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Abstract: Green tide, which is a serious water pollution problem, is caused by the complex relation-
ships of various factors, such as flow rate, several water quality indicators, and weather. Because the
existing methods are not suitable for identifying these relationships and making accurate predictions,
a new system and algorithm is required to predict the green tide phenomenon and also minimize
the related damage before the green tide occurs. For this purpose, we consider a new network
model using smart sensor-based federated learning which is able to use distributed observation
data with geologically separated local models. Moreover, we design an optimal scheduler which
is beneficial to use real-time big data arrivals to make the overall network system efficient. The
proposed scheduling algorithm is effective in terms of (1) data usage and (2) the performance of
green tide occurrence prediction models. The advantages of the proposed algorithm is verified via
data-intensive experiments with real water quality big-data.

Keywords: federated learning; smart IoT sensor; big data; optimization; scheduling

1. Introduction

Environmental pollution has been one of the most serious problems for a long time
and the situation is getting worse due to the development of modern industrial societies.
Human beings have suffered from a series of problems, such as diseases, ecosystem destruc-
tion, and natural disasters caused by the polluted environment [1-8]. Especially, for water
pollution, contaminated water directly affects human life from food poisoning to the deaths
caused by microbes and metallic substances that exist in water. Green tide phenomenon,
which has been mentioned as one of more serious water pollution problems in this paper,
is a typical water pollution that has frequently occurred worldwide [9-11]. The green tide
causes problems which are directly related to human health and the destruction of under-
water ecosystems due to the overpopulation of algae. In addition, according to the report
by the World Health Organization (WHO), it has been reported that more than 3.4 million
people die due to polluted water-related diseases every year [9]. Furthermore, the degree of
water pollution becomes more serious by continuous development and industrialization.

Efforts to detect changes in water quality and predict the patterns of water quality have
changed to prevent pollution, and they are modeled and estimated in various forms using
Internet of Things (IoT)-based smart sensors [12-17]. In the early traditional water quality
monitoring study results, laboratory-based research using sample data was common.
However, this approach obviously has limitations on the reflection of real-time real-world
data sampling when the data become complicated and larger. In order to overcome the
limitations, machine learning (ML) and deep learning (DL)-based research has also been
conducted, which is one of possible solutions to effectively analyze various environmental
indicators by gathering data from IoT sensors and also to derive the statistical relationship
between the received data from sensors and water quality [18-20].
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As discussed in [19], there are several previous related research results that apply
ML/DL algorithms to water quality modeling and estimation. However, the models are
reasonable and sufficiently accurate at specific times and places. Therefore, it is obviously
required to design new models based on up-to-date sampling data, because the existing
models are only valid in previous time sampling data.

For this reason, this paper proposes a new water quality monitoring system which is
designed for achieving federated learning (FL) functionalities. The system is fundamentally
based on distributed network architectures, and it consists of smart IoT sensors, edge
servers, and a central cloud. The edge server gathers IoT sensing data, learns a ML /DL-
based prediction model using real-time real-world sensing data and communicates with
the centralized cloud, and the cloud builds and updates a global prediction model for green
tide occurrence, which can be applied to a wide range of regions.

Instead of FL computation, which is for conducting ML /DL learning via distributed
computing platforms and then aggregating the results in a centralized platform to build a
global model, centralized learning is optimal in terms of learning accuracy [2,21]. However,
having all data in a centralized platform is not easy. Especially with this water quality
monitoring problem, it is not realistic to assume that all sensing data can be gathered in a
centralized platform simultaneously, due to geologically physical distances. This issue can
be solved by utilizing a number of edge servers (i.e., local distributed computing platforms
in FL) that are distributed in a slightly closer position to the sensors [21]. In addition,
a global model which aggregates several model parameters from multiple distributed
edge servers can be efficiently and effectively built via FL without sharing all sensor data
with the central server. In fact, FL computation allows for the global model to derive
performance close to central computing while reducing the communication cost of the
entire networking systems [22-24]. For this reason, we design a network system which
consists of multiple edges, distributed smart sensors, and a central server. Therefore, our
network architecture can be illustrated as shown in Figure 1.
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Figure 1. Overall network architecture.

