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Abstract: Neural networks for fault diagnosis need enough samples for training, but in practical
applications, there are often insufficient samples. In order to solve this problem, we propose a wavelet-
prototypical network based on fusion of time and frequency domain (WPNF). The time domain and
frequency domain information of the vibration signal can be sent to the model simultaneously to
expand the characteristics of the data, a parallel two-channel convolutional structure is proposed
to process the information of the signal. After that, a wavelet layer is designed to further extract
features. Finally, a prototypical layer is applied to train this network. Experimental results show
that the proposed method can accurately identify new classes that have never been used during the
training phase when the number of samples in each class is very small, and it is far better than other
traditional machine learning models in few-shot scenarios.

Keywords: fault diagnosis; few-shot learning; meta-learning; rotating machinery

1. Introduction

Rotating machinery plays a very important role in industrial production, but the
failure of rotating equipment can bring huge economic losses to a business, and even cause
casualties. Bearings are the core components of rotating machinery, therefore, it is of great
significance to diagnose the fault of the bearings in time. Since the 1960s, fault diagnosis has
gradually attracted scholars’ attention in the field of science and technology [1]. Traditional
fault diagnosis is a diagnosis method based on fault mechanism. Nicolò et al. have studied
the cracked rotor model and explained the crack mechanism [2], and Chen et al. have
studied the vibration signal feature extraction method based on the failure mechanism [3].
With the continuous in-depth study of fault mechanism by scholars, the preprocessing of
vibration signals, such as noise reduction, feature extraction, and other signal processing
methods have also begun to develop. In [4], a multi-point optimal minimum entropy
deconvolution and convolution repair method is proposed for vibration fault detection;
and Pan et al. studied the symplectic geometric mode decomposition and its application in
the compound fault diagnosis of rotating machinery [5].

With the development of the Internet, the field of fault diagnosis has entered the era
of big data [6]. Traditional fault diagnosis methods requires high professional skills and
has low diagnosis efficiency. Therefore, fault diagnosis models based on feature extraction
and intelligent classification have been proposed. Early feature extraction methods include
FFT (fast Fourier transform), wavelet analysis, etc. [7,8], which reduce the dimensions of
the extracted features. Commonly used methods include principle component analysis
(PCA) and independent component analysis (ICA), manifold learning [9–11], and other
algorithms. At the end of the process, the dimensionality-reduced features are sent to
the classifier to classify the fault. Common classifiers include neural networks, support
vector machines [12–14], and so on. However, feature extraction algorithms rely on expert
knowledge and do not have adaptive capabilities. The features extracted manually may not
be the optimal solution. Therefore, a one-dimensional convolutional neural network based
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on automatically extracted features has been proposed and achieved good classification
results [15].

Neural network is a data-based fault diagnosis method. According to the type of
data used in its training, intelligent diagnosis methods can be divided into three types:
Acoustic analysis, Vibration analysis, and Thermal images analysis (as shown in Figure 1).
Acoustic analysis comprises of collecting the acoustic signal of the machine through the
acoustic sensor, taking the acoustic signal as sample, and sending it to the neural network
for training. A convolutional neural network that can be used for acoustic analysis for fault
diagnosis of gears is proposed in [16]. Vibration analysis is the most widely used, because
the vibration signal changes most obviously in the middle and late stages of the failure.
The model proposed in this paper also uses vibration signals to classify faults. Neural
networks are also widely used in thermal images analysis. In [17,18], the feature vectors
extracted from thermal images were used to train neural networks.
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The convolutional neural network has achieved high accuracy in the field of intelligent
fault diagnosis, but in practical applications, once a fault occurs, the equipment will
stop immediately, resulting in the inability to collect enough fault samples for the neural
network [19,20]. In addition, some faults do not occur frequently, and it is difficult to collect
sufficient sample data. The neural network is a data-dependent classifier [21]. Once the
number of samples is insufficient, the classification accuracy will drop significantly [22].
Therefore, performing an intelligent diagnosis of rotating equipment with limited samples,
is a new area to be solved [23]. There are currently two methods to solve this problem.
One refers to training a model based on transfer learning, which includes pre-training and
fine-tuning, or using a deep transfer network with joint distribution adaptation [24–27].
The second refers to using a few-shot learning based method. Few-shot learning is a kind
of meta-learning [28]. In recent years, scholars have achieved many results in the field
of meta-learning, mainly including initialization-based models, such as Model-agnostic
meta-learning [29,30], and metric-based models, such as Siamese networks [23,31–33],
matching networks [34,35], prototypical networks [36–39], etc. All of these models have
good cross-domain performance and high accuracy. Among them, prototypical networks
and Siamese networks are widely used in few-shot learning for intelligent diagnosis.

