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Abstract: Autonomous vehicles are expected to display human-like behavior, at least to the extent
that their decisions can be intuitively understood by other road users. If this is not the case, the
coexistence of manual and autonomous vehicles in a mixed environment might affect road user
interactions negatively and might jeopardize road safety. To this end, it is highly important to design
algorithms that are capable of analyzing human decision-making processes and of reproducing them.
In this context, lane-change maneuvers have been studied extensively. However, not all potential
scenarios have been considered, since most works have focused on highway rather than urban
scenarios. We contribute to the field of research by investigating a particular urban traffic scenario
in which an autonomous vehicle needs to determine the level of cooperation of the vehicles in the
adjacent lane in order to proceed with a lane change. To this end, we present a game theory-based
decision-making model for lane changing in congested urban intersections. The model takes as input
driving-related parameters related to vehicles in the intersection before they come to a complete stop.
We validated the model by relying on the Co-AutoSim simulator. We compared the prediction model
outcomes with actual participant decisions, i.e., whether they allowed the autonomous vehicle to
drive in front of them. The results are promising, with the prediction accuracy being 100% in all of
the cases in which the participants allowed the lane change and 83.3% in the other cases. The false
predictions were due to delays in resuming driving after the traffic light turned green.

Keywords: game theory; lane change; traffic jam; intelligent transport systems

1. Introduction

At this point in time, numerous studies have proven the effectiveness of autonomous
vehicles in dealing with challenges such as road safety, fuel consumption, sustainability,
etc. [1,2]. Considering the scientific achievements so far, it is difficult to imagine a future
where autonomous vehicles will not be used in transportation. However, before introducing
self-driving cars on real roads on a large scale, many problems need to be addressed and
solved [3].

In the near future, we can expect autonomous and manually driven cars to coexist on
most roads. Drivers operating conventional vehicles might expect human-like behavior
from autonomous vehicles, which could cause situations of uncertainty and mistrust [4] if
the expectations are not fulfilled, and this could ultimately threaten road safety [5]. This
is particularly important in certain complex scenarios such as lane-changing maneuvers,
in which cooperation with other road users is required. To address this issue, it is vital
to design algorithms that are able to analyze human decision-making processes and in-
teraction patterns as well as able to implement models to predict the action of drivers.
Such algorithms can be designed by relying on game theory [6] or mathematical models to
analyze interactions among several players that make decisions.
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A brief description of the game theory is presented in the following paragraph.
Game theory is frequently used as a core decision-making layer of autonomous vehi-
cle algorithms [3,7,8]. The participants in the game compete with each other to protect their
interests by utilizing a strategy based on the current outcome of the game and their knowl-
edge. For lane-changing scenarios, dynamic noncooperative games are most commonly
used. The game itself is a mathematics object that is strictly defined by the following:

• a fixed number of players N = {1, 2, 3...n};
• a set of strategies S1, S2, S3...Sn with respective to the number of players;
• specific outcomes or payoffs for any possible combination of the strategies (s1, s2, s3...sn)

∈ S1 ∗ S2 ∗ S3 ∗ ...Sn (where si is a current strategy of player i).
The payoff function is defined on a set of all outcomes of the game Ui : S1 ∗ S2 ∗
S3 ∗ ...Sn → R. Any strategy s∗i ∈ Si is optimal if ∀si ∈ Si, where si 6= s∗i and
∀(s1, s2, ..si−1, si+1..sn) satisfy Ui(s1, ...si−1, s∗i , si+1...sn) ≥ Ui(s1, ...si−1, si, si+1...sn).

In this work, we propose a decision-making model based on a dynamic noncooperative
game to investigate lane changing in the urban scenario of a congested intersection, which
is achieved by the implementation of a model that predicts the decision-making process
of drivers. To this end, we assume that the game’s result can be predicted if each vehicle
maximizes the payoff of the interaction. The proposed scenario consists of a two-lane road
with traffic at an intersection regulated by traffic lights. The left lane is designated for
driving through the intersection as well as left turns. The right lane is designated only
for driving straight through the intersection. In the proposed scenario the traffic flow in
the left lane is much slower than in the right lane, since vehicles in the left lane need to
decelerate when a vehicle turns left. The vehicles in our scenario are described as follows:

• an autonomous vehicle (EGO) (in white) that performs the lane-change maneuver
and is controlled by the game theory-based strategy S;

• the following vehicle (FV) in green; and
• the leading vehicle in front of the FV, represented by LEAD (in red).

We implement the following use case, as illustrated in Figure 1, which consists of the
following series of actions:

1. When the traffic light is red, EGO enters the road from the right lane and stops behind
the last vehicle in the queue.