In this system, a number of smart sensors are distributed in large areas to collect vari-
ous water quality-related indicators in the rivers and lakes of South Korea. The edges that
are scattered around the sensors in order to receive data from the smart sensors are matched
by the scheduling algorithm between edges and smart sensors. The transmitted data from
various locations are used to learn/train the green tide prediction model. According to the
progress of FL computation, the performance of local models that participate in aggregation
affects the performance of the global model generated in the central cloud. We decided that
only edge servers that guarantee the model’s accuracy can participate in the aggregation,
and their parameter information is utilized. In this process, maximizing the number of edge
servers that have models that guarantee the accuracy of the green tide occurrence forecast
is important. Therefore, we design a fairly optimal scheduling algorithm for this purpose
in order to maximize the number of local edge learning initiations. When multiple edge
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servers receive data from distributed smart sensors, the proposed scheduler lets as many
edges as possible have sufficient data for learning without significant gaps in the amount
of data supplied between each edge. It is meaningful in an environment where there is a
difference in the degree of dispersion of smart sensors around the actual position of edges
or where certain edges can monopolize the matched sensor data. In addition, setting a
baseline (i.e., training initiation threshold) for appropriate learning data can prevent some
cases that affect the performance of the green tide occurrence prediction models, such as
overfitting and underfitting caused by the insufficient amounts of data.
The main contributions of this paper are as follows:

e  The existing research results that use only limited case information at specific times
and places are not suitable for the accurate prediction of green tide phenomenon. The
general central computing method is not suitable to handle massive real-time water
quality data from the several smart sensors that are located over the river irregularly.
A new network model with a distributed structure, which is based on FL is suggested.
Based on the network model, we can utilize real-time data generated at a certain
frequency for a general prediction global model rather than for a certain point.

e  This paper presents an optimal fair scheduling algorithm for efficient data transmission
between edge servers and smart sensors. The algorithm prevents some edges to
receive excessive data from the smart sensors and allows as many edge servers to
perform local model training by maximizing the number of learning edges where
the learning edge is defined as the edge that has sufficient data to initiate prediction
model leaning/training (i.e., more than the threshold D).

e  For data-intensive simulations, actual real-world domestic water quality big-data is
used. The river in the area where green tide occurs in Korea is designated as the
background of the experiment. Water quality data managed and provided by several
Korean government-affiliated organizations is used for the performance evaluation in
this paper.

The rest of this paper is organized as follows. Section 2 illustrates related work and
considers our reference network model. Section 3 presents our proposed FL scheduler
for managing sensing data in large-scale network environment. Section 4 evaluates the
performance of our proposed algorithm with real-world dataset. Lastly, Section 5 concludes
this paper and presents future research directions.

2. Preliminaries

In this section, prior research results related to the proposed algorithm and the corre-
sponding reference network architecture are described.

2.1. Related Work

Remarkable research results for water quality management and monitoring have been
proposed, especially for green tide phenomenon [12-18]. The precise and accurate case
study results for various sensor network and vehicular network situations are presented
in [12-15]. The smart sensor design for water quality monitoring is precisely discussed
in [16,17], In [18], a drinking-water quality model is proposed to predict water quality
using big data with DL methodologies by utilizing long short-term memory (LSTM) for
time-series prediction. The drinking-water quality data measured by the automatic water
quality monitoring stations of Guazhou Water Source of the Yangtze River in Yangzhou are
used to analyze the water quality parameters in detail, and finally, the prediction model is
trained and tested with monitored real-world data from January 2016 to June 2018. The
results of the study present that the prediction values of several water quality indicators
and the actual values are almost equivalent. The proposed algorithm in [18] predicts the
trends of measurement variations in several water quality indicators. The drinking-water
is managed by comparing the prediction values and reference values of each component
determined by the water quality. However, this model is built after gathering all data, thus
it is not for real-time computation. Instead of this, our proposed method in this paper uses
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Keum River

Q

distributed learning in order to gather the data in real time, and also trains them in local
for build local models in real-time and, finally, the local models are used to compute a
global model via FL functionalities where the learning is conducted via our proposed fairly
optimized scheduler to improve the performance.