Wang H et al. proposed Deep Prototypical Networks, which combine the advantages
of the prototypical network and the Siamese network, using the Siamese structure to extract
features, and then use the prototype learning method to map this to the feature space [37].
Li B et al. use multi-scale dynamic fusion to extract features and improve the clustering
method of the prototypical network for intelligent diagnosis of planetary gearbox [36].
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The above studies have achieved good results, but they all use only the time domain data
of the raw signal, whereas the frequency domain information is more sensitive to some
faults [38]. Therefore, it is necessary to use a neural network to extract the characteristics of
the frequency domain information as a supplement to the original signal. Furthermore,
the prototypical layer directly maps the extracted features into the feature space without
any preprocessing, which may reduce the accuracy of the neural network. To address this
problem, a wavelet layer can be designed before the prototypical layer to improve the
generalization of the model, which can combine the advantages of artificial neural network
and wavelet analysis, that is, the network converges quickly and avoids falling into the
local optimum. It also has the characteristics of time-frequency local analysis [40–42]. The
main contributions of this paper are summarized as follows:

(1): In order to supplement the original data, a parallel two-channel convolutional
structure is designed, which can receive the time domain and frequency domain informa-
tion of the signal at the same time, and extract the features separately.

(2): For the purpose of further improve the generalization and accuracy of the model,
a wavelet layer is proposed to preprocess the extracted features. The wavelet layer replaces
the activation function of the hidden node of the neural network with a wavelet function.
The bias of the hidden layer is replaced by the translation vectors and dilation vectors of
the wavelet function. Combining the advantages of wavelet analysis, it can analyze the
local characteristics of information flexibly.

(3): The proposed model can accurately identify new classes that have never been
used during training phases when the number of samples in each class is very small.

(4): The wavelet-prototypical network based on fusion of time and frequency domain
(WPNF) is proposed, some experiments are carried out on WPNF and some other machine
learning models. The experimental results are compared and visualized to verify the
effectiveness of the proposed method.

The remainder of this article is arranged as follows: The relevant background and
terminology are introduced in section two. In section three, the structure design of the
proposed model is introduced. Some experiments are carried out, and the experimental
results are analyzed to evaluate our method against other methods in section four. Finally,
we draw a conclusion in section five.

2. Related Background and Terminology
2.1. Meta Learning

When we learn new things, we do not need to learn from scratch, because we can use
prior knowledge. As long as we have learned the method of learning, we can learn very
well with few samples. Similarly, when a model starts to learn a brand new task, it does not
need to start from scratch, it can learn quickly from previous experiences. In other words,
let the model learn to learn by itself. This is the basic idea of meta-learning.

Suppose we have learned a series of tasks: tj ∈ T, T represents the task set, which
is defined by their parameters θi ∈ Θ, where Θ represents the parameter set. P is the set
of all previous evaluation indexes, Pi,j = P

(
θi, tj

)
represents the scalar evaluations of task

tj configured by parameters θi, such as accuracy rate, cross-validation, etc. Pnew = Pi,new
represents learning a new task tnew under the known scalar evaluations θi. The task of meta
learning is to train a meta learner L, which can find a new parameter set Θ∗new for the new
task Pnew. L should be trained on the meta-data set P ∪ Pnew [43]. P is usually collected in
advance or extracted from the metadata repositor [44,45]. Meta learning generally learns
Pnew by gradient descent method.

2.2. Few-Shot Learning

Few-shot learning is a type of meta-learning that aims to train a classifier to identify
new classes which have never been used during the training stage, and each new class
only gives a few samples. Traditional machine learning methods do not have good gener-
alization, so using traditional neural networks for training will cause serious overfitting.
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The main idea to solve this problem is to let the machine learn to learn instead of just
learning a specific task. The model should be like a human being. After being trained with
enough tasks, when accepting a new similar task, it can achieve high performance based
on previous experiences without requiring enough samples.

