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Abstract: In this paper, a radial basis neural network adaptive sliding mode controller (RBF—NN
ASMC) for nonlinear electromechanical actuator systems is proposed. The radial basis function neural
network (RBF—NN) control algorithm is used to compensate for the friction disturbance torque in
the electromechanical actuator system. An adaptive law was used to adjust the weights of the neural
network to achieve real —time compensation of friction. The sliding mode controller is designed to
suppress the model uncertainty and external disturbance effects of the electromechanical actuator
system. The stability of the RBF—NN ASMC is analyzed by Lyapunov’s stability theory, and the
effectiveness of this method is verified by simulation. The results show that the control strategy not
only has a better compensation effect on friction but also has better anti—interference ability, which
makes the electromechanical actuator system have better steady—state and dynamic performance.

Keywords: electromechanical actuator system; adaptive sliding mode controller; radial basis function
neural network controller; friction compensation

1. Introduction

The trajectory correction projectile is based on the original projectile and replaced
with a guidance part, so that it has the ability to accurately strike. As the actuator of the
trajectory correction projectile, the main function of the electromechanical actuator (EMA)
system is to realize the tracking control of the commanded angular position. During the
flight of the projectile, it needs to continuously adjust its attitude according to the target
position. Therefore, the tracking speed and tracking accuracy of the EMA system will
have a vital influence on the mobility and accuracy of the trajectory correction projectile.
Compared with hydraulic actuators and pneumatic actuators, electromechanical actuators
are widely used because of their simple structure, convenient control, and low cost [1].

The EMA system is mainly composed of a controller, a driver, a Brushless DC (BLDC)
motor, a ball screw reducer, a speed sensor, and a position sensor [2]. Therefore, the system
will inevitably be adversely affected by friction during transmission. Especially in the case
of low speed, it will cause a dead zone, crawling, and tracking error to adversely affect the
control performance of the system [3]. In addition, due to the uncertainty of the model and
the existence of external disturbances, it brings serious difficulties and challenges to the
design of high—performance EMA system controllers.

In order to overcome the influence of friction disturbance on the performance of
the control system, scholars have designed many compensation techniques to improve
the performance of the nonlinear servo control system. Generally, there are two main
methods of friction compensation [4]. The first is to design a compensation controller based
on the friction model. Another method is to treat the friction torque disturbance as an
external disturbance and use an intelligent control strategy to suppress it. Common friction
models are mainly divided into static friction models and dynamic friction models [5].
Among them, static friction models mainly include the Coulomb model [6], Stribeck
model [7], Karnopp model [8], and Armstrong model [3]. The static friction model has
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a simple structure and the parameters in the model are easy to identify, but it cannot
accurately describe the friction phenomenon, so the friction compensation based on the
static model has limited performance improvement of the system. Therefore, various
scholars have also carried out research on dynamic friction models, mainly including the
Dahl model [9], Elasto—plastic model [10], LuGre model [11], and Leuven model [12].
These dynamic models can describe the friction phenomenon relatively accurately, but the
parameters of the dynamic model are complex and difficult to identify. Based on the friction
model compensation, scholars have also conducted extensive research. Xu, L., and B. Yao
designed an adaptive robust controller based on the LuGre friction model to improve
the effect of dynamic friction on system performance [13]. Tong, H.L built a system’s
adaptive compensator based on the LuGre friction [14]. Based on the LuGre friction model,
Huang used neural network approximation to compensate for friction, so as to obtain good
tracking performance [15]. Feng proposed a friction feedforward compensation method
based on the improved Stribeck model, which effectively eliminated the low —speed creep
and amplitude flattening phenomenon in the dispensing servo system, and improved the
control performance of the system [16]. Based on the Stribeck friction model, X.Y. studied
and compared the precision of position and velocity controlled by PID control and BP
neural network when the seeker platform was working at the low speed [17].

