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Abstract: Vertical ground reaction force (vGRF) can be measured by force plates or instrumented
treadmills, but their application is limited to indoor environments. Insoles remove this restriction but
suffer from low durability (several hundred hours). Therefore, interest in the indirect estimation of
vGRF using inertial measurement units and machine learning techniques has increased. This paper
presents a methodology for indirectly estimating vGRF and other features used in gait analysis from
measurements of a wearable GPS-aided inertial navigation system (INS/GPS) device. A set of 27
features was extracted from the INS/GPS data. Feature analysis showed that six of these features
suffice to provide precise estimates of 11 different gait parameters. Bagged ensembles of regression
trees were then trained and used for predicting gait parameters for a dataset from the test subject
from whom the training data were collected and for a dataset from a subject for whom no training
data were available. The prediction accuracies for the latter were significantly worse than for the first
subject but still sufficiently good. K-nearest neighbor (KNN) and long short-term memory (LSTM)
neural networks were then used for predicting vGRF and ground contact times. The KNN yielded a
lower normalized root mean square error than the neural network for vGRF predictions but cannot
detect new patterns in force curves.

Keywords: gait analysis; ground reaction force; ground contact time; INS/GPS; machine learning;
deep neural network

1. Introduction

Contemporary approaches for gait analysis include direct measurement of boundary
conditions (ground reaction forces GRF and moments GRM or alternatively the center
of plantar pressure CoP) under each foot [1]. Currently, stationary, floor-mounted force
plates or instrumented treadmills are being used as gold standard setup to measure these
parameters. Typical vertical GRF (vGRF) curves during walking and running are shown in
Figure 1.

Alternatively, gait parameters can be measured by instrumented insoles [2]. Although
current pressure insole sensors show limited durability and high sensitivity to their bound-
ary condition in the shoe, this technology has been shown to achieve competitive average
accuracy for measuring vGRF [3]. Some important parameters like the ground contact time
can be computed from the GRF data.

Indirect estimation of ground reaction forces and ground contact time (GCT) using
inertial measurement units (IMU) is a growing field of research thanks to the development
of small wearable sensors and machine learning techniques (see [4] for a comprehensive
review). The benefits of using IMUs to compute GRF and GCT are cost effectiveness, ease
of use, and accessibility to the general population [4]. Usually these methods use either
regressions, random forests, artificial neural networks, or convolutional neural networks to
compute relationships between the acceleration vector and gait features [5–10]. However,
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due to the physiological differences between people, these methods require calibration or
training data for each person to estimate gait features with reasonable accuracy [11,12].

Figure 1. Example of vertical ground reaction force of left foot with respect to speed and normalized
stride duration.

One drawback of most proposed methods is that they require to model the biome-
chanical system to a certain extent [1]. This modeling requires extensive knowledge of
subject-specific parameters (e.g., mass, body dimensions, moment of inertia, etc.), which
causes inaccuracies and uncertainty [4]. For example, in [13] the authors approximate the
GRF with an artificial neural network and measurements from a single IMU, which has to
be located on a subject’s center of mass.

Other challenges in the estimation of ground reaction forces include the determination
of antero-posterior and medio-lateral components and GRF in situations where both feet
touch the ground, and the estimation of peak forces [4]. Therefore, in the literature the focus
is usually on estimating only vertical ground reaction forces and ignore antero-posterior
and medio-lateral components. In this manuscript, the restriction to the estimation of vGRF
is due to the insoles used as reference, as they only measure the vertical component. We
solve the challenge of estimating GRF when both feet touch the ground using a deep neural
network.

In [12], we presented a measurement setup for continuous 3D analysis of gait mechan-
ics and technique during outdoor running and walking on level terrain, which was based
on an inertial navigation system (INS) combined with a Global Positioning System (GPS)
receiver (INS/GPS) and a gait segmentation algorithm. The aim of this paper is to present
a methodology for indirect estimation of vGRF, GCT, and some other target features that
can be directly measured only by instrumented insoles or by force plates. Parameters such
as peak or average vGRF of single steps suffice for many applications and can be computed
also on consumer-grade devices. We estimate the parameters using traditional machine
learning techniques (bagged ensemble trees) and compare them to measurements and
target feature values derived from instrumented insoles. In addition, we use K-nearest
neighbors (KNN) and deep neural networks for estimating vGRF and GCT label curves.

2. Materials and Methods

This section describes how to predict the vertical component of GRF and GCT using
a single body-mounted INS/GPS device, instrumented insoles, and different supervised
machine learning approaches. Figure 2 shows the measurement equipment and data
processing workflow. The INS/GPS datalogger has been explained in [12]. Moticon
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instrumented insoles [14] were used for training, validation and providing reference for
GRF and GCT.