In order to distinguish few-shot learning from the traditional machine learning model,
the data set is divided into a support set and a query set. Suppose the number of cat-
egories is C, and each category has K labeled samples, the support set is expressed as
S =

{(
xs

i , ys
i
)}ns

i=1(ns = C× K), where xi ∈ RD, and D represent the dimension of the fea-
ture vector xi., and yi ∈ {1, 2 . . . C} represents the label corresponding to each sample. The

query set is expressed as Q =
{(

xq
i

)}nq

i=1

(
nq = C× L

)
, where C represents the number of

categories, and L represents the number of samples in each category.
Given a support set S, the model should correctly classify the category of each sample

in the query set. The support set and the query set should contain the same classes. Suppose
there are a total of C categories, and only K labeled samples in the support set of each
category, this problem is called the C-way K-shot problem. K generally takes 1,3,5,10.

3. The Proposed WPNF

Traditional machine learning models have achieved excellent classification results
when the sample size is sufficient, but when faced with tasks with insufficient samples,
serious overfitting will occur, which leads to low generalization performance and causes
the test accuracy to drop significantly. To solve this problem, we must let the model learn
to learn like human beings. Prototype learning is a way of meta-learning, and its learning
goal is learning how to classify, not limited to a specific classification task. That is the
reason why we used a prototypical layer to train the model. We also designed a parallel
two-channel convolutional structure to increase the number of input channels of the model,
so that the frequency domain information of the raw signal can also be captured by the
convolutional layers as a supplement to the original signal, and proposed a wavelet layer
to further optimize the extracted features. Finally, the fault classification was performed by
the prototypical layer.

3.1. The Architecture of the Proposed Model

The overall structure of the model is shown in Figure 2. The raw signal is transformed
by FFT transformation to obtain its frequency domain information, and then sent together
to two independent channels for feature extraction (the weights of the two channels
are updated separately, not shared). The features extracted by the two channels are
concatenated after passing through the convolution block, and the combined feature vector
is sent to the wavelet layer for further extraction. Each convolution block is composed of
convolution layer, batch normalization, activation layer, and pooling layer (the first and
fifth convolution blocks have a wide convolutional kernel (64 × 1) to suppress noise, the
remaining convolution blocks all have a 3 × 1 convolutional kernel). The features extracted
in the time domain and frequency domain will be spliced together at the ‘+’, and then sent
to the wavelet layer for further processing, and finally mapped to the feature space by the
prototypical layer.
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3.2. Convolutional Block

The structure of the convolutional block is shown in Figure 3. Each convolutional
block is composed of a convolutional layer, batch normalization, and activation layer. The
dimensions of the signal will change after passing through the convolutional layer in order
to extract suitable features. The vibration signal will pass through these layers in turn.
Then, the flatten layer will re-adjust the dimension of the signal to one dimension again,
and prepare for the next operation.
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3.3. Wavelet Layer
3.3.1. Wavelet Transform

For the wavelet transform of vibration signals, suppose the signal to be transformed is
x(t), and the wavelet basis function Ψ(t) is defined as

Ψa ,b(t) =
1√
|a|

Ψ
(

t− b
a

)
(1)
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where a denotes the dilation factor and b denotes the translation factor. The expansion and
contraction of the wavelet is characterized by the dilation factor a; and the displacement of
the wavelet is characterized by the translation factor b.

The continuous wavelet transform is defined as:

WTx(a, b) =
1√
|a|

∫
x(t)Ψ

(
t− b

a

)
dt = x(t), Ψa ,b(t) (2)

From the definition of the inner product of the wavelet transform, it can be ob-
tained that WTx(a, b) represents the projection of the signal x(t) on the wavelet basis
function Ψ(t).

When performing those operations on a computer, the parameters a and b need to be
discretized. Assuming a = am

0 , b = nb0am
0 ,m, n ∈ Z, then

Ψn,m(t) =
1√
|a0|

Ψ
(
a−m

0 t− nb0
)
, m, n ∈ Z (3)

In summary, the discrete wavelet transform is defined as:

WTx(a, b) =
1√
|a|

∫
x(t)Ψ

(
a−m

0 t− nb0
)
dt (4)

Wavelet transform has the characteristics of being flexible and changeable, and can
carry out multi-scale analysis. By adjusting the dilation factor a and the translation factor b,
the signal can be observed step by step from the whole to the part, and the signal can be
analyzed in the time and frequency domain, which has been widely used in the field of
signal analysis [46].