In the method of adopting an intelligent control strategy, people have studied many
advanced nonlinear control strategies. Common methods include sliding mode control,
adaptive integral backstepping sliding mode control, and dimensionality reduction obser-
vation. Wang designed the controller of the robot by adopting the terminal sliding mode
control strategy of a neural network to suppress the influence of model uncertainty and
external interference [18]. An adaptive neural network sliding mode scheme was used in
the robot trajectory tracking system [19]. An adaptive actor—critic controller was designed
for some nonlinear systems with unknown input disturbances [20]. Seong Ik Han designed
a recurrent fuzzy neural network and reconstructed error compensator as well as a robust
friction state observer to achieve high—precision positioning performance of mechanical
systems [21]. In the above—mentioned various intelligent control strategies, there will
always be errors in the observation and approximation of friction disturbances, and there
will be interferences from other nonlinear factors in the system. Therefore, in order to
obtain better control performance, a new control strategy needs to be introduced on this
basis. While compensating for friction, the new control strategy can eliminate the effects of
compensation errors and other nonlinear disturbances.

In addition, with the development of control technology and the continuous improve-
ment of control requirements, some new control technologies have also been proposed.
In [22], a long—distance teleoperation control system, signal delay and uncertainty are
inevitable problems. This paper investigated the feasibility of a more straightforward,
classical control solution based on Kessler’s Extended Symmetrical Method, formulated in
a cascade control approach to tackle the problems caused by latency and uncertainties in a
modeled telesurgical robot system. In order to get a better vibration isolation capability
than other methods, in [23] a combination of skyhook and groundhook control—based
magneto rheological lookup table technique called hybrid control for a quarter car was
developed. In [24], a data—driven model—free sliding mode learning control (MFSMLC)
for a class of discrete—time nonlinear systems was proposed. This method does not require
a specific mathematical model, and in addition the chattering is reduced because there is
no non—smooth term in the controller. It can be seen from the above literature that there
are different control strategies for different systems. Therefore, in view of the friction and
other nonlinear disturbances in the EMA system, this paper focuses on finding an effective
control strategy to improve the performance of the system.

Because the neural network has good approximation characteristics, it is a relatively
advanced method for tracking control of nonlinear dynamic systems. For the approxi-
mation error of the neural network, the sliding mode control strategy is often used to
compensate. Lewis designed a neural network control method for the robot system [25].
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Jui—Hong presented a neural network—based adaptive control strategy for speed or po-
sition tracking of a DC motor with unknown system nonlinearities [26]. Nasser Sadati
proposed a robot adaptive multimodel sliding mode controller; a radial basis function
neural network (RBF—NN) was used to approximate the discontinuous part of the control
signal [27]. Faa—Jeng Lin designed a robust dynamic sliding mode controller for the
magnetic levitation system and used a linear neural network estimator to estimate an
unknown nonlinear function with lumped uncertainty online [28]. For nonholonomic
wheeled mobile robot systems, Bong Seok Park proposed an adaptive neural sliding mode
control method. Autoregressive wavelet neural networks are used to approximate arbitrary
model uncertainties and external disturbances in mobile robot dynamics [19].

In [29], the advantages and disadvantages of eight common friction models are listed.
In engineering applications, the LuGre friction model or the Stribeck friction model is
often used to compensate the friction in the system. However, due to the complex internal
parameters of the LuGre friction model, it is difficult to identify the parameters in the
model in practical applications. As for the electric steering gear system, since its interior
is reciprocating, the rotation speed of the system is slow, so the Stribeck friction model
can also accurately reflect the friction disturbance torque in the system. In addition, the
neural network used in this paper can be adjusted online, and the sliding mode controller
can compensate for the approximation error of the model. For this reason, this paper
proposes an RBF—NN adaptive sliding mode controller (ASMC). Aiming at the friction
disturbance, based on the Stribeck friction model, the neural network adaptive method
is adopted to approximate the friction torque, so as to realize the compensation of the
friction torque. Aiming at the approximation error and other nonlinear disturbances, a
sliding mode control strategy is adopted to improve the control performance of the system.
Through the adaptive learning method, the closed—loop system can be guaranteed to be
globally stable.

The rest of this article is organized as follows: The second part of this article establishes
the dynamic model of the EMA system based on the system composition and principles,
and analyzes the characteristics of the Stribeck friction model. The third part of this
paper designs a sliding mode controller based on the system model and designs a neural
network adaptive controller to approximate the friction torque, and finally proves the
stability of the controller. The fourth part of this article is to build a simulation model in
MATLAB/Simulink, design a simulation algorithm to simulate the controller, and finally
compare the simulation results with a sliding mode controller to analyze the performance
of the system.