2.2. Reference Network Model

In this research, many smart IoT-based networked sensors are distributed in riversides.
In order to conduct the research, which reflects real-world data and scenarios, one of
the major rivers in South Korea is considered, i.e., Keum river, as illustrated in Figure 2.
According to the fact that the river is nation-wide, one-hop sensing data transmission from
sensors to the centralized DL computing platform is not possible because (1) transmission
distances will be in the order of kilometers, as shown in Figure 2 and (2) having massive
medium access at a single access point (i.e., centralized computing platform) with numerous
smart sensors that are deployed in the entire river is not efficient at all in terms of network
throughput degradation. Therefore, edge servers are essentially required in order to gather
the water quality sensing data at first. The edge servers are able to locally conduct DL
training computation; then, the trained local DL model parameters can be delivered to the
centralized computing platform. The reason why edge servers are used not only for sensing
data gathering but also for local training is that conducting local training in individual
edge servers is beneficial in terms of learning computation robustness. If the centralized
computing platform gathers all data themselves from all edges servers, the amounts of
data will be huge and the sensing data arrivals at the centralized computing platforms will
not be synchronized. Thus, the centralized computing platform will have arrivals while
the deep learning training computation is still working one. This situation is harmful in
terms of robust training. In considering FL. computation in this paper, local training in
individual edge servers will compute optimized local training parameters in each edge
server. After that, the trained parameters in individual edge servers will be delivered
to the centralized computing platform in each synchronized unit time, then the simple
aggregation computation will be performed in a short time at the centralized platform.
Finally, we can observe that this local training-based FL computation is beneficial in terms
of robust training. The centralized platform can perform FL computation in order to build
our desired global DL model that can predict green tide phenomenon. Therefore, it is
obvious that FL functionality is essentially required for this nationwide large-scale sensing
and monitoring system.

"

S,

Gongju barrage

14.33 km Sejong barrage

<+—— NB-loT

Figure 2. Overall network architecture: This shows Gongju barrage and Sejong barrage in the Keum River, where the actual

green tide is found in Korea are considered in this paper. Several edges and smart sensors are distributed around one

barrage and are designed to communicate through NB-IoT. The red dot shown in the figure is edge located on the barrage

and the blue diamond is smart sensor that measures water quality in the river.
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In the river, multiple barrages exist, as illustrated in Figure 2. The barrages are
located in suitable places to set up multiple edge servers and smart IoT-based water
quality monitoring sensors. The reason is that the barrages can provide power sources to
edge servers and the sensors should be located nearby the edge servers for more reliable
transmission of sensed water quality data. The example geometric location figure is
presented in Figure 2, where the edge servers and sensors are denoted by red circles and
blue diamonds, respectively. Note that the water quality data gathered by smart IoT-based
sensors are used to determine whether the green tide phenomenon does or does not occur
in the river.

For the transmission from smart IoT-based sensors to edge servers, narrow-band IoT
(NB-IoT) communications are used for establishing massive connections between sensors
and edge servers in large-scale networks [25]. As discussed in [25], NB-IoT allows for the
connectivity of more than 100 K devices per cell and it could be increased by exploiting
multiple carriers, and the maximum throughput rate is 200 and 20 kbps in downlink
and uplink, respectively, with a 1600-byte payload size in each message. Moreover, the
communication range of NB-IoT is about 10 Km [26]. Furthermore, the use of NB-IoT is
also beneficial in terms of energy efficiency, thus it is definitely helpful for battery-limited
smart loT-based sensors (e.g., 10 years of battery lifetime).

The water quality observation data generated by smart sensors are used as learning
data to create a green tide prediction model in each local edge server. The smart sensor
means a new loT-based networked sensor that incorporates various sensors for green tide
indication, i.e., temperature, pH, dissolved oxygen (DO), total organic carbon (TOC), total
nitrogen (TN), Chlorophyll-a (Chl-a), and turbidity.

3. Scheduler Design for Federated Learning

In this section, we describe the motivation to design the optimal fair scheduling and
the details of the proposed algorithm.

