have been used and only those studies that report at least one of these
measures were included. Furthermore, the other variables that may have an impact are
clearly reported in the results.

Overall, the studies that have been included focus on systems and methods designed
for use in wearable sleep systems. Many studies do not mention the wearable or ambu-
latory nature of devices. Hence, an assessment was made for each study (with insufficient
context) to determine its eligibility against a subjective criterion of its possible use in a
wearable context.

3. Results

Figure 2 shows the frequency of articles published each year. The trend is very clear,
with the number of published articles increasing from 2014 onwards, with a small number
of articles before that time. This is not surprising since ultra-low power processors and
miniaturised electronics have become readily available in the last few years, leading to an
exponential increase in research in the area of ambulatory and wearable devices. Addition-
ally, there has also been an increased focus on sleep and its importance for overall health
and wellness, leading to a rise in wearable devices being developed to monitor sleep.

Year

Figure 2. Number of papers published each year since 2010 related to the topic of wearable
sleep staging.

Table 1 lists the eligible articles included in this review, summarising their sensing
modalities, extracted signals, and sleep stages classification. The different sensing modali-
ties together with their usability, accuracy, and ability to classify different sleep stages are
discussed in the following sections.

3.1. Overview of Different Sensing Modalities for Sleep Staging

The gold standard for sleep staging is polysomnography (PSG), which involves moni-
toring of brain waves, eye movements, and muscle movements amongst other physiological
parameters. However, due to the difficulties in using PSG outside of clinics, alternative
sensing modalities have been proposed for extracting information related to the differ-
ent stages of sleep. Table 1 lists 13 different sensing modalities that have been used by
researchers to extract various signals for sleep detection and staging. Before discussing
these sensing modalities, a brief overview of their usage for sleep detection and staging
is presented.
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Table 1. Summary of articles included in the review.

Ref Sensing Modality Signals/Features Sleep Stages Classified Accuracy Kappa Validation Subjects Age Location Data Source

[13] Pressure sensors HBI + Movement Wake-NREM-REM 79% 0.44 PSG 9 20–54 Hospital Emfit [14]
[15] ACC + PPG HR + Movement Wake-REM-Light-Deep 65.3% 0.48 PSG 227 36–63 Sleep Lab WatchPAT 100 [16]
[17] RIP + Nasal airflow Respiratory effort Wake-NREM-REM 70% - PSG 16 32–56 Hospital MIT-BIH [18]
[19] ACC Movement Wake-Sleep 86.2% 0.65 PSG 30 17-24 Research Lab Actiwatch-64 [20]
[21] EEG 1 channel Wake-REM-Light-Deep 81.1% 0.7 PSG 26 19–60 Sleep Lab Zeo
[22] PPG + ACC HRV + Movement Wake-NREM-REM 75% - PSG 48 22–71 Hospital Research Device
[23] ECG HRV Wake-NREM-REM 73.50% - PSG 7 (OSA) 42–68 Hospital Unknown
[24] ACC Hip Movement Wake-N1-N2-N3-REM 88.4% - PSG 34 20–24 Sleep Lab FS-750
[25] ACC Movement Wake-Sleep 88.0% 0.3 PSG 22 20-28 Sleep Lab Actiwatch-64 [20]
[26] RIP + ACC Effort + Movement Wake-Sleep 95.7% 0.66 PSG 15 23–58 Sleep Lab Actiwatch [20]
[27] RIP + ECG + ACC RRI + Movement Wake-NREM-REM 78.3% 0.58 PSG 20 32–52 Sleep Lab ACT/Somnowatch [28]
[29] EEG 1 channel NREM-REM 83% 0.61 PSG 20 20–65 Hospital DREAMS [30]
[31] EEG 1 channel Wake-N1 92.50% 0.63 PSG 13 - Hospital Sleep EDF Expanded [32]
[33] PPG PRV Wake-NREM-REM 77–80% - PSG 146 (SDB) 9–14 Hospital Unknown
[34] Pressure sensors RR + Movement Wake-NREM-REM 70.30% 0.45 PSG 7 21–60 - Research Device
[35] ACC Hip Movement Wake-Sleep 86.2% - PSG 108 21–24 Research Lab GT3X+ [36]
[37] ACC + EEG Movement + 1 channel Wake-REM-Light-Deep 74.2% - PSG 30 18–80 Sleep Lab SomnoScreen [38]
[39] EEG + RIP Respiratory effort Wake-N1-N2-N3-REM 81.70% - PSG - - Hospital Unknown
[40] ECG HR Wake-REM-Light-Deep 76–85% - PSG 15 28–39 Hospital CAP Sleep Database [41]
[42] EEG 1 channel Wake-N1-N2-N3-REM 79% 0.69 PSG 39 25–101 Hospital Sleep EDF Expanded [32]
[43] EEG 1 channel Wake-REM-Light-Deep - 0.72 PSG 99 18–60 Sleep Lab Zmachine [44]
[45] EEG 1 channel Wake-N1-N2-N3-REM 86.20% 0.78 PSG 8 21–35 Hospital Sleep EDF Database [32]
[46] Radar sensors Respiratory movement Wake-NREM-REM 75% 0.56 PSG 29 (SDB) 22–67 Hospital Research Device
[47] RIP Respiratory effort Wake-NREM-REM 80% 0.65 PSG 29 (SDB) 22–67 Hospital Embla N7000 [48]
[49] Radar sensors RR + Movement REM-Light-Deep 79.30% - PSG 11 21–23 Research Lab Research Device
[50] EEG + EOG + EMG Ear-EEG Wake-N1-N2-N3-REM 95% - PSG 8 avg. 25 Sleep Lab Research Device
[51] Radar sensors HRV + Movement Wake-Sleep 66.4% - PSG 10 21–24 Research Lab Research Device
[52] ECG RRI NREM-REM 76.20% 0.52 PSG 20 22–33 Hospital MASS PSG Database [53]
[54] ECG + PPG HR + Oximetry Wake-Sleep 83.80% - PSG 100 - Home SHHS Database [55]
[56] Audio Respiratory features Wake-NREM-REM 75% 0.42 PSG 20 23–70 Hospital EDIROL R-4 [57]
[58] ECG + PPG HRV + PTT Wake-N1-N2-N3-REM 73.40% - PSG 20