3.3.2. Wavelet Layer Design

We designed a wavelet layer to further extract the features extracted from the previous
convolutional block. Assuming that the input dimension of the wavelet layer is i and the
output dimension is j, the output of the wavelet layer can be expressed as:

^
yi = Ψa,b

(
∑m

i−1 wijxi − bj

aj

)
, j = 1, 2 . . . n, i = 1, 2 . . . m (5)

where ŷi denotes the output of the wavelet layer, Ψ is the activation function, wij is the
connection weight between the input layer and the output layer. aj, bj are the weights to
be learned.

The wavelet layer inherits the advantages of the wavelet transform, which makes the
neural network converge fast and avoids falling into the local optimum. It also has the
characteristics of time-frequency local analysis [40].

In this paper, Morlet wavelet is used as the wavelet basis function Ψ:

Ψ(x) = cos(4x) exp
(
− t2

2

)
(6)

3.4. Prototypical Layer

Differing from the traditional neural network layer, the Prototypical layer can map its
input to a feature space, and extract their “mean” to represent the prototype of the class.
Using Euclidean distance as a distance metric, the training process of the model makes the
distance of the same class of data to their prototypes the closest, while the distance to other
prototypes becomes farther. During the test phase, the distance between the test data and
the prototype data of each category is classified by softmax function to determine the labels
of the test data. The classification principle of the prototypical layer is shown in Figure 4. A
prototype ck must be calculated for each category. A mapping function fϕ : RD → RM is
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used to map the sample data of dimension D to the M-dimensional space. By mapping the
N samples in the k-th class in support set, N points can be obtained in this M-dimensional
space. Take the mean value of these N points as the prototype, namely ck. In summary, ck
can be calculated by the following equation:

ck =
1
|Sk| ∑

(xi , yi )∈Sk

fθ(xi) (7)

where fθ denotes a mapping function with learnable parameters θ, Sk denotes the set of
examples labeled with class k, xi ∈ RD is the D-dimensional feature vector of an examp
and yi ∈ {1, 2, 3 . . . k}. is the corresponding label [39].Sensors 2020, 20, x FOR PEER REVIEW 7 of 17 
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3.5. Training of the Model

After the input data is mapped to the feature space by the prototypical layer, the
distance between them is determined by the Euclidean distance:

d
(
z, z′

)
=
∣∣∣∣z− z′

∣∣∣∣2 (8)

Assuming that the point after a query is mapped to the feature space is x, the pro-
totypical layer will take the distance between x and each prototype, and use the softmax
function to generate a probability distribution of x, namely:

pθ(y = k|x) = exp(−d( fθ(x), ck))

∑k, exp(−d( fθ(x), ck′))
(9)

Flowchart of model training is shown in Figure 5. During the training process, each
epoch is composed of several episodes. In each episode, the model randomly selects NC
classes, and a very small number of samples in each class are selected as supports, and there
are NQ samples left in each class as queries. The loss function is defined as the negative
log-probability J(θ) = −logpθ(y = k|x) of the true label of the sample:

J(x, ck) = −log
1

NQ

NQ

∑
i=1

exp(−d( fθ(x), ck))

∑k, exp(−d( fθ(x), ck′))
(10)
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The model uses momentum stochastic gradient descent (SGD) method to update the
trainable parameters θ. The pseudocode of the algorithm for updating parameters through
the SGD method is shown in Algorithm 1.