2. Materials and Methods
2.1. System Composition and Working Principle

The EMA system studied in this article is composed of a controller, a driver, a BLDC
motor, a ball screw reducer, a speed sensor, and an angle sensor. Figure 1 shows the
composition of the EMA system. The working principle is: The controller generates a
control voltage according to the deviation between the command signal and the actual
signal. The driver amplifies the controller to drive the BLDC motor to rotate. The BLDC
motor transmits torque through the ball screw reducer to drive the rudder wing to the
specified position [30].

In the EMA system, due to the existence of transmission mechanisms such as reducers,
there will inevitably be the influence of frictional disturbance torque during the transmis-
sion process. Generally, friction disturbance mainly acts on the transmission mechanism.
In this paper, in order to analyze and design a suitable controller, the friction disturbance
torque is equivalent to the output shaft of the BLDC motor.
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Figure 1. Structure diagram of the electromechanical actuator (EMA) system.

2.2. EMA System Modeling
2.2.1. BLDC Motor Modeling

The motor is an electrical component of the entire system, and its performance directly
affects the performance of the system. What this text chooses is BLDC electrical machinery—
it has the characteristic of a small moment of inertia, and high speed meets the requirement
of the fast response of the system [31]. Under ideal conditions, the armature circuit balance
equation of the motor is
dalt) )

dat '
where, u(t) is the armature voltage of the motor, i; is the armature current, R the mo-
tor armature resistance, L is the inductance of the motor armature, and E is a counter
electromotive force of the motor armature.

The induced electromotive force of the motor is proportional to the motor speed,
which is

u(t) = E+ Rig(t) + L

E = Cew(t), (2

where, C, is the back electromotive force coefficient, w(t) is the angular velocity of the motor.
According to Newton’s second law, the dynamic equation of the motor is

dw
L-T =], ©)

where, T, = Cy,i;(t) is the electromagnetic torque, Ty is the load torque, C, is the electro-
magnetic torque coefficient, and | is the moment of inertia.

When the external load is 0, the above formulas are combined and organized, and the
pull transformation is performed to obtain the open—loop transfer function of the motor as

w(s) 1/Ce. )
U(s)  1tms?+Tms +17

where, T, = % is the Electromechanical time constant and 7; = % is the Electromagnetic
time constant.

2.2.2. Drive and Reducer Modeling

The output voltage of the controller cannot directly drive the BLDC motor, so the
driver is required to amplify the signal of the controller. The drive circuit is composed of
field—effect tubes, so for the drive, its transfer function can be expressed as

Ky

T Ts41 ©®)

Gp(s)

where, Kp is the magnification of the driver, and T is the delay time constant of the
field —effect tube. Under normal circumstances, the delay time of the FET is much smaller
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Position
controller

than the delay time of the controller, so the mathematical model of the driver can be further
simplified as
Gp(s) = Kp, (6)

The motor and the rudder wing are connected by a ball screw reducer, so the ap-
proximate relationship between the rotation angle of the rudder blade and the motor
angle is

a9  w
where, 0 is the deflection angle of the rudder wing and i is the reduction ratio of the EMA
system reducer.

Therefore, the transfer function of the reducer part can be expressed as

0(s) = ——, ®)

2.2.3. Stribeck Friction Model

Because the frictional disturbance torque in the EMA system has a high degree of
nonlinearity and complexity, it has a greater impact on the control performance of the
system, causing the system to crawl at low speeds, and there will be larger errors in
the steady—state. The Strobeck friction model is the most common friction model in
engineering, which can fully and accurately reflect the friction phenomenon in the EMA
system. The expression of the disturbance torque is [32]

Tf(w) = Ty-sign(w) + (Ts — Tl)e_|“’/“’5|2 + bw, 9)

where, Tris the friction torque of the system, T} is the Coulomb friction torque, T is the
maximum static friction torque, w is the angular velocity of the motor output shaft, w; is
the Stribeck speed, and b is the viscous friction coefficient.

Generally, friction models are divided into continuous and discontinuous models. The
main difference is whether it is continuous at zero speed [33]. The Stribeck friction model
used in this article is a discontinuous model, so it has the problem of speed zero crossing
detection. In the Stribeck friction model, a symbolic function is used. Since the generalized
zero velocity is difficult to measure, the saturation function is used instead of the sign
function to solve the problem of velocity zero crossing detection.2.2.3 EMA system model.