(Insomnia)
- Hospital SOMNOScreen [38]

[59] Nasal airflow RR Wake-NREM-REM 74% 0.49 PSG 20 25–34 Hospital Sleep EDF Expanded [32]
[60] EEG 1 channel Wake-N1-(N2+N3)-REM 90% 0.67 PSG 29 - Research Lab Sleep Profiler [61]
[62] ACC Movement Wake-Sleep - - PSG 14 3–11 Hospital Fitbit Flex [63]
[64] ACC + PPG HR + Movement Wake-Sleep 90.90% - PSG 32 14–20 Sleep Lab Fitbit ChargeHR [63]
[65] EEG Ear-EEG Wake-N1-N2-N3 76.80% 0.64 EEG 4 25–36 Research Lab Research Device
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Table 1. Cont.

Ref Sensing Modality Signals/Features Sleep Stages Classified Accuracy Kappa Validation Subjects Age Location Data Source

[66] ECG + RIP RRI + Respiratory effort Wake-REM-Light-Deep 87.40% 0.41 PSG 180 20–95 Hospital Multiple Databases
[67] EEG 1 channel Wake-S1-S2-S3-S4-REM 90.5% 0.8 PSG 20 25–34 Hospital Sleep EDF Expanded
[68] PPG + ACC HRV + Movement Wake-REM-Light-Deep 69% 0.52 PSG 60 24–44 Home Fitbit Surge [63]
[69] ECG + ACC HR + Movement Wake-NREM-REM 75% 0.49 PSG 289

(Various)
37–65 Hospital Unknown

[70] PPG HRV Wake-Sleep 80.10% - PSG - - Hospital Multiple Databases
[71] ACC + PPG HRV + Movement Wake-N1-(N2+N3)-REM 59.3% 0.42 PSG 51 41–60 Home Alice PDx
[72] EEG 1 channel Wake-N1-N2-N3-REM 79% 0.59 PSG 20 20–65 Hospital DREAMS Subjects [30]
[73] EEG 1 channel Wake-NREM-REM 77% 0.56 PSG 16 32–56 Hospital MIT-BIH [18]
[74] Pressure sensors HR + RR + Movement Wake-REM-Light-Deep 64% 0.46 PSG 66 17–72 Sleep

Lab/Home
EarlySense [75]

[76] EEG 2 channels Wake-N1-N2-N3-REM 94% - PSG 20 25–34 Hospital Sleep EDF Expanded [32]
[77] ECG HRV + EDR Wake-REM-Light-Deep 75.4% 0.54 PSG 16 32–56 Hospital MIT-BIH [18]
[78] PPG + ACC HRV + Movement Wake-REM-Light-Deep 49–81% - PSG 44 (PLMS) 19–61 Sleep Lab Fitbit Charge 2 [63]
[79] ECG HRV Wake-REM-Light-Deep 89.20% - PSG 3295 - Home SHHS Database [55]
[80] PPG + ACC HR + Movement Wake-N1-N2-N3-REM 66.60% - PSG 39 19–64 Hospital Microsoft Band I
[81] ACC Movement Wake-Sleep 85.0% - PSG 22 20–45 Home GT3X+ [36]
[82] ECG HRV Wake-REM-Light-Deep 71.50% - PSG 16 32–56 Hospital MIT-BIH [18]
[83] ECG RRI N3 90% 0.56 PSG 45 (OSA) - Hospital NI DAQ 6221
[84] ACC Movement Wake-Sleep 91% 0.67 PSG 27 18–64 Sleep Lab myCadian
[85] ACC Movement Wake-Sleep 83% - PSG 1817 - Sleep Lab MESA Sleep Dataset [86]
[87] EDA - Wake-Sleep 86.0% - PSG 91 - Hospital Research Device
[88] ECG HRV + RRV Wake-N1-N2-N3-REM 71.16% 0.52 PSG 373