Figure 2. Measurement setup and the sequence of data processing steps used in this study.

2.1. Measurement Setup

The measurement setup consisted of an INS/GPS datalogger and instrumented in-
soles. The datalogger included a Raspberry Pi-3 model B board (Raspberry Pi Foundation,
Cambridge, UK) running Linux OS, a Vectornav VN-200 GPS-aided inertial navigation
system (INS/GPS), a GPS antenna, and a 4200 mAh power bank (see Figure 2). INS/GPS
data were collected on a memory card in the datalogger’s Raspberry Pi. The INS/GPS
data were sent to the memory card through a wired connection, which ensured that no
data were lost. After the experiment, the data were transmitted to cloud storage using a
4G/LTE USB modem connected to the Raspberry Pi. Data from the Moticon insoles were
collected on the internal memory of the insoles. Jumps with both feet were executed at the
beginning and at the end of data recording, to obtain simultaneous toe-off and touch-down
times for both feet. The jumps caused sharp peaks in the vGRF measured by the insoles
and the vertical velocity measured by the datalogger. Using these peaks, it was possible to
better synchronize the insole data of both feet and insole data with datalogger data. The
synchronization of insole and datalogger data as well as the data analysis was done offline
on a computer after the experiment. A detailed description of this setup was provided
in [12]. For our outdoor walking and running tests on a level track, the datalogger unit
was attached to the torso of the test subject. The idea was to use the datalogger in a similar
way as commercially available heart rate monitor straps. Therefore, we refrained from
considering noise sources that are caused, for example, by backpack rotation or movement
if it is not fastened tightly on the back. A risk for constant misalignment of the datalogger



Sensors 2021, 21, 1553 4 of 19

remains but is uncritical as the IMU can align itself and output data were computed in the
geographical coordinate frame.

The Moticon wireless sensor insoles measured the pressure from 13 capacitive pressure
sensors per insole, which cover approximately 50% of the insole surface [14]. Pressures
between 0.0 and 40.0 N/cm2 can be recorded with a resolution of 1.0 N/cm2. The accuracy
in peak total force measurements in walking is claimed to be ±25% [15]. In [3], OpenGo
insoles were tested for various movements. The force impulses measured by OpenGo
insoles were 13–34% below those of the force plates, but very highly correlate to the
measurements recorded by force plates (0.8–1 in most situations). For the tests in this paper
pressures were sampled at 50 Hz. The Moticon insoles were fitted inside Asics-DS-trainer-
16 neutral running shoes by replacing the original insoles.

2.2. Data Acquisition

The INS/GPS data were computed in the geographical coordinate frame. Position,
velocity, acceleration, orientation, angular velocity, and ground track (the path on the
Earth’s surface) were measured at a sampling rate of 400 Hz [12]. Most known studies on
walking and running biomechanics use IMUs with output rates of up to 100 Hz. However,
this is not enough to track body dynamics during sprint running when the step frequency
is about 5 steps per second [16]. Our field experiments confirmed that the selected output
rate of 400 Hz satisfies demands of running biomechanics.

With the Raspberry Pi-3 short delays can occur and a synchronization error of up to
2.5 ms is possible, which is less than the used sampling rate. Thus, even for fast running
the synchronization error is unproblematic.

The VectorNav VN-200 INS/GPS sensor underwent a robust calibration and accep-
tance testing process at the manufacturing facility. According to VectorNav, the INS/GPS
yields velocities with an accuracy of ±0.05 m/s in real-time application. Its inertial heading
accuracy is 0.3◦ root mean square (RMS), while for pitch and roll the RMS is 0.1◦. The
angular resolution is less than 0.05◦and the repeatability less than 0.1◦.

In order to achieve the claimed accuracy, a good GPS signal without multipath is
required. It could be improved by postprocessing [17]. In order to obtain accurate heading
estimates the subject had to move at a speed greater than approximately 1.5–2 m/s, which
is slightly above the preferred walking speed. At standstill the heading accuracy dropped
to approximately 1◦–2◦, depending on the magnetic environment [12].

The insoles logged pressures for each of the 13 sensors in an insole and 3D accelerations
using an accelerometer in the insoles, and computed total pressure, plantar pressure
distribution, and two centers of pressures. However, in this paper only vertical foot force
and pressure were used (see [12,18] for details). One aim of our study was to develop
algorithms that enable insoles to be replaced with the datalogger without significant
accuracy degradation of vGRF estimates.