2. EGO needs to perform a lane change to turn left at the intersection. Due to the traffic
stopped in the left lane, EGO interacts with FV by activating the turn signal to indicate
its intention to merge in front.

3. When the traffic light turns green, FV decides whether to wait and allow EGO to
merge in front. This FV decision is made based on the perceived information related
to the current EGO acceleration and previously conveyed information by the EGO
vehicle regarding its merging intention.

According to related literature, lane-change algorithms are usually divided into the
following 3 layers [9]:

• strategic layer, related to route planning;
• tactical layer, related to decision-making processes; and
• operational layer, linked to control tasks.

The proposed model focuses on the decision-making process in the tactical layer. This
paper is organized as follows. In Section 2, relevant literature to lane changing in both
urban and highway scenarios is reviewed and reported. In Section 3, we introduce the
proposed decision-making model in detail, including the mathematical definition of payoff
functions. In Section 4, the simulation environment and scenario for model validation
are described. The game solution and the results obtained from the validation tests are
presented in Section 5. A conclusion and future directions of the presented research are
provided in Section 6.
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Figure 1. Illustration of the proposed lane-change scenario and the relevant players. The autonomous
vehicle (EGO) (in white) performs a lane change to occupy the position in front of the following
vehicle (FV) in green. The leading vehicle (LEAD, in red) is located in front of the FV.

2. Related Work

Decision making in autonomous vehicles (AVs) has been addressed in several works;
for example, the authors in [10] developed an approach to mimic human behavior. A
variety of driving styles were considered to study driving safety, ride comfort, and travel
efficiency as utility functions. Two noncooperative games were implemented using Nash
and Stackelberg equilibrium and later evaluated. The authors concluded that the devel-
oped algorithms were capable of performing the proper decisions under different driving
situations. In [11], the authors combined game theory with reverse reinforcement learning
to create an algorithm for predicting driver behavior. To this end, they relied on dynamic
noncooperative game concepts and the idea of social value orientation for game formula-
tion. The Next Generation Simulation (NGSIM) data set for highway 101 was then used to
obtain the reward function.

A work based on differential games for a fully automated lane-changing and car-
following control system (LCCS) was presented in [12]. The controlled vehicles made
decisions in order to minimize the predicted costs that resulted from undesirable situations.
The authors evaluated the discrete and continuous control variables, such as lane-change
decisions and accelerations in a simulated scenario and concluded that the approach
delivered optimal lane-change decisions and accelerations for both noncooperative and
cooperative controllers.

A further example for lane-changing decision-making based on game theory can
be found in [13]. The authors built a two-player nonzero-sum noncooperative game
model under incomplete information for mandatory lane changing. Based on Harsanyi
transformation [14], they transformed the model into a game that contained imperfect
information in order to cover both traditional and connected environments. In order to
validate the models, the authors used the NGSIM, I-80-F data set. Their model’s accuracy
was 88% and 82% for their three- and two-strategy merging event models, respectively,
and 77% and 61% for their three- and two-strategy models in non-merging events.

A similar approach that relied on Harsanyi transformation and the NGSIM data
set described a dynamic noncooperative game [15]. Two game models for connected
and for traditional environments were implemented utilizing complete and incomplete
information, respectively. The game with incomplete information was then transformed
to a game of imperfect information. In order to build the payoff functions, the authors
used acceleration as a set of players’ strategies. In line with this, a further dynamic
noncooperative game approach was implemented in [16] using acceleration as a set of
strategies. Parameters such as safety and space between vehicles were in this case used to
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build payoff functions. The authors also incorporated driver’s aggressiveness into their
model as a key factor.

As described in previous work, lane changing has been addressed in a number of
studies, with the majority of them focused on highway lane-changing scenarios.

One of the first lane-change models that focused on decision-making in an urban
scenario was designed by Gipps [17]. This model suggested a connected structure of
decisions for the driver to follow when making a decision for lane changing. It was
designed for urban traffic situations and therefore considered the influence of traffic lights,
queues, and heavy duty vehicles. Although this rule-based approach was developed in the
1980s, it is still an efficient and applicable decision-making model.

Additional studies for urban scenarios were presented in [18,19]. Lane changing was
studied by adopting fundamental triangular diagrams to obtain the optimal longitudinal
position for autonomous vehicles in an urban intersection. The authors assumed that a lane
change could not be performed when the destination lane was occupied. In real-life sce-
narios, however, we argue that interaction and cooperation with drivers in the destination
lane might enable the maneuver. Therefore, we address exactly this situation and propose
accordingly a decision-making model for a lane change in an urban intersection with dense
traffic. To this end, we adhered to game theory and adopted a similar interaction process
for our decision-making algorithm to the one defined in [20], in which a communication
scheme with request and response messages was presented. In our work, we considered
this interaction to be a competition between two drivers for a place in the traffic queue,
where players make decisions based on space and safety criteria.