(Various)
22–56 Hospital SOLAR 3000B

[89] EEG 1 channel Wake-S1-S2-S3-S4-REM 93.60% 0.87 PSG 4 - Hospital Sleep EDF Expanded [32]
[90] EEG 1 channel Wake-N1-N2-N3-REM 81–92% 0.89 PSG 48 20–65 Hospital Sleep EDF + DREAMS [30,32]
[91] ACC Movement Wake-Sleep 89.65% - Sleep

Diary
10 - Home GT3X [36]

[92] Pressure sensors HRV + RRV Wake-NREM-REM 85% 0.74 PSG 5 63–69 Sleep Lab Research Device
[93] EEG 1 channel Wake-N1-N2-N3-REM 83.50% - PSG 20 - Hospital Sleep EDF Database [32]
[94] ECG + ACC + PPG RRI + HRV + Movement Wake-REM-Light-Deep 81% 0.69 PSG 32 22–45 Hospital SensEcho
[95] PPG + ACC HR + Movement Wake-NREM-REM 72% 0.27 PSG 31 19–55 Hospital Apple Watch (2,3) [96]
[97] ACC Movement Wake-Sleep 85.4% 0.54 EEG 40 18–40 Home Motion Logger [98]
[99] PPG + ACC HRV + RR + Movement Wake-REM-Light-Deep 77% 0.67 PSG 50 - - Samsung Smartwatch [100]
[101] EEG + EMG 1 channel + chin

movement
Wake-N1-N2-N3-REM 81% - PSG 49 36–52 Sleep Lab NTHU Database

[102] EEG Ear-EEG Wake-N1-N2-N3-REM 72.0% 0.59 PSG 15 18–63 Research Lab Research Device
[103] PPG + ACC HR + Movement Wake-REM-Light-Deep 64% 0.47 PSG 12 19–27 Research Lab WHOOP strap [104]
[105] EEG Ear-EEG Wake-N1-N2-N3-REM 81% 0.74 PSG 13 18–60 Hospital Research Device
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Table 1. Cont.

Ref Sensing Modality Signals/Features Sleep Stages Classified Accuracy Kappa Validation Subjects Age Location Data Source

[106] Sonar RR + Movement Wake-REM-Light-Deep 60% 0.39 PSG 62 31–63 Sleep Lab Smartphone
[107] Audio + ACC RR + HRV + Movement Wake-REM-Light-Deep 57% 0.36 PSG 53 (OSA) 43–72 Hospital Research Device
[108] EEG Ear-EEG Wake-N1-N2-N3-REM 74.10% 0.61 PSG 22 19–29 Home Research Device
[109] EEG 4 channels Wake-N1-N2-N3-REM 77.3% 0.69 PSG 243 >18 Hospital HomePAP Database [110]
[111] Audio Breathing/snoring

sounds
Wake-NREM-REM 75% 0.42 PSG 13 21–26 Sleep Lab Research Device

[112] PPG + ACC HRV + Movement Wake-REM-Light-Deep 65–89% 0.54 EEG 35 14–40 Home Fitbit Charge 2 [63]
[113] Radar sensors Respiratory movements Wake-REM-Light-Deep 62.70% 0.46 PSG 9 23–27 Home Circadia C100 [114]
[115] ACC Movement Wake-Sleep 90.30% 0.54 PSG 41 >13 Sleep Lab Arc
[116] ECG RRI + RR Wake-NREM-REM 76.50% 0.49 PSG 25 (SDB) >18 Hospital Unknown
[117] PPG + ACC HR + Movement Wake-N1-N2-N3-REM 54.20% - PSG 18 - Sleep Lab Basis B1
[118] ACC Movement Wake-Sleep 87.70% 0.6 EEG 40 avg. 26.7 Home Motion Logger [98]
[119] ACC + PPG HR + Movement Wake-Sleep 89.90% 0.42 PSG 8 35–50 Sleep Lab Apple Watch + Oura [96,120]
[121] PPG Oximetry Wake-N1-N2-N3-REM 64.1% 0.51 PSG 894 (OSA) 44–66 Hospital Xpod 3011 [122]
[123] PPG PPI Wake-Sleep 81.10% 0.52 PSG 10 (SDB) 43–75 Hospital Unknown
[124] ECG + ACC HRV + Movement Wake-N1-(N2+N3)-REM 75.9% 0.6 PSG 389

(Multiple)
- Hospital SOMNIA Dataset [125]