2.3. Data Processing

The required data processing has been described in detail in [12]. Accelerations and
velocities were computed in the anatomical frame. Strides were segmented using our gait
segmentation approach from [12]. Once the data were segmented into steps, features or
metrics that are commonly used in walking and running were computed for each step
to facilitate analysis of the data (see [12,18] for details). The following features are of
importance in the analysis in the later sections of this paper:

• Step length: distance traveled during one step
• Vertical displacement: peak-to-peak difference in vertical movement
• Speed averaged over one step: arithmetic mean of the speed (=step length/duration

of step)
• Contact time: stance phase duration
• Double support time (only during walking): time when both feet touch the ground
• Flight time (only during running): time when both feet are in the air
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Examples of segmented data and features computed for each stride in walking and
running are shown in Figures 3 and 4, respectively. Speed and its standard deviation (speed
SD), stride duration, vertical displacement, touch-down and toe-off times, and forward and
vertical accelerations were obtained from the INS/GPS. Peak vGRFs, impulses, ground
contact times, flight times, and double support times were obtained from the insoles.

Figure 3. Example of the data computed by the INS/GPS and Moticon insoles during walking.

Figure 4. Example of the data computed by the INS/GPS and Moticon insoles during running.

2.4. Feature Engineering

The purpose of feature engineering is to identify valid, useful, and understandable
patterns in INS/GPS data that have strong correlation with the target parameters but
minimum inter-correlation with the other features. The target parameters list includes
parameters that can only be extracted from insoles, namely, GRF curve, peak vGRF, impulse,
ground contact time, flight time, and double support time.

In machine learning, optimal feature selection is crucial for developing simple yet
reliable prediction models. Of equal importance are strong absolute correlations between
input and target features. In addition, the input features chosen for training prediction
models should be uncorrelated or only weakly positively or negatively correlated to each
other to avoid accuracy degradation when applied to unseen (test) data [18].

It is well known that speed is negatively correlated with GCT and double support
time (see, e.g., in [19]); speed is also positively correlated with flight time, peak vGRF, and
impulse. Therefore, speed is considered as one input feature.
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Even if the datalogger is tightly mounted on the test subject’s back, there is a small
chance of shifting. Furthermore, the sensor orientation for different subjects generally dif-
fers. Therefore, features derived from 3D angle were ignored, because the angle oscillations
depend on the orientation of the VN-200. The 3D angular velocities are also orientation
dependent, since they are logged in the sensor frame, and were also ignored.

Figure 5 shows the absolute correlations between pairs of input features. The ad-
ditive (p-p) means that the range of the input feature is used, e.g., speed (p-p) is the
difference between minimum and maximum speed of stride data vectors; the additive SD
indicates that the standard deviation of stride data vectors is used as feature. The standard
deviation-based input features are highly correlated (absolute correlations > 0.9) with
the corresponding range (p-p) input features, except for speed. Therefore, they can be
eliminated/ignored.

The optimal input features were selected by correlation-based feature selection. If the
absolute cross-correlation between any two input features was larger than 0.9 then one of
them was dropped. The set of optimal input features consisted of speed, stride duration,
forward acceleration (p-p), vertical acceleration (p-p), speed (p-p), vertical displacement
(p-p), ground track (p-p), and standard deviation of the speed vector. Figure 6 shows
the absolute correlations between the eight optimal input features and the target features,
which are the gait parameters.

Figure 6 shows that speed (p-p) and ground track (p-p) are only weakly correlated
(≤0.3) to any of the target values. Therefore, they too can be omitted from the list of optimal
input features, which now consists of only six input features: speed, stride duration,
forward acceleration (p-p), vertical acceleration (p-p), vertical displacement (p-p), and
standard deviation of speed.

Furthermore, the toe-off time of the right foot (TOR) is only weakly correlated (≤0.3)
to the input features. Prediction results for TOR were inaccurate, which is in line with the
weak correlations. Thus, TOR was omitted and finally 11 target features were retained:
Touch-down time of left foot (TDL), toe-off time of left foot (TOL), ground contact time
of left foot (GCTL), peak vGRF of left foot (peak vGRFL), impulse left-foot, touch-down
time of right foot (TDR), ground contact time of right foot (GCTR), peak vGRF of right foot
(peak vGRFR), and impulse right-foot.
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2.5. Traditional Machine Learning Techniques

The Matlab regression learner app was used to train regression models for the remain-
ing 11 target foot gait parameters. Furthermore, flight time and double support time can
be predicted with sufficient accuracy, although they depend on the movement of both
feet. The regression models of peak vGRFs and impulse (for both feet) were trained after
normalizing the target parameters using the subject’s body weight, in order to make the
prediction models independent of a subject’s weight (see [18] for details).

Three types of regression models were trained for the 11 target parameters:

• Bagged ensemble of regression trees (min. leaf size: 8 with 30 learners) by considering
six optimal features as input (referred to as 6 features in the remainder of this paper).