As previously mentioned, most of the lane-change studies performed so far are
based on highway lane-changing scenarios, where in all vehicles, the lower speed limit
is considered to be higher than 30 km/h (depending on the country). Consequently, the
reviewed models cannot be directly applicable in more specific scenarios such as congested
urban intersections.

We contribute to the research in this main field by filling in the gap in the literature
regarding mandatory lane change in intersections with dense traffic in urban scenarios. To
this end, we study if, contrary to what the authors in [19] assumed, a lane change can still
be performed when the destination lane is occupied. We argue that, in real-life scenarios,
interaction and cooperation with surrounding traffic might enable the maneuver, and we
propose accordingly a decision-making model based on game theory for lane change. To
this end, we adapted the model presented in [16] to implement a dynamic noncooperative
game that used acceleration as part of the player set of strategies. We redesigned the payoff
functions and pertinent speed and acceleration parameters for a lane-change urban scenario
and produced a decision-making model based on two-player nonzero-sum noncooperative
dynamic game for lane changing.

A detailed description of the proposed decision-making model is presented in the
next section.

3. The Proposed Decision-Making Model

The authors in [21] categorized several game-theory-based models into 5 groups,
namely the empirical game-theory, classic Nash equilibrium, incomplete information game,
sequential game, and evolutionary game models. Based on the given classification, our
proposed decision-making model contributes to the growth of the sequential group of
game-theory models.

In our work, we assume that autonomous vehicles can request and obtain information
from nearby cars such as current position, speed, and acceleration during the red phase of
a traffic light in real time. This can be accomplished by establishing a communication from
vehicle to vehicle (V2V) and from vehicle to everything (V2X), or by obtaining data from
sensors such as depth cameras, lidar, sonar, etc. [9]. It is important to mention that, for the
sake of simplicity, the delays related to obtaining information via sensors or communication
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are not considered in this work. In this section, we focus on game formulation through a
mathematical definition of its payoff functions and the outcome.

3.1. Game Formulation

We propose a decision-making model relying on a dynamic noncooperative game
model, as presented in [16]. We aim to investigate lane changing in an urban scenario
with dense traffic approaching an intersection. We assume that the game’s result can be
predicted if each vehicle maximizes the payoff of the interaction.

To illustrate our approach, we adhere to the scenario introduced in Section 1 (Figure 1).
The strategies that can be selected by the EGO and FV vehicles are limited to two, as
described in the following lines: The strategy set available for EGO includes

1. to change lanes, namely strategy A1, and
2. not to change lanes, strategy A2.

The FV’s strategy set consists of the following options:

1. accepting EGO’s lane change or strategy B1
2. rejecting EGO’s lane change or strategy B2

The EGO outcome and selected strategy are defined as follows:

• outcome Pxy
• chosen strategy y

The FV outcome and selected strategy are defined as follows:

• outcome Qxy
• chosen strategy x

The description of the game is represented in its game theory normal-form and
extensive-form in Table 1 and Figure 2, respectively. The flow of the game is as follows: the
EGO vehicle chooses the strategy first and, then, the FV reacts to it, each trying to maximize
the outcome of the interaction.

Figure 2. Dynamic noncooperative game description in its extensive-form representation. EGO and
FV denote the players; A1 and A2, and B1 and B2 denote their respective sets of strategies. Pxy
and Qxy denote the outcome of the game, where x is the FV’s selected strategy and y is the strategy
selected by EGO.

The outcome or total payoff can be defined as a set of payoff functions such as the
payoff for time consumption, safety, and position. Each payoff depends on different
parameters, including original position of the vehicles, gap size with respect to LEAD,
driving style, cooperation degree, and urgency. The result can be predicted by defining the
outcome as follows (see Figure 2): P11 > P21 > P12 > P22 and Q11 > Q21 > Q12 > Q22.

The FV will always choose the strategy denoted by B1 because, in this case, its payoff
is the biggest. The EGO will always choose the strategy denoted by A1 strategy because
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P11 > P12. Therefore, the players will always select the strategies A1 or B1 in order to
obtain the P11 and Q11 payoffs.