Algorithm 1 Update the trainable parameter θ of WPNF via the stochastic gradient descent
method of momentum

Require: learning rate η, Momentum parameter α, Initial parameters θ, Initial speed v
For epoch to set value, do:

For episode to set value, do:

Randomly take m samples
{

x(1), x(2), x(3) . . . x(m)
}

from the query set, and their

true labels are ck
(i)

Compute gradient of the samples: g← 1
m∇θ ∑

i
J(x, ck)

Compute speed update: v← αa− ηg
Update parameters: θ ← θ + v

End For
End For

4. Experiments
4.1. Description of Experimental Data

We use the bearing data set published by Case Western Reserve University (CWRU)
for experiments [47]. The Case Western Reserve University Bearing Test Bench is shown in
Figure 6. As a way of meta-learning, WPNF training needs to use a large number of classes
to learn the ability of classification. Therefore, the training process in this paper imitated
the work of Snell et al. [30]. In order to expand the number of classes, the heath states
were subdivided, we used data with a sampling frequency of 12k HZ, and the bearing
data was divided into different measuring points (drive end, fan section, base), faulty
bearing position (drive end, fan section), fault diameter (0.007 inch, 0.014 inch, 0.021 inch,
0.028 inch), motor load (0HP, 1HP, 2HP, 3HP) and failure mode (inner race fault, ball fault,
outer race fault). We subdivided them into a total of 200 classes, of which 170 classes
were used for training and 30 classes were used for testing. There are only 20 samples
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for each class to be divided into support and query. We also selected part of the data for
visualization, as shown in Figure 7. Among them (1), (2), (3) are the data measured from
the base, drive end, and fan end when the ball of the drive end bearing is faulty and the
damage diameter is 0.07 inch when the motor load is 0 HP. Next, (4), (5), (6) are their
spectrograms after FFT transformation. It can be seen that even with the same fault form,
with different measuring points, the frequency domain characteristics will be very different.
Regarding (7), (8), (9), these are the data measured from the base, drive end and fan end
when the drive end bearing rolling failure occurs when the motor load is 1HP, and the
damage diameter is also 0.07 inch. Finally, (10), (11), (12) are their spectrograms after FFT
transformation. It can be seen that the motor load will also affect the characteristics of the
signal in the frequency domain. In summary, it can be found that the frequency domain
signal is more sensitive to the health of the bearing than the time domain signal, so it is very
suitable to be used as a supplement to the original signal and sent to the neural network
for training to improve the accuracy and reliability of the neural network.Sensors 2020, 20, x FOR PEER REVIEW 9 of 17 
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4.2. Hyperparameters Setting of WPNF

There are 2048 points in each sample. In order to improve the anti-noise perfor-
mance of the model, we used wide convolution kernels in the first convolution block [15].
Therefore, as is shown in convolution blocks 1 and 5 both use 64 × 1 kernels, and the
rest of the convolution blocks use ordinary convolution kernels (3 × 1). The number of
convolution kernels in the convolution block is 64. We used maximum pooling as the
pooling method and the kernel size was set to 2. The epoch was set to 200, and the episodes
contained in each epoch were 100. A test was performed after each epoch, also composed
of 100 episodes, we then take their average accuracy rate as the accuracy rate of this epoch.
We used the 10-ways scenario during training stage and the 5-ways scenario during testing
stage, and saved the model with the highest test accuracy as the best model (Table 1).

Table 1. Hyperparameters setting of the wavelet-prototypical network based on fusion of time and frequency
domain (WPNF).

Name Filters Kernel Size/Stride
(Convolution)/Stride (Pooling) Input Size Output Size Activation Function

convolutional block1 64 64 × 1/1 × 1/2 × 1 1 × 2048 64 × 992 Relu
convolutional block2 64 3 × 1/1 × 1/2 × 1 64 × 992 64 × 495 Relu
convolutional block3 64 3 × 1/1 × 1/2 × 1 64 × 495 64 × 246 Relu
convolutional block4 64 3 × 1/1 × 1/2 × 1 64 × 246 64 × 122 Relu
convolutional block5 64 64 × 1/1 × 1/2 × 1 1 × 1024 64 × 480 Relu
convolutional block6 64 3 × 1/1 × 1/2 × 1 64 × 480 64 × 239 Relu
convolutional block7 64 3 × 1/1 × 1/2 × 1 64 × 239 64 × 118 Relu
convolutional block8 64 3 × 1/1 × 1/2 × 1 64 × 118 64 × 58 Relu

Wavelet layer / / 11520 5120 Morlet
Prototypical layer / / 5120 5120 Softmax

4.3. Several Models for Comparison

(1). SVM: Support Vector Machine (SVM) is a pattern recognition method based
on statistical learning theory. Although SVM is essentially a two-class classifier, it can
be extended to a multi-class classifier. Common methods include one-versus-rest and
one-versus-one. This experiment extracted five features of data peak value, peak-to-peak
value, root mean square, kurtosis, and margin, and sent the samples to the vector machine
for classification.