3.1. Algorithm Design Rationale

According to the scheduling policies for the communication matching between edge
servers and smart sensors, the numbers of associated sensors in edge servers can be varied.
In general, after matching is complete, the edge servers perform their own local training
for green tide prediction based on real-world sensing data. If some edge servers are
with an insufficient number of water quality sensing data, the performance will be poor
due to overfitting. Eventually, this result is definitely harmful for the learning accuracy
performance of our ultimate global prediction model because the model will be built by
the aggregation of local prediction models through the FL model aggregation procedure
as illustrated in Figure 3 [27]. First of all, local edge servers gather sending data in order
to conduct local model training based on that. For the gathering, scheduling decision
for matching between edge servers and sensors should be made in terms of optimal fair
scheduling in order to build accurate global model eventually (Step 1). After gathering
all the data, each edge server conducts local model training (Step 2) and Algorithm 1.
Then, the local model training results (i.e., learning parameters) should be delivered to
centralized platform for FL computation via local model parameter aggregation in order to
build our final global model (Step 3 and Step 4) and Algorithm 2. The global model, which
is generated by FL computation, is distributed to edge servers (Step 5).

Based on this nature of FL. computation, it is important to ensure that the edges have
sufficient numbers of training data to satisfy a certain level of local model performance.
Therefore, our proposed scheduling algorithm is designed for maximizing the number
of edge servers those training data are sufficient to conduct training. Here, the required
number of training data for our target performance is defined as a baseline (i.e., training
initiation threshold). It is obvious that the training initiation threshold can be varied
depending on the required target performance of our green tide prediction model. Our
proposed optimally fair scheduling algorithm for FL computation in distributed network
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is able to avoid training data imbalance among edge servers. Furthermore, the algorithm
is able to control certain edges to proceed with local learning with a quantity of data that
cannot satisfy the target performance. Through this solution, the performance degradation
by overfitting or underfitting in some edge servers can be avoided.

| @ FL aggregation
FL server

$ . Initialize model parameter
A 2, Averaging aggregation
(o =) 3. Parameter update

. —
(>
® Global model parameter ® Local model parameter
transmission l l transmission

A A 88 A 583 \®L0calmodeltraining
edge

@ optimally fair scheduling
& data transmission

water quality data
transmission

i

=i

o Smart
sensor

i

Figure 3. Flowchart of the overall system.

Algorithm 1 Fair Federated Learning Computation at Edge Server i.

Input: Sensing Data: s;
Output: Local Learning Parameters: w;
Local_Training(Edge ID: i, Sensing Data: s;):
for For given training iteration do
w; < w; — a7 L(w;, s;) // L(-): Cost Function, a: Learning Rate
end for

SARCUR N

Algorithm 2 Fair Federated Learning Computation at a Central Platform.

1:  Input: Local Learning Parameters: w;, Vi € £ // £: Set of Edges
2:  Output: Global Learning Parameter: wg
3 wg = ﬁ Yvice Wi = ‘é—‘ Y vice Local_Training(i,s;)

3.2. Edge Queue Model

In order to formulate our proposed method, it is required to model the queue in each
edge server. Each edge stores water quality data in the internal queue and use the stored
data to start local model training. The queue Q;[t] is formulated as follows,

Qilt+11=(1-1) < g+ ) il >/V€f€5 M

Vs, €S

where Q;[t] in (1) stands for the saved water quality data size of edge ¢; at t where the set
of edges is denoted as £. In addition, s;, S, d;[t], and X(i ) [t], stand for smart sensor i, set of
sensors, the amount of transmitted data from sensor i at ¢, and scheduling vector between
edge j and sensor i at t where it can be 1 it they are scheduled (otherwise, 0), respectively.
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The size of the queue is independent to the training initiation threshold D, and has an
infinite size. These features allow the edge to store all data in a queue even if it receives
data larger than the specified D size in one iteration and to use the stored data for learning
on the edge. The queue is controlled by a scheduling vector I; that will be explained again,
the queue is emptied only when edge starts local learning using the data that has met the
training initiation threshold D (i.e., I; = 1). If the size of the data received at iteration ¢
does not meet the condition (i.e., I; = 0), according to (1), the edge accumulates the data
transmitted at iteration ¢ until the data stored in the queue is able to meet the size of D.