Thus, by formalizing the payoffs in the form of a mathematical equation, it is possible
to model the decision-making process of drivers and to predict the result of the game. In
this paper, we propose a decision-making model that adopts the same approach. However,
instead of the strategies A1, A2, B1, and B2, the strategy set of our proposed model is
defined as acceleration ranges, as proposed in [13,15,16].

The acceleration range is defined as [0,F(aLEAD)]. The lowest acceleration cannot be a
negative value, since our game starts when EGO stops at the adjacent lane between FV and
LEAD and the players can select the strategy (acceleration) only once. The upper limit is
constrained by the acceleration and position of LEAD, as it affects the possible acceleration
strategies and payoff criteria of both EGO and FV. It is important to point out that LEAD is
not a player of the game because it does not interact with FV and EGO. The proposed game
including the set of strategies and the outcome values in its normal-form representation is
depicted in Table 2.

Table 1. Dynamic noncooperative game description in its normal-form representation. EGO and FV
denote the players; A1 and A2, and B1 and B2 denote their respective sets of strategies. Pxy and Qxy
denote the outcome of the game, where x is the FV’s selected strategy and y is the strategy selected
by EGO.

Action EGO Vehicle

A1 (Change Lane) A2 (Do Not Change Lane)

The FV vehicle
B1 (Accept) (P11, Q11) (P12, Q12)
B2 (Decline) (P21, Q21) (P22, Q22)

Table 2. Game description in its normal-form representation. EGO and FV denote the players. aEGO

and aFV denote the sets of strategies for the EGO and FV, respectively. PaFV ,aEGO and QaFV ,aEGO denote
the outcome values of the game with respect to the players.

Action EGO Vehicle

0 ≤ aEGO ≤ F(LEAD)

FV
0 ≤ aFV ≤ F(LEAD) (PaFV ,aEGO , QaFV ,aEGO)

3.2. The Payoff and Penalty Functions

The FV’s outcome is declared as the product of the penalty and the sum of the payoff
functions, such as FV’s safety and space (namely, the desire to keep the current gap with
the LEAD). The EGO’s outcome is the product of its safety payoff and the penalty. The
difference between the EGO’s and FV’S safety payoffs is that the EGO’s safety payoff is
based on the LEAD and FV vehicles while the FV’s safety payoff is based on the EGO
vehicle.

The penalty function is implemented in order to include the impact of a driver’s
driving performance into the decision-making model. It uses the average of the acceler-
ation and the speed driving patterns to determine the driving performance in the other
intersections previous to the last one, and it is then able to penalize drivers that deviate
from these values. We based our model on the work in [16]. We adapted it by redesigning
the initial payoff’s functions for suitability to our scenario, as described in detail through
the functions in the following subsections:
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3.2.1. Safety Payoff Function of FV

The safety payoff function of FV, UFV
sa f ety is defined by Equation (1) as the difference

between the original safety function in time t0, SFFV
t0 , and the safety function in time ti,

SFFV
ti :

UFV
sa f ety = SFFV

t0 − SFFV
ti (1)

The FV’s safety function SFFV(t) depends on the gap between the EGO and the FV
and is denoted by Equation (2). In order to convert the function to the range [−1; 1], 0.5 is
subtracted from the cumulative distribution function and then the result is multiplied by 2.

SFFV(t) = 2(Fcd f (GEGO,FV)− 0.5)) (2)

where Fcd f (see Equation (3)) is a cumulative normal distribution function, in which
the value of variable x has been normalized, and the mean and standard deviation values
adjusted to create the resulting function G(t).

As illustrated in Figure 3 the mean value µ and standard deviation σ were adapted
such that SF(t) equals −1 if Gv1,v2(t) is less or equal zero and SF(t) equals 1 if Gv1,v2(t) is
greater than the defined 4 maximum gap in meters.

Fcd f =
1

(σ
√

2π)
exp (− x− µ)2

2σ2 ) (3)

where: σ = 0.6, µ = 2, x = Gv1,v2(t).

Figure 3. FV’s safety function represented by safety in the form of scored points and the headway or
gap between vehicles in meters.

As denoted in Equation (4), the Gv1,v2(t) function returns the distance between two
vehicles at time t. In order to obtain the distance, it is necessary to subtract the mean length
of the two vehicles from the difference of their longitudinal positions. x(t) is defined as the
center of the vehicle.

Gv1,v2(t) = x(t)v1 − x(t)v2 −
lv1 + lv2

2
(4)

where x(t)vx denotes the longitudinal positions and lvx denotes the length of the vehicles.
The longitudinal position x(t) is defined based on the uniform acceleration in Equation (5),

where the value of variable a depends on the selected strategy.

x(t) = x0 −V0 +
at2

2
(5)
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3.2.2. Space Payoff Function of the FV

Similar to safety payoff, space payoff for FV is defined as the difference between the
values of space function SpF(t) in time t0 and time ti (Equation (6)).