(2). Deep Convolutional Neural Networks with Wide First-layer Kernels (WDCNN) [15]:
A traditional machine learning model that can directly classify data without any prepro-
cessing. A large number of samples are needed as a training set.

(3). Pro Net: The prototypical network mentioned in [39]. It only changes the input
channel of the prototype network to one dimension.

(4). WPNF: The wavelet-prototypical network based on fusion of time and frequency
domain which can fuse the time domain and frequency domain information of the orig-
inal signal, and introduce a wavelet layer to improve the generalization and reliability
of the model.

4.4. Comparison of Experimental Results

We performed comparative experiments between the above models under the same
data set and used the same equipment in the scenarios of 5-way 1-shot, 5-way 3-shot, 5-way
5-shot, and 5-way 10-shot. In order to ensure the accuracy of the experimental results, we
repeated the experiment under each scenario 10 times, and took the average accuracy rate
as the final accuracy rate. The block diagram of our experiment is shown in the Figure 8.
The final result is shown in Table 2:
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Table 2. Comparison of accuracy of models.

SVM WDCNN Pro Net WPNF

1-shot 0.6024 0.2481 0.8031 0.8591
3-shot 0.7294 0.2764 0.9135 0.9488
5-shot 0.7511 0.3124 0.9367 0.9696

10-shot 0.8712 0.4289 0.9642 0.9736

It can be seen from Figure 9 that the accuracy of the four models will increase as
the number of training samples increases. However, as traditional machine learning
methods, whether it is SVM or WDCNN, the accuracy rate is disappointing. This is because
traditional machine learning methods can only achieve good results when training samples
are sufficient. With the increase of training samples, the accuracy rate of WDCNN becomes
the lowest. This is because the network structure of WDCNN is too complex and the
number of training samples is insufficient, which leads to serious overfitting. As a meta-
learning method, the accuracy rate of Pro Net and WPNF has always been maintained at a
high level, even in the 1-shot scenario. The classification accuracy rate of WPNF surpassed
Pro Net in these four scenarios. The improvement is most obvious in the 1-shot scenario,
which is 5.6%. With the increase of training samples, the gap of the two models gradually
decreased, respectively 3.53%, 3.29%, 0.94%. This shows that in the few-shot scenario,
WPNT is superior to traditional machine learning models or meta-learning methods.
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4.4.1. Visualization of the Performance of WPNF and Pro Net

In order to compare WPNF and Pro Net more intuitively, we visualized the training
results of these two models in some scenarios. Figure 10 is a comparison diagram of the
loss value of the two models with different number of samples. Figure 11 is the result of
taking out the features extracted from the last hidden layer of the two models during the
training phase and the testing phase, and visualizing them using the t-SNE method.
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(WPNF) and Pro Net.

WPNF and Pro Net use the same loss function, so the losses of the two can be compared
visually. As can be seen from Figure 10, the loss of WPNF in the test is an order of magnitude
lower than that of Pro Net. In the 10-shot scenario, even if the accuracy difference between
the two is less than 1%, the difference in their loss is very large, the loss of WPNF is only
14% of Pro Net’s. This shows that no matter which scenario, the performance of WPNF is
more stable and reliable.

We use t-SNE (t-distributed stochastic neighbor embedding) [48] to visualize the
performance of WPNF and Pro Net on the training set and test set respectively, where the
training scenario was 10-way 5-shot and the test scenario was 5-way 5-shot. The result is
shown in Figure 11. It can be seen that both WPNF and Pro Net achieved very good results
on the training set, but the results of Pro Net on the test set were not satisfactory. Although
in this scenario, the accuracy of Pro net on the test set is only 3.29% lower than WPNF, its
reliability and generalization ability are far inferior to WPNF.
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4.4.2. Comparison of WPNF and Several Other Models

We made the confusion matrix of the several models mentioned in this paper to better
compare the stability and reliability of these models. In order to increase the credibility
of the results, we repeated the experiments for each model. For Pro net and WPNF,
we randomly selected four episodes during the test phase and made the corresponding
confusion matrix. For SVM and WDCNN, the experiment was repeated four times, and
the confusion matrix of the four test results was made.