• Bagged ensemble of regression trees (min. leaf size: 8 with 30 learners) by considering
principal component analysis ([20], p. 260 f.) (PCA) with six numeric components.

• Bagged ensemble of regression trees (min. leaf size: 8 with 30 learners) by considering
all 27 features as input (referred to as all features).

Furthermore, the K Nearest Neighbor (KNN) approach (see in [21], p. 174 ff.) for
details) was used for selecting strides from a training dataset that would match peak vGRF
and time parameters of test strides. The results are presented in Section 3.3.

2.6. Deep Neural Networks

The vGRF curve can be split into single strides, which each have two distinct character-
istics, height (peak vGRF) and width (stride duration, GCT, toe-off (TO), and touch-down
(TD)) [18]. The challenge is that the stride characteristics are continuously changing during
locomotion. Traditional machine learning-based methods for predicting the stride charac-
teristics are highly dependent on the size of a training set containing characteristics from
various strides. Furthermore, they are limited to detecting only known strides and cannot
detect new patterns in the force curve.

Deep neural networks do not suffer from these two major drawbacks and enable the
prediction of each point in the vGRF curve using current and previous raw measurements
of INS/GPS logged data. Furthermore, the deep learning method enables the estimation of
GCT labels, with 1 indicating that the foot is in contact with the ground and 0 indicating
that the foot is in the air. The predicted vGRF and GCT (label) curves can then be compared
to the vGRF measured by the Moticon insoles and the GCT labels that are derived by
postprocessing the vGRF and foot pressure data from the insoles.

One approach for the estimation of vGRF and GCT by neural networks has been
discussed in [12]. As the aim is to predict continuous vGRF and GCT curves the estimation
problem is a time series problem, which means that a recurrent neural network (RNN)
is a potential solution. Because current vGRF and GCT depend on large numbers of
previous data points, long short-term memory (LSTM) or gated recurrent unit (GRU) RNN
architectures are believed to yield better predictions than vanilla RNN [12]. In this paper,
two separate LSTM neural network regression models were trained for vGRF and GCT
predictions.

3. Results

This section explains the collected data. In addition, it presents and discusses the
results for vGRF feature predictions using the methods explained in Section 2.5 and the
results for vGRF and GCT curve predictions using the methods explained in Section 2.6.

3.1. Data Description

In this paper, data from the INS/GPS datalogger and Moticon insoles for two healthy
adults were used (subject 1: male, 72 kg, 178 cm, 26 years; subject 2: male, 64 kg, 171 cm,
27 years). The INS/GPS data were synchronized manually with Moticon insole data.
After gait segmentation using the approach described in [12], three different datasets were
prepared.
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All three datasets were extracted from continuous motion data for a walk-run ex-
periment with varying speeds. Therefore, each dataset contained strides from walking,
speed-walking, jogging and running. The training dataset consisted of 1743 strides from
subject 1. The mean stride duration was 1.039 s, and the speed varied between 0.77 and
5.90 m/s. INS/GPS data were measured at 400 Hz resulting in 725,017 data points. Two test
datasets were prepared: one containing 388 strides from subject 1 and one containing 565
strides from subject 2. The speed distribution (foot landing) of chosen strides is displayed
in Figure 7. Double GRF peak indicates data from walking or speed-walking while single
GRF peak indicates data from jogging or running. In walking, a foot touches the ground
with the heel first. Then, the weight is transferred to the forefoot before toe off. Thus, there
are always two peaks. In running, only the forefoot touches the ground. While the speed
for strides from jogging and running, in general, is higher than the speed for strides from
walking and speed-walking, Figure 7 reveals that there is no particular speed threshold
that could be used to decide whether the force curve should take the shape of a “M” (i.e.,
two force peaks in a stride) or an inverted “V” (i.e., one force peak in a stride). The analysis
of the strides showed, furthermore, that the stride curve also depended on the type of foot
landing. This was clearly noticed for speed-walking and jogging.

As can be seen from Figure 7, the training data consists of mostly walking strides (1559
strides, 89.44% of all strides) of medium walking speed. Only 184 strides from running
are included in the training data. For the two test sets the amount of walking and running
strides are significantly closer: test set 1 contains 278 walking (71.65% of all strides) and 110
running strides and test set 2 contains 352 walking (62.30% of all strides) and 213 running
strides.
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Figure 7. Speed-stride histograms for training set and both test sets.

3.2. vGRF Feature Prediction Results

The three types of regression models described in Section 2.5 were trained for each of
the 11 foot parameters using segmented data of the training dataset. Foot parameters for
both test sets were then estimated from data collected with the INS/GPS datalogger and
compared with the Moticon insole measurements.