UFV
space = SpFFV

t0 − SpFFV
ti (6)

The normalized probability density function denoted by Equation (7) is utilized to
obtain the FV’s space payoff function. Similar to the FV’s safety payoff function, the x
parameter was adapted in order to satisfy function Gv1,v2(t), as denoted in Equation (4).
Furthermore, σ and µ are adjusted in a way that SpF(t) equals 1 when the gap between FV
and LEAD equals 5 and SpF(t) equals −1 when the gap is bigger than 10 or less than 0, as
illustrated in Figure 4.

SpFFV(t) = 2(exp (−0.5 ∗ (x− µ)

σ
)− 0.5) (7)

where: σ = 5
3 , µ = 5, x = GLEAD,FV(t).

Figure 4. FV’s space function depending on the cooperation level regarding willingness to let EGO
merge (scored points) and the headway or gap between FV and LEAD in meters.

3.2.3. Safety Payoff Function of EGO

The EGO’s safety payoff function is similar to the FV’s safety payoff function, as
denoted by Equation (8). The only difference is that the EGO’s safety payoff function
depends on both FV and LEAD.

UEGO
sa f ety = SFEGO

t0 − SFEGO
ti (8)

The EGO’s safety payoff function SFEGO(t) is based on Equation (3) and is defined as
the product of two cumulative distribution functions (Equation (9)). The first cumulative
distribution function is a function of GEGO,FV(t), and the second one is a function of
GLEAD,EGO(t). To illustrate the relationship between the EGO’s safety payoff function and
the vehicle’s position, we present an example in which we use FV’s longitudinal position
as the origin (0 m) and we set the length of all vehicles to 5 m.

At the same time, three different LEAD cars’ longitudinal positions are chosen, which
are used to demonstrate different situations in which the distance between LEAD and FV
changes. Figure 5 shows the dependencies between the EGO’s safety function and the
position of the EGO vehicle.

SFEGO = 2(Fcd f (GEGO,FV(t))∗
Fcd f (GLEAD,EGO(t))− 0.5)

(9)
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Figure 5. Dependencies between the EGO’s safety payoff function and the position of EGO (xEGO).
Note that xLEAD is the longitudinal position of LEAD, which determines the distance between FV
and LEAD.

3.2.4. Penalty Function of the Vehicles

The original penalty function described in [16] was directly implemented to create
our model, as it suited our considered scenario. We describe the process in this section. The
penalty function is defined to consider the driving patterns of the vehicles that interact with
EGO in the decision-making model. The function takes as input the FV acceleration and
speed values acquired before stopping at the intersection. It calculates the outcome based
on the deviation between these values and the selected FV and EGO parameter values for
the decision-making process. The penalty function consists of the speed penalty PV and
the acceleration penalty Pa, as shown in Equation (10).

Upenalty = exp(−(PV + Pa)) (10)

The speed and the acceleration penalty functions are obtained as the squared deviation
of the acquired values before the stop at the final intersection and the selected values
applied as a result of the decision to allow EGO to merge in front, as denoted by Equations
(11) and (12).

The ws and wa coefficients are used to increase the impact of these functions on the
total penalty.

PV =
(V0 + at−Va)2

ws
(11)

where ws is the speed penalty coefficient and Va is the acquired speed prior to stopping at
the last intersection.

Figure 6 displays the dependency of the penalty function and a selected acceleration
strategy. The greater the deviation from the desired option, the less the payoff value will
be.

Pa = t2 (a− aa)2

wa
(12)

where wa is the coefficient of acceleration penalty and aa is the acquired acceleration prior
to stopping at the last intersection.
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Figure 6. Penalty function, with aa = 1.5m/s2, V = 0m/s, t = 3sec, Va = 5m/s, wa = 500, and
wd = 500.

3.2.5. The Outcome of the Vehicles

The outcome for both players is illustrated in Equations (13) and (14).

UEGO = UEGO
sa f ety ∗Upenalty (13)

The outcome of FV is based on the mean value of its safety and space payoff functions.
In the proposed model, we assume that the FV’s space payoff has the same impact on the
driver as the safety payoff. Therefore, in Equation ( 14), we use the mean value between
these two payoff functions.