According to the above analysis of each part of the EMA system, according to the
working principle of the EMA system, when the external load is 0, the open—loop transfer
function of the EMA system can be obtained as

—

G =G, .ws) 0
s (10)

T QTS+ Tms2+s

According to the above analysis and the open—loop transfer function of the system,
the overall control block diagram of the system can be obtained, as shown in Figure 2.

T,
1) c i

igy ()
UGs) U, (s) ! R | E@) a(s) o(s)

Speed K l _ i 1
controller ’ + R i (s) Ts C, is

LK

Figure 2. Block diagram of the open-loop transfer function of the EMA system.
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In Figure 2, Ty is the sum of frictional disturbance torque equivalent and other load
disturbances to the motor output shaft.

2.3. Controller Design
2.3.1. Controller Structure

Take x = [x1,x2] = [6, 9], for the EMA system, 7; < T, the EMA system can be
simplified into a second—order system. Consider the friction disturbance, the system
model can be expressed by Equation (11).

b Lo K (u— Ty(x)) +d(t) = F(x) + p(u— Ty(x)) +d(t), (11)

T T Col

where, d(t) is the external disturbance, and, d(f) < D, D is a constant, and Tf (x) is the friction
disturbance in the EMA system. And, f(x) = —%, p= Ky

T Cel

The structure of the RBF—NN ASMC designed in this paper is shown in Figure 3.

A

Adaptive law

A

RBFNN

A

ff(x) /

A 4

’—> Controller

Figure 3. RBF-NN ASMC block diagram.

A 4

EMA

) 4

%%—i—

Because sliding mode control has the characteristics of insensitivity to parameters and
strong antidisturbance, for the EMA system, sliding mode control is used to realize the
tracking control of the position signal to overcome the uncertainty of the system model and
the influence of external disturbances. For the compensation of friction disturbance torque,
on the basis of the Stribeck friction model, the RBF—NN method is used to approximate the
friction torque. The adaptive law is used to adjust the weights of the network to achieve
the global stability of the system.

2.3.2. Controller Design

In this paper, the Gaussian function is used as the hidden layer of the RBF—NN, and
the output of the neural network can be expressed as

m
Y=Y whj+b=W'H+b, (12)
j=1

The expression of Gaussian function is

b IX =gl
j=exp|l———%=— |, (13)

2
2;
In the formula, cjis the center of the Gaussian function; 0; represents the width of the
Gaussian function. w; is the weight from the hidden layer to the output layer; b is the bias
of the output neuron.
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In this paper, a neural network is used to approximate the frictional disturbance torque.
Therefore, the frictional torque can be expressed by the output of the neural network

T(x) = Wh(x) +e, (14)

where, W* is the ideal network weight of the neural network, ¢ is the error of the ideal
neural network approximation, and |e] < emax.
Take the estimated value of W* as W then the estimated value of T¢(x) can be ex-
pressed as
Tf(x) = WTh(x), (15)

Then the estimated error of the network weightis W = W* — W.
Take x1 = 0, let the ideal angular position signal be 6, then the angular position error
is e = 0; — 0, and the sliding mode function of the EMA system is

s =e+ce, (16)
Derivation of sliding mode function of the EMA system

§ =é+ce=0;—0+ce

- : (17)
= 0a— f(x) = p(u = Ty(x)) —d(t) +ce
Equation (18) is the designed sliding mode control law
1 - . .
u=(f(x) = 0a+ce+sgn(s)) + Tp(x), (18)
where, # > D + pemax.
Based on the above equations, Equation (17) can be further simplified
§ =g f(x) — plu— Ty(x) —d(t) +cé
04— f(x) = p((5(f(x) = 0q + ce+ psgn(s)) + Ty (x)) = Ty(x)) — d(t) +ce
= —nsgn(s) + p(Ty(x) — Tr(x)) +d(t) (19)
— —ysgn(s) + pTy(x) + d(t)
= —nsgn(s) + p(WTh —e) +d(t)
2.3.3. Proof of Controller Stability
Define the Lyapunov function as
e, Lath
V=gt W, (20)

where, 7 is the adaptive gain and v > 0.
Take the time—derivative of and simplify Equation (20)

V. o=si+WIW
= s(—nsgn(s) + p(WTh —¢) +d(t)) + TWTW (21)
= —n|s| +sd(t) — spe + WT(sph +9W)

Take the adaptive law as
W= —%sph(x), (22)

Substitute Equation (22) into Equation (21) and simplify

V= —1n|s| +s(d(t) — pe) <0, (23)
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Take V = 0, according to LaSalle invariant set theorem, when t — co, s — 0. There-
fore, the controller designed in this article is stable.