[126] ACC Movement Wake-Sleep 84.7% 0.45 PSG 43 45–84 Sleep Lab MESA Sleep Dataset [86]
[127] ECG HR Wake-REM-Light-Deep 77% 0.66 PSG - - Sleep Lab MESA Sleep + SHHS [55,86]
[128] ECG + ACC HRV + Movement Wake-REM-Light-Deep 66.9% 0.51 PSG 20 20–37 Home Firstbeat [129]
[130] ACC Movement Wake-Sleep 90.3% - PSG 8 18–35 Research Lab Zulu Watch
[131] ACC Finger Movement Wake-Sleep 85.0% - PSG 25 - Sleep Lab THIM [132]

PSG—Polysomnography, EEG—Electroencephalography, EOG—Electrooculography, EMG—Electromyography, ECG—Electrocardiography, ACC—Accelerometer, RIP—Respiratory Inductive Plethysmog-
raphy, PPG—Photoplethysmography, EDA—Electrodermal Activity, REM—Rapid Eye Movement, NREM—Non-Rapid Eye Movement, HBI—Heart Beat Interval, RRI—R-R Interval, PPI—Pulse Peak
Interval, HRV—Heart Rate Variability, PRV—Pulse Rate Variability, RRV—Respiratory Rate Variability, HR—Heart Rate, RR—Respiratory Rate, PTT—Pulse Transit Time, EDR—ECG-Derived Respiration,
OSA—Obstructive Sleep Apnoea, SDB—Sleep Disordered Breathing, PLMS—Periodic Limb Movements of Sleep.
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3.1.1. Electroencephalogram

An electroencephalogram (EEG) is a recording of the electrical signals of the brain. It is
performed by placing several electrodes on different locations of the scalp. The electrodes
then feed the signals into a front-end electronic system consisting of amplifiers, filters,
and other data acquisition circuitry. EEG signals are highly useful to assess the health of the
brain as well as the diagnosis of different sleep and neurological disorders. As part of PSG,
for sleep staging, at least three channels of EEG are used to acquire signals from different
locations on the scalp. The relative levels of signals at different frequency bands (e.g., alpha
(8–13 Hz), delta (0.5–4 Hz), etc.) are then used to identify the sleep stages following the
guidelines of the American Academy of Sleep Medicine (AASM) [6]. Although EEG is the
signal with the richest information related to sleep, it is difficult to use due to multiple
issues such as electrode displacement and noise [133–135].

3.1.2. Electrooculogram

An electrooculogram (EOG) is a signal that is generated as a result of eye movements
and captured using electrodes placed near the eyes. It is highly useful to identify the
wake and REM stages of sleep since there are major eye movements during these stages.
Generally speaking, eye movements tend to slow down with the depth of sleep.

3.1.3. Electromyogram

An electromyogram (EMG) is a recording of the electrical signals generated as a result
of muscle movements. Electrodes placed on specific muscles result in changes in the signal
level whenever those muscles move. As part of full PSG, leg and chin muscle movements
are recorded through EMG. Leg movement activity is useful for the diagnosis of specific
sleep disorders such as periodic limb movement disorder. Chin movement activity helps
to differentiate wake and REM sleep stages from those with similar EEG characteristics.

3.1.4. Electrocardiogram

An electrocardiogram (ECG) is a recording of the electrical activity of the heart. It pro-
vides a snapshot of the regular functioning of the heart as well as information about the
heart rate. ECG is not conventionally used for sleep staging and is not a required signal
for scoring sleep based on AASM guidelines [6]. However, researchers have shown that
different features extracted from ECG such as R-R intervals, heart rate, and heart rate
variability (HRV) correlate with the changes in sleep macrostructure and thus can be useful
for identifying the different stages of sleep [136].

3.1.5. Photoplethysmogram

A photoplethysmogram (PPG) is a signal representing the changes in blood volume
in the microvascular bed of tissue [137]. It is obtained by using a simple optical measuring
technique where an LED is used to shine light on the tissues and a photodetetor is used to
absorb the reflected light. The PPG can then be used to measure the heart rate, resipiratory
rate, and oxygen saturation levels. In clinical practice, PPG-based pulse oximetry is
popularly used for continuous measurement of oxygen saturation. However, it suffers
from reliability issues mainly due to artefacts emanating from movement of the finger.
More recently, wearable PPG sensors have been incorporated in wrist-worn consumer
devices to extract the heart rate, making it widely accessible [95,138]. This is useful for sleep
monitoring since researchers have shown that the changes in heart rate and respiratory
rate can be useful for identifying the different stages of sleep [139,140].

3.1.6. Accelerometer

Accelerometers are inexpensive and easy-to-use sensors that record periods of move-
ment and inactivity during sleep and can be used to assess the sleep/wake cycles. They are
used for long-term sleep monitoring through wrist-worn devices, also known as actigra-
phy [141].
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3.1.7. Respiratory Inductance Plethysmography

Respiratory inductance plethysmography (RIP) is a noninvasive tool to monitor breath-
ing patterns. It uses a belt placed around the abdomen (or thorax) and measures abdominal
movements that are correlated with respiratory movements during inspiration and expi-
ration. Since the respiratory effort changes throughout sleep [142], the RIP signal can be
useful for studying and identifying different stages of sleep.