Because some of the parameters, such as peak vGRFs (vGRFL_peak and vGRFR_peak)
and foot impulses (impulse_L and impulse_R), depend on the subject’s bodyweight [18],
the regression models were trained with target data normalized by the bodyweight (BW;
i.e., divided by BW). This helped to estimate the target parameters of another subject with
different body weight. The regression models were used to predict normalized target
parameters which were then multiplied by the body weight of the subject to obtain target
parameter estimates.

The normalized root mean square errors (NRMSE) values for all 11 gait parameters
based on the three types of regression models for the test sets of subject 1 and subject
2 are shown in Figures 8 and 9, respectively. Both subjects differed in body weight and
height, which makes it likely that also their gait characteristics differ. The NRMSE values
in Figures 8 and 9 support this assumption; the errors for test set 1 were, in general,
significantly lower than those for test set 2. As the training data were from subject 1 there
should be no difference in gait characteristics for the training set and test set 1.

A decision whether an achieved NRMSE is sufficient or not depends on various
factors, such as the application. Based on the feedback received from experts, athletes, and
coaches, the achieved accuracies for training set and test set 1 are sufficient for walking
and endurance running. For sprint running (by professional athletes) and “the last few
steps in jumping events” the accuracy might be insufficient. As our interest was to develop
a datalogger and estimation methods that could be used for walking and (endurance)
running applications, the feedback was encouraging and confirmed our assumption. For
example, the vertical GRF varies usually between 1.0 and 1.5 BW for walking and 2.0 and
2.9 BW for running [22]. Thus, NRMSEs of 2.7–4.4% are sufficient. For example, for a vGRF
of 2.5 times the BW this corresponds to average errors between 0.0675 and 0.1100 BW. Test
set 2 contained strides from subject 2, and its errors were sometimes 3–4 times as high as
those of the training set. This means that predicting gait parameters for a subject for which
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no training strides are available significantly increases the NRMSEs of the estimates. While
the accuracy of force related parameters is still acceptable, the NRMSEs for time related
parameters might be too high for certain applications.

Figure 8. Normalized root mean square errors of three types of regression models (see Section 2.5 for details) for gait
parameter estimates of training set and test set 1.

Figure 9. Normalized root-mean square errors of three types of regression models for gait parameter estimates of training
set and test set 2.
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It is important to note that the TD and TO parameters depend on the stride segmenta-
tion method as they are events and their time is measured with respect to the beginning of
the gait strides. GCT, peak vGRF, and foot impulse depend on the complete stride vector
and should be less dependent on the stride segmentation method [18].

The regression models using either the six optimal features or all 27 features as input
yielded the lowest training errors (models trained on six optimal features provided lowest
NRMSE for nine of 22 parameters; models trained on all 27 features provided lowest
NRMSE for 12 of 22 parameters; for Impulse_R of test set 1 both provide smallest NRMSE).
Only for TDL of test set 1 and Impulse_R of test set 2 the regression model trained on
the first six principal components yielded the lowest NRMSE. However, the other two
regression models performed equally. Based on these results, the use of either all features
or the six optimal features as input for the ensemble bagged trees can be recommended as
they usually yield similar NRMSEs. In order to make a decision which of the input sets
should be chosen more data, preferably from different subjects, should be collected and
analyzed.

3.3. vGRF Curve Prediction Approach and Results (KNN)

In order to construct the vGRF curve for a test set, it is essential to select vGRF strides
from the training data that match both peak vGRF and time parameters (stride duration,
GCT, TO, and TD) of the test strides. A simple approach for picking a target stride is the
K-Nearest Neighbor (KNN) approach (see in [21], p. 174 ff. for details). It can be used to
find a stride from the set of training strides that best matches the test stride with respect to
the time parameters. The peak vGRF is not considered here, because of its different scale.
Like the bagged ensemble trees, the KNN works with segmented data.

First, the vGRFL and vGRFR training strides normalized by body weight were divided
into separate collections for left and right foot strides. Then, their respective foot time
parameters were either calculated or estimated by the bagged ensemble of regression trees
models based on the six optimal features. For left foot vGRFL strides, the input feature
space included stride duration, TOL and GCTL. While stride duration could be directly
calculated from the data, TOL and GCTL had to be estimated by the regression models.
Due to the large NRMSE of TDL predictions, this parameter was omitted. Similarly, for
right foot vGRFR strides, stride duration and predicted GCTR were considered as input
feature space (TOR was omitted from the set of target features. See Section 2.4 for details.).
The respective foot time parameters were then used for calculating the Euclidean distance
between test stride and training strides. Using the Euclidean distance as similarity measure,
the stride indices of the K most similar vGRFL and vGRFR training strides were sought
and the values were averaged to obtain vGRF stride predictions. Our analysis revealed the
optimal K to be between 5 and 12. For these values the results varied insignificantly. The
NRMSE for the first test dataset (subject 1) for continuous curve generation were 6.63% for
vGRFL and 5.37% for vGRFR with K = 8 neighbors.