The confusion matrix of the above four models in the 5-way 5-shot scenario is shown in
Figure 12. It is not difficult to see that although SVM has certain learning ability, the upper
limit of classification effect is low, and WDCNN almost loses its classification ability in the
few-shot scenario. This is because the model structure of WDCNN is very complicated,
and there are too many parameters to be trained. In the case of insufficient sample size,
it cannot give full play to its advantages, and serious overfitting occurs. The results of
WDCNN are almost random. In contrast, Pro net and WPNF both have good stability. This
shows that the model based on meta-learning can indeed learn the ability of learning, not
just limited to a certain classification task, and the performance of Pro net is more stable
than WPNF and less error-prone.
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5. Discussion

The failure of rotating equipment can bring huge losses to a business. Therefore,
the method of condition monitoring for rotating machinery is particularly important. At
present, there are mainly three methods for intelligent fault detection: acoustic analysis,
vibration analysis, and thermal images analysis. Among them, acoustic analysis and
vibration analysis are relatively similar, because both sound signals and vibration signals
are one-dimensional signals, and during manual analysis, both of them need to obtain
the frequency spectrum of the signal through FFT and find the characteristic frequency
of the corresponding fault for further analysis. Both can also be used to directly train
an end-to-end one-dimensional neural network without any preprocessing. In contrast,
vibration signals have less noise, so the accuracy rate is higher than acoustic signal analysis.
But the acquisition of acoustic signals is less difficult, because the acoustic sensor does not
need to be glued to the machine, so portability is better than that of an acceleration sensor.
Thermal images analysis requires a thermal camera to obtain two-dimensional thermal
pictures. For manual analysis, thermal images are more intuitive than acoustic signals and
vibration signals, and it is easier to locate machine faults. The data volume of thermal
images is relatively large, usually 640×480 pixels, and one sample of a one-dimensional
acoustic signal or vibration signal usually has 1024 or 2048 points. Therefore, when the
structure of the neural network is more complex and the number of samples used to train
the neural network is sufficient, thermal images analysis can achieve a high accuracy rate,
but it is difficult to collect enough samples for each type of fault in practical applications.

After comparing the advantages and disadvantages of these three methods, we chose
to use vibration signals to verify our model, compared with several mainstream models,
and the proposed model achieved good results. WPNF can be applied to any rotating
equipment that can collect vibration signals, not just the fault diagnosis of bearings. Our
future work will verify the application of WPNF on different rotating machinery (such as
centrifugal pumps, vibrating screens, etc., as shown in Figure 13), and optimize WPNF
according to the characteristics of the application scenarios.
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6. Conclusions

We proposed a wavelet-prototypical network based on fusion of time and frequency
domain (WPNF) that can be used to identify the health status of rotating equipment
in few-shot scenarios in this paper. It can accurately identify new categories that have
never been seen in the training process, and each of the new category requires very few
samples. In order to test the proposed model, we conducted experiments on the model
using the bearing data set publicly available by Case Western Reserve University, and
compared it with other machine learning models, such as SVM, Pro Net, and WDCNN.
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The experimental results show that whether in the scenarios of 1 shot, 3 shot, 5 shot, or
10 shot, the proposed model achieved the best results. As a traditional machine learning
model, the classification accuracy of SVM and WDCNN in few shot scenarios was not
satisfactory, with 60.24%; 72.94%; 75.11%; 87.12% and 24.81%; 27.64%; 31.24%; 42.89%. As
meta-learning methods, Pro Net and WPNF both achieved good accuracy. However, in
the four scenarios, the classification accuracy of WPNF was 5.6%, 3.53%, 3.29%, and 0.94%
higher than Pro Net respectively. This shows that the proposed WPNT is better than Pro
Net and proves the feasibility of the proposed model.

The proposed WPNT can theoretically be applied to fault diagnosis of all mechanical
equipment that can collect vibration signals, not just bearings. In future research, we will
study the application of WPNT in the fault detection of different mechanical equipment,
and find a method that can automatically optimize WPNF according to the characteristics
of the vibration signal of different rotating machinery.
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