3. Simulation Results and Analysis
3.1. Parameter Settings

The parameters of the EMA system are shown in Table 1.

Table 1. Parameters of the EMA system.

Parameter Value
Rated voltage of BLDC MOTOR 24V
Rated speed of BLDC MOTOR 22,000 rpm
Torque constant of BLDC MOTOR 3.6 mNm/A
Electromechanical time constant 5ms
Armature circuit resistance 0.9 0
Armature loop inductance 0.05 mH
Back electromotive force constant 2.5 Vs/rad
Reduction ratio 6
Drive magnification 60

The parameters in the Stribeck friction model are set as: Tr =15, Ts = 20, b =04,
ws = 0.05. Therefore, the frictional disturbance torque of the EMA system is

Tp(w) = 15-sgn(w) +5 - ¢~ (@00 4 0.4q, (24)

In order to verify the performance of the RBF—INN ASMC, this paper also designs
a sliding mode controller based on the exponential reaching law. To this end, this article
builds a model of the EMA system in MATLAB and Simulink, and uses the S function to
implement two control algorithms.

The ideal angle signal of the system is taken as 6; = sin(t), and take the external
disturbance as d(t) = sin(t). The initial state is taken as [0.2,0]. For the RBF—NN, the
structure of 1-5—1 is adopted, the input of the network is x,, and the center vector of the
Gaussian function is designed as ¢; = [—1, —0.5,0,0.5,1] and the width is b]- = 1. The initial
weight of the network is 0, and the adaptive gain is y = 0.1. For the sliding mode controller
based on the exponential reaching law, the friction disturbance is treated as an external
disturbance. The EMA system is simulated by adjusting the parameters of each controller.

3.2. Simulation Results

In order to verify the pros and cons of the RBF—NN ASMC performance, this article
starts from three situations to simulate and analyze the system. The first is to simulate the
Sliding mode controller(SMC) based on the reaching law without considering the friction
disturbance to verify the robustness of the sliding mode controller to model uncertainty and
load disturbance. Then, considering the impact of friction disturbance on the EMA system,
the SMC based on the reaching law and the RBF—NN ASMC is simulated respectively.

3.2.1. Simulation of SMC without Friction Disturbance

When the friction disturbance is zero, the sliding mode controller with exponential
reaching law is used to control the system, and its angle and velocity tracking trajectory
are shown in Figure 4. The angle tracking error curve is shown in Figure 5.

It can be seen from the above two figures that the sliding mode controller has good
performance for nonlinear systems, has a fast response to command signals and small
tracking errors, but it can be seen from the error—tracking curve that there is a comparison
in the control process.
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Figure 4. Tracking curve of SMC without friction disturbance.
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|— SMC angle tracking error
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-0.15 5

time(s)

Figure 5. SMC angle-tracking error without friction disturbance.

3.2.2. Simulation of SMC with Friction Disturbance

The friction disturbance torque is added to the control system, and the SMC method
is used for simulation. The tracking curve of angle and speed is shown in Figure 6, and the
angle tracking error is shown in Figure 7.

It can be seen from Figures 7 and 8 that when there is friction disturbance, the control
system still has a good effect on tracking position and speed, but when compared with no
friction disturbance, the performance of sliding mode control has been reduced; especially
in the control process, the tracking error is larger.



Sensors 2021, 21, 1508

10 of 14

2 I I
= ideal angle signal
N R o tracking signal 1
g
=)
c
T 0 7
- ‘ ‘ I I
! : " 5 8 10
time(s)
2 I I

- ideal speed signal
tracking signal

speed

) ; .
time(s)

Figure 6. Tracking curve of SMC with friction disturbance.
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Figure 7. SMC angle tracking error with friction disturbance.