UFV = (
UFV

sa f ety + UFV
penalty

2
)Upenalty (14)

4. Data Acquisition and Use Case Definition for Model Validation

In order to validate the proposed decision-making model, we designed a simulation
environment that replicates the scenario described in Section 1. To this end, we used the
simulator for cooperative advanced driver assistance systems (ADAS) and automated
vehicles, 3DCoAutoSim, which was developed to test intelligent transportation systems
(ITS)-related applications and connects the game engine Unity 3D [22] with Simulation of
Urban MObility (SUMO) [23] and ROS [24–30]. Details of the simulation framework are
presented in the following subsection.

The participants manually controlled the player vehicle (Player, denoted until now
with FV). They were asked to drive from the origin to destination within a given time
interval while following traffic rules. In order to acquire the necessary data regarding
driving patterns, the main route included several intersections. At the last intersection, the
traffic lights were controlled by a specific program so that they remained red until Player
and EGO were both located at the positions defined in the proposed decision-making
model (Figure 7.1).

When Player stopped at the final intersection and entered the queue of traffic waiting
for the traffic lights to turn green, an event was triggered for EGO to drive to the left lane
in which Player was located (Figure 7.2).

When EGO stopped and activated the left turn signal to perform the lane change, a
further event was triggered to apply the proposed decision-making model (Figure 7.3).

The last step of the simulation included the interaction between Player and EGO,
during which the participants in the driving test needed to decide whether they accepted
or rejected EGO’s request to change lanes and to merge. Figure 8 illustrates the validation
process flow.
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Figure 7. Model validation scenario: 1. The player’s vehicle (FV) approaches the target intersection.
2. The player’s vehicle enters the queue to wait for the traffic light to turn green. EGO is activated
to move to the left lane; 3. EGO vehicle is located at the position defined in the proposed decision-
making model.

4.1. 3DCoAutoSim Description

As previously mentioned, to perform the pertinent driving experiments to validate
the proposed model, we relied on the 3DCoAutoSim framework, which is a driver-centric
simulator in which the player controls a vehicle that drives through created or imported
scenarios. The simulator is used in order to test different use cases or applications regarding
the feasibility of automation and communication features in vehicles. It was developed
using the cross platform game engine Unity 3D for developing 3D games with simulated
physics [22].

The Player vehicle is controlled using the CSL Elite Wheel Base and pedals from
Fanatec, which communicates with Unity3D through an external intrinsic input module of
the game engine, as illustrated in Figure 9.

To simulate and visualize traffic, the modular components of 3DCoAutoSim are linked
with SUMO to communicate through the traffic control interface (TraCI), which allows
external applications to access a running road traffic simulation and to obtain the values of
the simulated objects to manipulate their behavior online. Unity uses a C# library of TraCI
to access the SUMO parameters and to consequently generate traffic.
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Figure 8. Flow chart describing the validation process.
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Figure 9. The 3DCoAutoSim simulation platform during a driving test and a screenshot of the
scenario setup and in-vehicle systems.

4.2. SUMO Description

In the model validation scenario, SUMO controlled all the traffic lights and vehicles
in the scenario except the Player vehicle. In order to generate the SUMO road and traffic
network simulation, a section of the city of Vienna was imported from OpenStreetMap
(OSM) [31] into SUMO. The NETCONVERT [32] and POLYCONVERT [33] commands
were then applied to the OSM data to generate the road network as illustrated in Figure 10.
To generate the traffic demand, a set of random trips [34] with different vehicle types
(vType elements) were also added to the network (Figure 10). The process to generate and
visualize the traffic in SUMO is presented in Figure 11.

Figure 10. Trip origin and destination on the generated Simulation of Urban MObility (SUMO) road
network to perform the model validation with a section of the generated SUMO simulation with
different vehicle types at the destination.
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Figure 11. SUMO simulation steps (adapted from [35]).

In addition, we adopted TraCI to study the performance of the proposed decision-
making model and the trigger models.

In order to trigger the intended behavior of the EGO vehicle in the congested traffic
intersection, we developed a procedure with different behavioral levels, as illustrated in
Algorithm 1. If the Player parameter RoadID matches the ID of the last intersection while
waiting for the traffic light to turn green, a trigger for EGO is activated for it to merge in
front of the Player on the left lane (Figure 7).

Algorithm 1: Trigger for Activating the EGO Vehicle
input :Player class. pv; RoadID of the last intersection, rID;
output :event t;

1 if pv.roadID == rID then
2 if pv.v ≤ 0.1 m/s then
3 instructEGO() ;
4 end
5 end

Algorithm 2 shows the procedure developed to investigate the performance of the
proposed decision-making model. The EGO vehicle is first verified in the algorithm. If the
EGO is stopped and its left turn signal is activated to perform a lane change, an event to
apply the proposed decision-making model is triggered for the Player. By applying the
decision-making model, the Player decides whether to accept or reject the lane-change
request from EGO.