3.3. Algorithm Details

The proposed fair FL scheduling algorithm for green tide prediction with water quality
sensing training data is presented as follows. Note that the proposed algorithm individually
operates in each river, and the overall network architecture is as illustrated in Figure 4.

max : L:|t],

Ve]-XCES ]H (2)
subject to Y. di[t]-x; o [t] = (D; —dS[t])-Li]t], Ve; € £,

j (Z Ayl = (D; = 418) 5] e, ()
Y oxat] <1,Vs €S,
veies il @
Y xint] <aj,Ve €€,
y g Ml = 2V 5)

where ¢; and s; stand for edge servers j and smart sensors i, Ve; € & (set of edge servers)
and Vs; € S (set of smart sensors), as illustrated in Figure 1, respectively. Then, [;[t] is a
scheduling vector for the local model training initiation in ‘v’ej € £ attimet,ie., ej is ready
to go for local model training when [;[t] = 1 (otherwise, [;[t] = 0). Note that each ¢; € £
initiates its own local model training when it has enough training data, i.e., the number of
sensing data is equal to or larger than D; (i.e., training initiation threshold). In addition,
x(;,j)[t] is a scheduling vector between ¢; € £ and s; € S at time t. Thus, we have to obtain
optimal [;[t] and x; ;) [t] via the optimization solving procedure where ¢; € £ and s; € S.
Here, d¥[t] and d; [t] stand for the existing sensing data amountsins; € Sande; € € at
time ¢, respectively. In (3), Dj stands for the data size, which is required for initiating local
model training in ¢; € £. Lastly, 4; stands for the number of antennas in Ve; € £.

As mathematically described in this optimization formulation (2)—(5), our main ob-
jective is for maximizing the number of edges, which can initiate local model training,

as shown in (2). In (3), (Dj - d]‘? [t]) is the amount of training data, which is required for

initiating local model update. Here, when multiple users are associated with an edge, i.e.,
x(;,;) = 1 for a specific ej, the number of uploaded training data from the associated users
should be larger than the (D]- —d; [t]) if e; can initiate the training, i.e., [;[t] = 1. On the
other hand, if ¢; cannot initiate the training, the number of uploaded training data from its
associated users does not need to exceed (D]- —d; [t]) . Thus, in the right-hand-side of (3),

we need to multiply I;[t] in order to relax the restriction when ¢; cannot initiate its own
local training, i.e., [;[] = 0. In (4) and (5), the scheduling between ¢; and u; is expressed,
i.e., each u; can be scheduled with one ¢; (refer to (4)) and each ej can be associated with, at
most, 4; number of users (refer to (5)).



Sensors 2021, 21, 1462

8 of 15

<— D (Minimum Data Size) —»

Figure 4. Optimally fair FL scheduling algorithm.

4. Performance Evaluation with Real-World Dataset

This section verifies the novelty of the proposed algorithm with real-world data
obtained Keum Rivers in Figure 2. The detailed simulation parameters and the data-
intensive simulation results are discussed.

4.1. Simulation Setup

The performance of the proposed optimally fair FL scheduling algorithm is evaluated
via data-intensive simulations. The simulator is designed with cvxpy [28]. We set the
simulation environment as shown in Table 1 by referring to the actual river in Figure 2.
Each barrage in the river has 5 edges, which can receive the water quality data from
the distributed smart sensors. The smart sensors generate sampling data based on each
sampling frequency. We set the smart sensors with different sampling frequencies, which
are randomly distributed around the edges. Additionally, the number of antennas for each
edge is considered between 30 and 40 based on NB-IoT communications. The sampling
data from the smart sensors can be only used as meaningful learning data through edge
servers. Each smart sensor sends the data to the scheduled edge only when x(; j = 1. In the
simulation, the edge saves the received data; if the data size is less than D, it waits for the
next scheduling to meet the size of D and if the data size is equal to value of D or higher, it
uses all received data for local model training.