3.1.8. Pressure Sensors

Some researchers have developed sensitive pressure sensors installed on a mattress to
record body motion and ballistocardiography (BCG) during sleep. These sensors are used
to extract information such as respiratory rate, heart rate, and movements in bed [143,144].
These can be useful for identifying different sleep stages since the body movement is
reduced in deep sleep whereas respiratory rate changes are also observed compared to
light sleep or wake stages.

3.1.9. Radar Sensors

Radar sensors are used as a non-contact and wireless method of breathing and move-
ment detection [145]. These signals can then be used for sleep staging.

3.1.10. Audio

Microphones placed in various configurations are used to record audio signals during
sleep. These signals capture the changes in breathing sound intensity, snoring, and other
sounds due to abrupt movements that can be used for sleep staging [146].

3.1.11. Nasal Airflow

Thermal airflow sensors (thermistors or transducers) are used to measure airflow
through the nose. The nasal airflow signal shows changes in breathing, which can be
helpful for identifying sleep stages [147].

3.1.12. Sonar Sensors

Similar to radar sensors, sonar sensors can also be used as a non-contact and wireless
method of breathing and movement detection and subsequently for detecting different
sleep stages.

3.1.13. Electrodermal Activity Sensors

Electrodermal Activity (EDA) sensors are used to measure skin conductance at the
wrist, palm, or fingers. The EDA levels are known to be higher during deep stages of sleep
compared to the lighter ones and hence can be used to differentiate N2 and N3 stages from
others [148].

3.2. Discussion on Sensing Modalities

The different articles included in this review used at least one or more of the sensing
modality described in the previous section. Table 2 shows the number of articles that used
each of the sensing modalities in their sleep staging method or system either as the only
source of signal information or in combination with other sensors.

Of the 90 articles reviewed, 61 used one of the 13 sensing modalities as the only source
of information whereas the others used a combination of two or more of the different sens-
ing modalities. It is not surprising that EEG is the most popular choice of sensing modality
when it comes to creating wearable sleep detection and staging systems, where only a
single sensing source is used. This is because it is part of the PSG gold standard and
the AASM guidelines for sleep scoring are based on the interpretation of EEG signals.
Hence, as a signal source, it is considered the one providing the most information that
can be clearly used to classify the different stages of sleep while adhering to the medical
guidelines. Following EEG, the second most used single-source sensing modality is the
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accelerometer. This is mainly a consequence of the prevalence of their use in actigraphy,
which allows for capturing sleep/wake patterns. The third most used single-source sensing
modality is the ECG. This is perhaps due to its ability to provide accurate heart rate and
heart rate variability that has been shown to correlate with the different sleep stages [136].
The other sensing modalities are much less commonly used on their own.

Table 2. Number of articles using each sensing modality as a single data source and in combination
with other sensors.

Sensing Modality As Single Source In Combination

EEG 19 4
ECG 10 8
EMG 0 2
EOG 0 1
Accelerometer 15 21
RIP 1 3
Radar sensors 4 0
Pressure sensors 4 0
Audio 2 1
PPG 4 16
Nasal airflow 1 1
Sonar sensors 1 0
EDA 1 0

Accelerometers, on their own, have been in use for a very long time for actigraphy
to detect sleep and wake states. While they do not provide more detailed sleep staging
information, they are considered an acceptable and useful method to assess and treat
disorders related to sleep patterns [149]. When used in combination with other sensors, ac-
celerometers can be used reliably to refine the sleep staging outputs. For example, when used
with EEG, they may be helpful in differentiating between wake and REM stages that have
similarities in the EEG and usually require further input from EOG and EMG channels
(however, this will not be possible during periods of quiet wakefulness with little to no
body movements). Because of their ease of use for patients as well as their low cost of
development, accelerometers are the most common sensing modality used in combination
with other sensors. The other most commonly used sensing modality in combination with
other sensors is the PPG. This is because of the recent explosion in wrist-worn consumer
wearables that incorporate PPG sensors providing heart rate information that can be subse-
quently used for sleep detection and staging. From Table 1, it can be seen that PPG is most
commonly used with accelerometers. However, these two sensors together commonly
provide 4-state sleep staging rather than full five-state sleep staging. EEG and ECG sensing
modalities are also used at times with other sensors despite being quite information rich on
their own. In most of the cases where EEG and ECG are used with other sensors, they are
the predominant source of information using other sensors only to refine and improve the
classification accuracy.