3.4. Predictions by Deep Neural Network

Separate LSTM neural network regression models for vGRF and GCT predictions
were trained using the Keras frontend to Google’s TensorFlow. The training data consisted
of six input feature vectors, including unprocessed 3D acceleration and 3D angular rates,
and two target output feature vectors. Orientation quaternion, ground speed, and vertical
velocity were ignored as the leave-one-out analysis in [12] revealed that they have no
significant impact on the classification accuracy. In case of vGRF curve prediction, the
target output feature vectors were vGRFL and vGRFR; in case of GCT label predictions,
the target output feature vectors were GCTL-labels and GCTR-labels.

Feature selection was done based on the consider only one and leave-one-out approaches.
It showed that forward and vertical acceleration were the most important input vectors,
being highly dependent, to predict the vGRF and GCT labels. Adding lateral acceleration
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and 3D angular velocity improved the predictions to some extent. Adding further input
features did not improve the prediction accuracies.

In order to find the best neural networks, several combinations of LSTM and GRU
layers were tried by considering different numbers of neurons in layers and by changing
the hyperparameters. The tests showed that the performance of the neural network is
robust against changes in number of neurons as long as it is ensured that the model can
learn sufficient features of the input data. The used neural network model structure is
shown in Figure 10.

Figure 10. Structure of the long short-term memory (LSTM) neural network regression models used
for predicting vertical ground reaction forces (vGRF) and ground contact time (GCT).

The used NN had two LSTM layers along with one input noise layer in between,
which improved the network robustness towards test data noise. The noise layer applied
additive zero-mean Gaussian noise to intentionally corrupt the input data to mitigate
model overfitting and was only activated during the model training phase. After the
second LSTM layer, a dropout layer was added to improve generalization by randomly
dropping a specified ratio (dropout rate) of neurons. These dropped neurons had no effect
on the activation on the neurons in the following layers during the training phase. The
dropout layer was also activated for model training only. Finally, a fully connected dense
layer was added to map the hidden layer data to the two independent target outputs.

The input data vectors, which were measured at 400 Hz, were scaled to values between
−1 and 1 before being split into sequences of 400 samples with a shift of one sample for
each new sequence. The reason for choosing sequences of 400 samples was the average
stride duration of 1.039 s in the training data, which equals approximately 400 samples per
stride. This choice yielded 724,616 training sequences for both input and target data. The
first 399 samples of each sequence were history data and the last sample was the present
input. Therefore, when calculating the loss function the initial 399 samples of the two
estimated target sequences were ignored. Furthermore, no predictions for the first 399
example points in training and test datasets could be made.

Both the vGRF NN and the GCT label prediction NN shared the same model structure
but used different activation functions. The GCT label prediction was a binary classi-
fication problem. Therefore, the sigmoid activation function was chosen at the output
layer. For the fully connected dense layer in the vGRF model, the rectified linear unit
(ReLU) activation function was used. In addition, both models used the adam optimizer
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with binary_crossentropy loss function for the GCT label model and mean_squared_error loss
function for the vGRF model. After training these models, the point to point GCT labels
and vGRF could be predicted without any direct foot pressure measurements from insoles.

The GCT label network yielded probabilities for the binary classes (1 = foot touches
the ground; 0 = foot in the air), taking values in [0,1]. These probabilities were transformed
into binary values by setting all values below 0.5 to 0 and all others to 1. Figure 11 shows a
glimpse of the final binary label predictions. The accuracy for left and right foot binary GCT
label predictions were 92.65% and 91.23%, respectively. Most prediction errors occurred
during the TO and TD events, when foot transition was ongoing.

Figure 11. Glimpse of GCT label predictions for test set 1 (binary classifications obtained by applying threshold 0.5 to binary
label probabilities).

Figure 12 shows a glimpse of the predicted vGRFL and vGRFR curves for test dataset
1. The curves accurately approximated the true vGRF measurements. The NRMSE in vGRF
prediction were 8.38% for left foot and 8.54% for right foot, respectively. However, a closer
look at the curves in Figure 12 shows that most of the significant errors occurred during the
time when the foot did not touch the ground. In these phases the GRF is zero, as predicted
by the neural network, yet the insoles recorded nonzero forces in the second half of these
phases. The reason is that in the second half of phases without ground contact the foot
moves back towards the ground, and towards the insoles (In the first half of phases without
ground contact the foot moves upwards and away from the insoles.). Thus, toes and/or
heels create some pressure on the insoles, which can be interpreted as noise. Therefore, the
NRMSEs overestimate the actual errors.
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Figure 12. Glimpse of vGRF predictions generated by the LSTM neural network for test set 1.