4.3. Experimental Setup

We describe in this section the experimental setup.
Sample: eight persons took part in the model validation process through several

driving tests. The group included 6 males and 2 females with driving experience ranging
from 0.5 year to 31 years and an average age of 31 years. A total of 16 trips from 2 rounds,
one without a time limit and one with a time limit, were conducted, from which data were
collected.
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Algorithm 2: Proposed game theory-based decision-making model.
input :Player vehicle class, pv; LEAD vehicle class, lv; EGO vehicle class, ev;
output :Bool res;

1 t1 = 0, t2 = 0 ;
2 while Traci.getMinExpectedNumber() 6= 0 do
3 if t1 == 0 AND ev.v ≤ 1(m/s) then
4 if checkPos(ev,lv,pv) then
5 t1 = 1;
6 SUMO.TurnOnTrafficLight();
7 end
8 end
9 if t1 == 1 AND t2 == 0 then

10 updateAllOptions(ev,lv,pv);
11 if lv.a ≥ 1 then
12 t2 = 1 ;
13 gtModel.setCars(ev,lv,pv) ;
14 res = gtModel.getDecision() ;
15 end
16 end
17 end

Task definitions: participants in the experiment were required to perform the following
tasks:

1. Drive for 5 minutes to become familiarized with the simulation platform. No data
were collected.

2. Drive from the origin to destination, as described in the first paragraphs of Section 4.
3. Drive from the origin to destination, as described but with a time limitation. This

task aimed to add pressure and urgency and to motivate the participant to reject a
lane-change request from the EGO side.

Generated scenario: the generated scenario to validate the proposed model depicted
a section of the city of Vienna center (Vienna Ring). The structure and the position of
the buildings were imported from the Vienna Magistrate’s database [36]. The free and
open source 3DBlender software [37] was used to convert and edit the buildings to the
Unity format. We additionally equipped the participant vehicle (Player, FV) with a routing
navigation system (Navigator) to guide them through the route. A timer completed the
setup of the vehicle to notify drivers of the time elapsed (see Figure 9).

5. Results
5.1. Game Solution Description

By relying on the outcome of the previously defined method, we describe in this
section the solution for the proposed approach.

Equation (15) shows a bi-level optimization problem, in which the optimal EGO’s
strategy a∗ego depends on the selected strategy by a∗FV .

In our proposed decision-making model, we assumed that EGO is aware of the driving
behavior of FV prior to stopping at the intersection. Therefore, the EGO can estimate and
predict which would be the strategy that FV would pursue and can make a decision
accordingly such that EGO can reach its maximum game outcome.

a∗EGO = arg max
aego

(UEGO(aEGO, a∗FV)
a∗FV∈S∗FV

) (15)

where S∗FV ⊂ SFV ; meanwhile, with ∀a∗FV ∈ S∗FV , ∀aFV /∈ S∗FV , and ∀(aEGO, aFV), the
inequality UFV(aEGO, a∗FV) ≥ UFV(aEGO, aFV) is satisfied.
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In order to simplify the process of solving the task, we used discrete acceleration
values with a step equal to 0.1 m/s2. Therefore, the game can be solved by first obtaining
the FV’s set of optimal strategies S∗FV based on any of EGO’s strategies aEGO and then by
using the obtained set S∗FV to find EGO’s optimal strategy a∗EGO. The extensive-form of the
proposed game is illustrated in Figure 12.

The result of the game can therefore be implemented in the proposed decision-making
model in the following way.

If a∗EGO > a∗FV , the lane change can be performed; otherwise, a collision might occur.

Figure 12. Dynamic noncooperative game description in its extensive-form representation. EGO and
FV denote the players; a0 and am denote their respective sets of strategies. Pxy and Qxy denote the
outcome of the game, where x is the FV’s selected strategy and y is the strategy selected by EGO.

5.2. Driving Experiment Prediction Results

Regarding the results from the driving experiment performed in the simulator to
validate the decision-making model proposed in this paper, Table 3 shows the input values
for the proposed model collected during the experiment. In lines 1 and 12, the model
prediction values did not match the action of the drivers. In 11 of the 16 cases in which
FV needed to make a decision to accept or reject the lane-change request by the EGO, FV
rejected the request and EGO did not perform the lane-change maneuver. In the other
5 cases for requests, FV enabled the lane change. The proposed decision-making model
correctly predicted all 5 outcomes and 9 out of 11 outcomes in the cases in which FV
rejected the request from EGO. Table 4 shows these results. Delay from the side of FV
in resuming driving after the traffic light turned green (see a and speed v values close to
zero in tests 1 and 12 in Table 3) affected the safety payoff function, in this case, the model
making the decision to perform the lane-change maneuver. Equations (16) and (17) were
used to estimate the acquired speed and acceleration values of Player prior to stopping at
the last intersection.