3.2.3. Simulation of RBF—NN ASMC with Friction Disturbance

When there is friction disturbance, the RBF—NN is used to approximate the friction
disturbance torque, and the SMC is used for compensation control. The simulation results
obtained are as follows. Figure 8 shows the approximation curve of the RBF—NN to
frictional disturbance torque. Figure 9 shows the position and speed tracking curve of the
RBFNN—-ASMC. Figure 10 shows the angular position tracking error curve.

It can be seen from Figure 8 that RBF—NN can have a better effect on the approxi-
mation of the friction disturbance torque. It can be seen from Figures 9 and 10 that the
RBF—NN ASMC also has a good position and speed tracking effects, and from the error
curve, it can be seen that its tracking error is smaller than that of the SMC. And it also has a
certain inhibitory effect on the chattering problem of the SMC.



Sensors 2021, 21, 1508 11 of 14

=== delta estimation

delta

time(s)

Figure 8. Approximation curve of RBF-NN to frictional disturbance torque.

2 T T

angle tracking
ol

'
-
T
L

2 s ‘ ‘ ‘
0 2 4 6 8 10
time(s)
2 : : : :
[=2]
£ 1 1
= of 1
kel
8
a-1r e
w
2 : : : :
0 2 4 6 8 10
time(s)

Figure 9. Tracking curve of RBF-NN ASMC with friction disturbance.
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Figure 10. RBF-NN ASMC angle tracking error with friction disturbance.

3.3. Simulation Result Analysis

From the simulation results, it can be seen that when the friction disturbance of the
system is not considered, the SMC can achieve a better control effect on the nonlinear
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system, but when the friction disturbance is introduced into the system, the quality of the
SMC decreases. When RBF—NN is used to approximate the frictional disturbance torque
and the SMC is used to compensate and control the whole, not only can it achieve a good
approximation effect on the friction disturbance, but also the overall control performance
of the system has improved. In addition, because the neural network compensates for the
friction in the system, for the sliding mode controller, the chattering phenomenon can also
be suppressed to a certain extent. The chattering problem inherent in the SMC is solved.
Therefore, it can be seen from the simulation results that the RBF—NN ASMC proposed
in this paper can not only compensate for the friction disturbance but also have a better
control effect on other nonlinear factors in the system.

In the related literature investigated in this article, people have proposed various
methods to solve the friction and other nonlinear problems in the EMA system, but
due to the inconsistency of system parameters and simulation methods, the simulation
results have little reference significance. For example, in [34], an adaptive fuzzy sliding
mode control strategy to suppress the parameter perturbation and external interference
of the EMA system is used, but from the simulation results, its tracking performance for
sinusoidal signals is not as good as this article’s designed controller. Compared with other
adaptive control systems, the advantage of this paper is that the neural network is used
to compensate the friction disturbance in the system, and the adaptive method enables
the neural network to have the ability of online learning. Finally, the compensation error
and other disturbances are compensated by sliding mode control. Therefore, the RBF—NN
ASMC proposed in this paper can improve the performance of the EMA system to a
certain extent and provide an idea for solving the friction disturbance and other nonlinear
disturbances in the system.

4. Conclusions

Aiming at the nonlinearity in the EMA system and the influence of friction disturbance,
this paper proposes a control strategy combining an RBF neural network and adaptive
sliding mode controller. First, the friction phenomenon in the EMA system based on
the Stribeck friction model is analyzed. Next, an RBF neural network method is used to
approximate the friction disturbance torque. Then, this paper designs an adaptive law
to adjust the weight of the neural network so that the friction model can be adjusted
according to the actual situation. On this basis, the SMC is designed to compensate for
the approximation error of the RBF——NN to frictional disturbance torque. In addition,
considering the uncertainty and nonlinearity of other parts of the system, the SMC also has
a better control performance. The simulation results show that the developed RBF—NN
SMC can compensate for friction well, and also has a good control performance on other
nonlinear and uncertain factors in the system. Also, the inherent chattering problem of
the SMC controller is also suppressed due to the existence of the RBF—NN controller.
Therefore, the proposed RBF—NN SMC has better compensation and suppression for
friction and other disturbances in the EMA system.
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