4. Discussion

This paper presented a methodology for indirect estimation of vGRF and GCT using
machine learning techniques and a wearable INS/GPS datalogger. For many applications
it is unimportant to know the whole vGRF curve; it suffices to describe each stride by just
a few parameters, such as peak or average vGFR during the stride and/or the ground
contact time. For example, for musculoskeletal injury analysis and prevention, active and
passive peaks of the vGRF are of great interest [9]. These parameters can be estimated by
traditional machine learning techniques, which can be run on consumer grade devices.
The advantages of the presented datalogger are that it is more cost effective and easier to
use than floor mounted force plates or pressure measuring insoles. Furthermore, it uses
only one sensor (location), thus removing the need for sensor synchronization, which is
one crucial problem for the estimation of GRF from kinematic data [4]. The location of the
datalogger on the upper back means that it does not move with respect to the body, which
removes the need to model inertial properties [4].

In a first step, correlations between 27 features of segmented INS/GPS data were
calculated, which reduced the list of relevant features to 8. The correlation of these 8
features with 12 gait parameters that could directly be extracted only from insoles were
then computed in a second step, which enabled the elimination of two further features
of segmented INS/GPS data. The analysis also showed that no features from INS/GPS
data showed high correlation to the toe-off time of the right foot, so this parameter was
eliminated from the further analysis. These feature selection steps were of importance
for developing simple but reliable prediction models. For example, the KNN algorithm,
which was used for vGRF curve predictions in Section 3.3, has a tendency to be fooled by
irrelevant features, which can be avoided by using the set of six optimal features from the
correlation analysis.

The 11 remaining foot gait parameters were then estimated from the features of
segmented INS/GPS data using three types of bagged ensembles of regression trees and
compared to the parameter values provided by the insoles. For the regression models
the impact of feature selection was inconclusive; for some gait parameters models, using
all 27 features yielded better estimates than models using the six optimal features and
vice versa. This analysis, however, showed that using the regression models trained
with the PCA-transformed data of the six optimal features generally resulted in higher
NRMSEs. Furthermore, the impact of training data on the estimates was demonstrated.
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Gait parameter estimates in the test set for the subject whose training data were used for
training the regression models had significantly lower NRMSEs than the estimates in the
test set for the subject for whom no training data were available.

Peak vGRFs and foot impulses depend on an individual’s weight. Therefore, these
parameters were normalized for body weight. For the vGRFs and foot impulses of the left
foot this resulted in ≈50% higher NRMSEs for the subject without training data, which is
promising. However, for the vGRFs and foot impulses of the right foot, the NRMSEs were
more than 200% larger than those of the subject for which training data were available.
The reason for this discrepancy is unclear, and further studies with more test subjects are
planned to investigate this phenomenon and to obtain models that generalize better.

The final part of the analysis dealt with the predictions of vGRF and GCT label curves
based on the INS/GPS data. KNN and a LSTM neural network were used for predicting
vGRFs. The KNN provided lower NRMSEs for the test set of the subject from whom the
training data were collected. It is, however, important to note that the performance of
the KNN depends on the quality of the strides in the training set. Only if the training set
contains strides that are similar to the strides that should be predicted the K can provide
accurate estimates. This requires a large number of diverse strides in the training set, which
in turn gives rise to the second main disadvantage of the KNN; its prediction time is linear
to the number of samples in the training database [23]. This drawback can be somewhat
mitigated by replacing the exhaustive search used in this paper for finding the K closest
training strides by k-dimensional tree search [24].

The analysis showed that the LSTM neural network yielded vGRF estimates that
were zero whenever the foot was not touching the ground. The insoles, whose vGRF
measurements are used as reference in this paper, however, recorded nonzero forces when
the foot moved downwards. Therefore, the accuracy of the predictions yielded by the
LSTM neural network is even better than the errors given in this paper, which can be
interpreted as an upper boundary.

To sum up, the regression models are used for estimating a small set of parameters
for each stride, which suffices for many applications. The KNN yields vGRF curves based
on the parameter estimates from the regression model and is therefore useful for more
sophisticated applications. However, it is restricted to modeling strides as averages over
training strides, meaning that it might not generalize well and that its curves can show
non-zero vGRF while the foot does not touch the ground. The deep neural network is
computationally demanding but yields vGRF and GCT curves with a frequency of 400 Hz.
An advantage of the vGRF curves yielded by the deep neural network is that it correctly
estimates vGRF to be zero when a foot does not touch the ground.