It should be noted though that the use of accelerometers as a sensing modality is
highly prevalent for actigraphy studies. They have been in use for a long period of time,
are inherently wearable and cost effective, and may be used to target generalised sleep
disorders; there are more studies published using such systems. They are also available
in millions of consumer devices around the world, making them easier to use for various
studies. As a result, it is likely that more studies have been published using these systems,
resulting in a higher number of papers based on them.

3.3. Signals and Features

When the sensing modality of EEG is used, the signals extracted are brain waves.
The main difference between different systems that use EEG is the number of channels and
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the channel location. For example, single-channel EEG-based systems may prefer frontal
channels over the central ones due to the ease of using the electrode. Nevertheless, regard-
less of which channels are used, the main objective is to interpret their spectral content and
to score the signal based on the AASM guidelines. The other sensing modalities, however,
acquire physiological signals and process them to score sleep stages despite the lack of any
standardised guidelines for those signals. These include cardiac signals, respiratory signals,
and body movements.

The different features of cardiac signals that have been used include the heart rate,
heart rate variability, and R-R intervals. These may in turn be extracted from different
sensing modalities. For example, the heart rate (and pulse rate) is commonly obtained using
ECG or PPG. The respiratory feature most commonly extracted is breathing rate. A number
of different sensing modalities are used to acquire respiratory signals. These include RIP
to measure the effort, audio sensors to record breathing sounds, and non-contact radar
sensors and pressure sensors to measure movements, which are subsequently used to
extract the breathing rate. Additionally, tri-axial accelerometers have also been used to
measure chest movement while breathing to obtain the breathing rate. When placed on
wrists, accelerometers are commonly used to obtain general body movement signals that
are used in actigraphy.

Of all the articles reviewed in this paper, 19 use signals and features extracted from
EEG. Amongst the articles presenting non-EEG-based systems, more than 35 use at least
one feature extracted from cardiac signals. This is followed by 24 articles using movement
signals and 17 using respiratory features. Thus, it can be concluded that, when using non-
EEG sensing modalities, cardiac signal features are the most popular choice for obtaining
sleep staging information.

3.4. Sleep Stages

The AASM defines five different stages of sleep (wake, N1, N2, N3, and REM), whereas
the previous R&K guidelines defined seven stages (wake, S1, S2, S3, S4, and REM). Of all
the reviewed articles, only 21 performed classification of all the sleep stages defined by
either of these guidelines [24,39,42,45,50,58,67,72,76,80,88–90,93,101,102,105,108,109,117,121].
Amongst them, all but three [24,58,150] used EEG signals for classification, where the
difference between sleep stages is known to be most obvious. In [150], where only PPG
signals are used with accelerometry data to detect movements, the overall accuracy is quite
low. This highlights the fact that a clear distinction between different stages is challenging
with limited information, which is a consequence of the constraints in a wearable device.
It is well known that, even when using EEG signals, the identification of N1 and REM sleep
stages are rather challenging [151] and thus require additional sensing modalities in the
form of EOG and EMG. Hence, some researchers combine N1 and N2 stages and refer to it
as the light stage of sleep with N3 (or S3 and S4 combined) referred to as deep sleep. Others
opt to group sleep into three classes only: wake, NREM, and REM. These approaches are
most commonly seen used in systems where the sensing modality is based on PPG, ECG,
and radar. Where only accelerometry is used, the only reliable information that can be
inferred is the distinction between sleep (no movement) and wake (movement) stages.

Grouping sleep stages together to form a different class helps to improve classification
accuracy. However, apart from accelerometry-based actigraphy systems, the usefulness of
this approach for medical diagnosis is still to be determined. It is perhaps for this reason
that popular wrist-worn PPG-based devices are not regulated for use as medical devices
and only marketed as consumer devices.

3.5. Accuracy

The accuracy of classification of different sleep stages not only depends on the type of
signal obtained from different sensing modalities but also on the algorithms developed
to process them further. Direct comparison between the performance of different systems
is difficult due to a number of factors [152], including the fact that the metrics used by
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the authors of different studies can be very different. Further, since there are multiple
sleep stages, Cohen’s kappa is a better measure to indicate the accuracy of classification.
Consequently, both the reported classification accuracy and kappa values are included in
Table 1. It should be noted that these values have been obtained from the papers and that,
if they were unavailable, they were computed from the reported results (where sufficient
information on classification was available). The studies being performed in different
locations with different sample sizes and different stages being classified represent a
potential source of bias in the reporting of results. Hence, Table 1 lists the various potential
bias sources, and the accuracy needs to be looked at in context. While the effect of study
location is not entirely clear, it is likely that those studies classifying smaller number of
sleep stages achieve higher accuracy.