aa = mean(a > 0.01) (16)

va = mean(v > 0.3) (17)
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Table 3. Input values regarding the driving performance data used to predict cooperation for an
EGO merging maneuver. aa and va denote the acquired speed and acceleration values of Player prior
to stopping at the last intersection, a and v are the acceleration and speed values at an instant of time
right before being used to calculate the prediction, gap is the existent gap between Player and LEAD,
action denotes the player’s decision, and predicted is the model prediction value.

test aa m/s2 va m/s a m/s2 v m/s gap m action predicted

1 0.84 8.61 0.01 0.07 7.07 reject accept

2 1.48 12.01 0.04 0.95 3.50 reject reject

3 0.80 6.84 0.00 0.00 7.72 accept accept

4 1.17 8.98 0.02 0.56 5.31 reject reject

5 1.34 9.65 0.00 0.00 7.07 accept accept

6 1.42 11.53 0.02 0.27 2.92 reject reject

7 1.22 10.62 0.03 0.34 1.36 reject reject

8 2.11 12.89 0.00 0.21 3.11 reject reject

9 1.08 10.33 0.02 0.17 5.17 accept accept

10 1.44 12.03 0.03 0.59 3.25 reject reject

11 1.03 7.79 0.2 0.27 4.76 reject reject

12 1.03 8.77 0.00 0.01 4.41 reject accept

13 1.16 8.41 0.00 0.00 3.79 accept accept

14 1.80 11.29 0.03 0.48 1.93 reject reject

15 1.24 10.81 0.00 0.00 7.53 accept accept

16 2.08 14.28 0.02 1.14 5.21 reject reject

The presented data in Table 3 shows that, in the considered scenario, the gap size had
a significant impact on the driver’s final decision: the bigger the gap between the FV and
the LEAD, the higher the probability for the driver to accept the lane-change request from
the EGO vehicle. At the same time, some exceptions could also been observed in lines 1
and 12. They were related to the time it took the drivers to resume driving after the traffic
light turned green. The speed and acceleration were also determining factors on the final
decision in the considered scenario. The effect can be noticed when comparing test 4 with
test 13. In test 4, the gap is bigger (5.31 m) compared with test 13 (3.79 m), but despite this
fact, the driver in test 4 rejected the lane-change request from the EGO car while the driver
in test 13 accepted the request. We argue that this behavior was due to the fact that the
acceleration and speed values at an instant of time right before being used to calculate the
prediction in test 4 were higher than in test 13 even if the acquired speed and acceleration
values of Player prior to stopping at the last intersection were similar.

Summarizing all the results presented in the Tables 3 and 4, we can conclude that
the proposed decision-making model accurately predicts the drivers decisions regarding
whether they allow the autonomous vehicle to drive in front of them.
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Table 4. Confusion matrix of the validation test.

n = 16 Predicted:
NO

Predicted:
YES

Actual:
NO 9 2 11

Actual:
YES 0 5 2

9 7

6. Conclusions and Future Work

We presented in this work a dynamic noncooperative decision-making model based on
a two-player nonzero-sum game theory. The goal was to provide autonomous vehicles with
capabilities for analyzing human decision-making processes and for acting accordingly.
The ultimate goal was to facilitate the coexistence of manual and autonomous vehicles in a
mixed environment to augment road safety.

The results from validation of the proposed game theory-based decision-making
model are promising, as the prediction rate was 100% in all of the cases in which the
participants allowed the lane change and 83.3% in the other cases, affected by the driver’s
reaction time to the traffic light color change from red to green. The driver’s final decision
to accept a lane-change request from the EGO vehicle was influenced by the gap size
between vehicles and by the speed and acceleration of the Player vehicle.

We conclude that our approach can be used as a tactical-level algorithm for making
lane-changing decisions in autonomous vehicles in congested urban intersections. The
reliability and prediction accuracy can be increased by evaluating the decision-making
process during the entire lane-change action with a fixed “n” millisecond time step. Future
work will include this idea and will extend the current approach to a game theory-based
model with incomplete information using quantum response equilibrium. This will make
it possible to address scenarios in which the EGO vehicle is not capable of obtaining all
of the required information from the vehicles in the target lane. In addition, the driver’s
reaction time will be considered in the payoff functions and the proposed model will be
generalized such that it can be applied to both not crowded and crowded urban scenarios.
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