Comparing the achieved accuracies with those of related works is difficult, because
the used equipment, conditions, and experiments themselves varied between different
studies. However, the results from the literature can indicate whether our proposed system
is competitive. For example, in [25] two different MLP network configurations were used
for estimating vGRF during walking. The networks achieved NRMSEs of 4.7% and 4.8%,
respectively. Guo et al. [11] proposed a proxy measurement approach and used sensors
attached to the subject’s forehead, seventh cervical vertebra, and fifth lumbar vertebra.
For walking data, the authors achieved NRMSEs between 3.8% and 4.2%. Jiang et al. [9]
used four IMUs attached to foot, shank, distal thigh, and proximal thigh. A random forest
regression model was used for estimating vGRF during walking and achieved NRMSEs of
1.70–2.33% depending on the sensor location. Our datalogger was attached to the subject’s
upper back, which means that it did not move with respect to the body. For the peak vGRF
we achieved NRMSE as low as 1.6% for training data and 2.7% for test data. The vGRF
curves estimated by a KNN and a LSTM neural network yielded NRMSEs between 5.37%
and 8.54%. Keeping in mind that we estimated vGRF during walking and running with the
latter making the prediction more challenging, our combination of hardware and software
is competitive and easy to use.
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Furthermore, it is crucial to understand that the limiting factor is the accuracy of the
insole measurements, as these measurements were used for training the models. Stöggl
and Martiner found that force impulses recorded by the insoles were 13–34% below those
recorded by a force plate system [3]. Thus, if training data from force plates would be used
the accuracy of the estimates is believed to improve. The analysis in Section 3.4 showed
that the insoles falsely measured non-zero vGRF for downward foot movements while the
LSTM neural network yielded correct zero vGRF estimates. This explains part of the errors
in the vGRF curve estimation. It also illustrates one key factor for replacing the insoles by
our datalogger.

The proposed system of equipment, which was explained in detail in [12], and algo-
rithms has several advantages. First, it uses a single sensor tightly fastened to the torso of
the test subject. This removes the need for synchronization of sensors and does not require
a model of the biomechanical system or knowledge of inertial properties (see in [4] for
details). Second, the INS/GPS sends its measurements through a wired connection to the
Raspberry Pi. In the literature, often sensor networks are used that send data over wireless
connections to the processing unit. Wireless connections are, however, unreliable, often
causing (partial) loss of data and performance degradation. Third, the deep neural net-
work correctly estimated vGRF to be zero when the foot is airborne, which is a significant
advantage over the non-zero vGRF measured by insoles when the foot moved towards the
ground. Fourth, our system is not limited to estimating only vGRF and GCT, it also enables
the estimation of most parameters relevant for gait analytics.

Ancillao et al. [4] discuss three further critical aspects of GRF estimation based on
kinematic data: (1) how to determine the antero-posterior and medio-lateral components
of GRFs, (2) how to determine GRF for each foot in double support conditions, and (3) how
to estimate the absolute values of peak forces. All three problems could be solved using
our system but were out of scope for this paper.

One open problem is to improve the presented deep neural networks such that they
can also predict vGRFs and GCTs accurately for subjects for whom no training data are
available. Therefore, collecting data from more test subjects is planned, and further network
optimization will be carried out. Another limitation of the current version is that it has only
been tested for walking and running on level terrain. In future research, other activities
and types of terrains will be studied. Falbriard et al. [26] noticed in their study of foot-worn
inertial sensors that the speed had a significant impact on the biases of gait parameter
estimates. They therefore suggest a speed-dependent correction. Developing and testing
such a correction method and analyzing potential biases in the gait parameter estimates is
part of our future research.
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Abbreviations
The following abbreviations are used in this manuscript:

3D Three-dimensional
4G Fourth-generation broadband cellular network technology
BW Bodyweight
GCT Ground contact time
GCTL Ground contact time of left foot
GCTR Ground contact time of right foot
GPS Global positioning system
GRF 3D Ground reaction force
GRU Gated recurrent units
IMU Inertial measurement unit
impulse_L Left foot impulse during stride
impulse_R Right foot impulse during stride
INS Inertial navigation system
INS/GPS GPS-aided inertial navigation system
KNN K nearest neighbor
LSTM Long short-term memory
LTE Long term evolution
NRMSE Normalized root mean square error
ReLU Rectified linear unit
RMS Root mean square
RNN Recurrent neural network
TD Touch-down event
TDL Touch-down event left foot
TDR Touch-down event right foot
TO Toe-off event
TOL Toe-off event left foot
TOR Toe-off event right foot
USB Universal serial bus
vGRF Vertical ground reaction force
vGRFL Vertical ground reaction force of left foot
vGRFR Vertical ground reaction force of right foot
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