Despite the accuracy reporting challenges, it can be noted, with some exceptions,
that the majority of of PPG-based three- or four-class systems are able to achieve classi-
fication accuracies between 65–75%, with kappa values between 0.5–0.6. This is because
some of these systems using PPG and accelerometry together tend to overestimate N3
sleep and to underestimate other stages [153]. Those using EEG as the signal source are
able to achieve classification accuracies between 80–90%, with the highest kappa values of
over 0.8 indicating strong agreement. If the classification stages are limited to sleep and
wake classes, then accelerometers can also achieve 90% accuracy. Additionally, classifi-
cation based on signals obtained from pressure and radar sensors for the wake, NREM,
and REM stages are shown to achieve accuracy up to 80%. In general, systems based on
EEG have the highest accuracy and kappa values whereas others based on accelerometers
and non-contact sensors have the lowest for 5-state staging [154,155]. While EEG-based
methods achieve higher classification compared to other sensing modalities, it should be
noted that the studies included in this review with EEG sensing modality predominantly
use a single channel or limited number of channels for data acquisition. This is because
of the usability challenges associated with multi-channel EEG systems that make them
unsuitable for wearable sleep staging. However, while better than other sensing modalities,
the accuracy of single-channel EEG systems are reduced when compared to multi-channel
sleep staging systems. In particular, a loss in accuracy is more pronounced in the REM and
N1 stages, resulting in a decrease in overall agreement [60].

3.6. Usability

Wearable devices are a relatively recent development, but several usability studies
have already been published to understand the requirements to make them accessible for
a wide range of population [156,157]. Although the usability requirements of wearable
sleep staging devices are similar to those of other wearables, where different trade-offs
pertaining to the battery life, power consumption, human factors, size, and weight need to
be taken into account, there are certain additional constraints [158]. For example, since they
are likely to be worn just before sleep, they need to be very easy and quick to put on. If this
is not the case, user compliance will be very low. Additionally, compared to wearables
used during the day, devices designed to monitor sleep need to be more comfortable to
avoid disrupting sleep. These are the main reasons why polysomnography is difficult to
use on a regular basis outside of clinics without the supervision of trained staff to connect
the various electrodes.

The general trend with wearable sleep detection and staging systems is to use a
reduced subset of PSG sensors. Most notably, these include using ECG or one-channel EEG
that is considerably easier to use for patients and to provide a wealth of information useful
for scoring the signals. However, the reliability of signals due to electrode displacement
throughout the night remains a challenge [133,134]. Additionally, the cost of EEG-based
systems are higher due to the advanced electronic circuitry needed to acquire high-quality
signals. As a result, using PPG and accelerometry with wrist-worn devices remain the
most usable option in terms of comfort for patients. These sensors are already available in
a myriad of consumer devices with integrated software to analyse sleep stages and thus do
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not interfere with the normal lifestyle of patients. However, due to the inherent sensing
limitations, systems using these sensors are unable to identify all five stages of sleep.

3.7. Power Consumption

Power consumption is a major design consideration in wearable systems, particularly
for sleep staging, where any device should be capable of running for 8–10 h at least,
which is the duration for normal sleep. Unfortunately, there are very few articles that have
reported developing specific systems and their power consumption. A single-channel EEG-
based integrated circuit for automatic sleep staging developed in [72] reported a power
consumption of 575 µW. Another integrated circuit using EEG and EMG channels in [101]
reported significantly lower consumption at 5 µW. Finally, an integrated system using
EEG, EOG, and EMG channels in [150] reported 71 mW as the power consumption of their
system. Apart from the latter system, which has a relatively higher power consumption,
all are capable of delivering multi-night recordings using small coin cell batteries with a
typical capacity of 200–300 mAh.

3.8. Challenges and Future Directions

The rise in consumer focus on sleep awareness as well as an increase in understanding
the importance of sleep [159] will lead to many more wearable devices being developed to
quantify the different sleep stages and to assess sleep quality. Based on the current trends,
it is likely that these future systems will become smaller and easier to use for the patients.
From a technical development viewpoint, they are likely to use a maximum of one or two
sensing modalities to extract direct or indirect parameters that can be mapped to the sleep
stages. However, there are a number of usability, reliability, and regulatory challenges that
need to be explored.

It is pertinent to note that, regardless of the sensing modality used, sleep staging is
only a subset of full polysomnography and, thus, any wearable being developed for sleep
staging cannot replace PSG. It can, however, be used to triage patients and to prioritise
access to PSG for those who need it the most. Additionally, it can be useful for long-
term sleep monitoring of patients as well as other subjects for research. This will require
overcoming usability challenges so that patient compliance over several weeks is high.
This, in turn, requires creating systems that do not inconvenience users by requiring them
to charge the devices regularly or to negatively impact their comfort during sleep.

Although an increasing number single-sensor devices are developed with improved
accuracy, their utility and acceptability in the medical community is limited. For example,
the heart rate is used in most commercial fitness trackers for sleep scoring. This is advan-
tageous since the heart signal can be useful as an indicator for other health conditions.
However, there are no standard guidelines that define how heart rate changes should be
mapped on to the sleep stages. This is true for all signals other than those obtained from the
EEG. As a result, such devices are not regulated as a medical device; thus, their diagnostic
utility is currently very limited [155]. Future research should tackle this by carrying out
large trials to establish the diagnostic utility of non-EEG-based signals for sleep detection
and staging.

More and more wearable sensors are being developed to monitor cardiac, respiratory,
and other physiological parameters [160–163]. Despite the shrinking size of sensing tech-
nologies and low-power electronic circuitry, one of the limiting factors that remains in PSG
is the process of electrode attachment. This is essentially a usability issue that requires more
research in the area of flexible electrodes that can be used reliably over a longer period of
time. This is important since a wearable multi-channel PSG will provide more diagnostic
value than a wearable single-channel sleep staging system.

Finally, already an important area of focus for researchers, processing and classifica-
tion of sleep signals will continue to grow. This will involve creating more low-complexity
and higher accuracy algorithms for signals acquired from the different sensing modali-
ties. However, algorithms developed for similar signals obtained from different sensing
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modalities may not be compatible with each other [164]. Further, the limited availability
of accessible data sets makes it difficult to develop and benchmark such algorithms [165].
Having a wearable system will make it easier to obtain and maintain large data sets of
different sleep signals that could be helpful for researchers to assess and compare the
accuracy of their algorithms. Since the scope of this paper is limited to sensing modalities,
readers interested in a review of algorithmic approaches for automatic sleep staging are
referred to [11]. Other deployment challenges of long-term home-based devices include
their management, security, updates, and maintenance, as discussed in [166].

4. Conclusions

The limitations of PSG due to its usability and cost has resulted in a number of
different sensing modalities being explored for sleep detection and staging. Despite the
issues with PSG, it can be concluded that, when a single sensing modality is used, EEG is by
far the most popular choice, given that it conforms broadly to the AASM scoring guidelines.
There are usability and reliability issues with the use of EEG; however, recent advances in
the area of wearable EEG [167] such as ear-EEG and tattoo-like electrodes are likely to help
with these and to improve the likelihood of obtaining reliable signals during sleep. When a
combination of sensors are used, PPG and accelerometry together are the most popular
option. This is partly because these sensors are widely available in convenient wrist-worn
consumer devices. However, regardless of the convenience in use, this combination of
sensing modality is unable to identify all stages of sleep and its accuracy is also lower
compared to EEG. Further, as a result of the low accuracy of commercial systems that
use this sensing modality for sleep staging, they are not deemed a suitable alternative to
PSG [138]. Thus, it appears that a wearable EEG is more accurate compared to PPG and
accelerometry whereas the latter is a more attractive option if usability is more important.
Other sensing modalities such as ECG, radar, audio, and pressure sensors are also a more
user-friendly option with limitations on what sleep stages they can reliably discern.

Although the results in this paper show a clear trend towards specific sensing modali-
ties, there are certain limitations of this study. For instance, because of the focus on sensing
modality, the discussion of the different algorithms and processing requirements is not
included. This, however, is important from a system design viewpoint since some of
the computational requirements for implementing these algorithms can add additional
constraints to the sensing power consumption. Additionally, as with the design of any
wearable device, various other factors will have different weights depending on the appli-
cation and certain trade-offs will be needed. For example, a device designed for medical
use will need a higher accuracy with resolution of all the stages of sleep whereas a con-
sumer sleep monitoring device will lean towards usability as the most important factor.
Nevertheless, the results presented in this paper can help the designers of wearable sleep
detection and staging devices make these informed choices and trade-offs. Understanding
the choice of sensor for wearable sleep staging and the limitations on signals obtained from
that sensor is still important on its own, and thus, the results of this paper can be useful for
designers of wearable devices for sleep detection and staging to make important decisions
at early stages of their product development life cycle.
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Abbreviations
The following abbreviations are used in this manuscript:

PSG Polysomnography
EEG Electroencephalography/Electroencephalogram
EOG Electrooculography/Electrooculogram
EMG Electromyography/Electromyogram



Sensors 2021, 21, 1562 15 of 21

ECG Electrocardiography/Electrocardiogram
BCG Ballistocardiography/Ballistocardiogram
ACC Accelerometer
RIP Respiratory Inductive Plethysmography
EDA Electrodermal Activity
PPG Photoplethysmography/Photoplethysmogram
REM Rapid Eye Movement
NREM Non-Rapid Eye Movement
R&K Rechtschaffen and Kales
AASM American Academy of Sleep Medicine
HBI Heart Beat Interval
RRI R-R Interval
PPI Pulse Peak Interval
HRV Heart Rate Variability
PRV Pulse Rate Variability
RRV Respiratory Rate Variability
HR Heart Rate
RR Respiratory Rate
PTT Pulse Transit Time
EDR ECG-Derived Respiration
LED Light Emitting Diode
IoT Internet of Things
OSA Obstructive Sleep Apnoea
SDB Sleep Disordered Breathing
PLMS Periodic Limb Movements of Sleep
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