Table 1. Basic network component statistics in Keum river.

Keum
# barrages 2
# edge servers for 1 barrage 5
# sensors for 1 barrage 144

4.1.1. Water Quality Monitoring Data

We collect the water quality data for the simulation from the State-led managed
sites (http://www.koreawqi.go.kr, http://water.nier.go.kr, http://www.wamis.go.kr)
(accessed on 1 January 2021). Each site provides information on real-time water quality and
green tide outbreak in Korea. The disclosed data from the sites differ from each other in
terms of inclusive water quality indicators and measurement time or coordinates. Generally,
seven sensing data (i.e., temperature, pH, DO, TOC, TN, Chl-a, and turbidity) are used
as water quality monitoring indicators. For these reasons, we collect the seven kinds of
cumulative data over 5 years that are provided from different sites and refine the obtained
water quality records by pre-processing, considering the missing data, normalization of
variables and class imbalance. Through this process, all the essential data are formulated
to form of one row in the dataset based on the same date (time) and location, such as
in Table 2. The seven indicators’ observation data of one row are defined as one set of
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training data for the green tide prediction model and as real-time data that are generated
repeatedly for the sampling frequency in each smart sensor. The total data for one river can
be controlled by considering the deployment value of barrages, edges, and smart sensors
or any specific sampling frequency.

Table 2. Water quality monitoring data sample of Keum River with 7 indicators. The sample data are based on the data observed

around Backjae barrage and Gongju barrage.

Location (Barrage)

Temperature pH DO TOC TN Chl-a Turbidity Green Tide Occurrence

Backjae 17.7 7.6 8.9 35 3.042 6.1 8.8 0
Backjae 23.1 74 8.6 35 2089 17.6 7.4 0
Backjae 27 8.4 10.5 33 2753 45.8 12.7 1
Backjae 27 8.6 10.8 35 2586 67.1 20.3 1
Backjae 27.3 8.4 9.3 32 2889 192.8 59 1
Gongju 26.4 7.7 8.8 33  2.636 6.7 2 0
Gongju 24.5 7.6 8.9 2.8  2.99% 9 4 0
Gongju 274 8.1 9.4 23 2428 441 10.6 1
Gongju 279 8.1 8.8 27 2.77 48.7 6.3 1
Gongju 30.9 8.7 9.3 3.2 1.995 67.2 5.6 1

temperature

pH

DO

TOC

TN

Chl-a

turbidity

4.1.2. ML/DL-Based Prediction Model

The green tide occurrence prediction model used in this paper is a binary classification
model based on deep neural networks. Based on the seven water quality indicators data
observed in real-time, the model learns the relationship between the indicator values and
the possibility of green tide occurrence.

The network architecture is formulated with 7 inputs parameters (due to seven indi-
cators) and 1 output parameters (due to binary decision). The model includes 4 hidden
layers and each layer is followed by ReLU and sigmoid activation functions [29]. For the
model training, Adam optimizer is adopted with a learning rate of 0.001, weight decay
of 0.0001, and finally the batch size is set to 10. Our proposed binary classification deep
neural network model is also illustrated in Figure 5.

Input Layer Hidden Layer Output Layer

Green tide ]
occurrence

Figure 5. ML /DL-based green tide phenomenon prediction neural architecture.

In conventional deep neural network computation procedures, we have three phases:
(1) model setup (building a deep neural network model), (2) training (optimizing the
parameters in our deep neural network model), and (3) inference (making a decision,
which is a binary classification decision in this paper, based on the trained/optimized
parameters and deep neural network model). For the first phase (i.e., model setup), we
already introduced our model, as illustrated in Figure 5, with four hidden layers and each
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layer has seven units. Furthermore, the sizes of input and output are 7 and 1, respectively.
For the next phase (i.e., training), we trained our model, which was built in our first phase
with real-world green tide phenomenon data, as explained in Section 4.1.1. Then, the
parameters in our proposed deep neural network will be trained and optimized. Then, our
learning procedure is over. After that, lastly, our final phase (i.e., inference) is conducted in
real-time. When we gather the real-world green tide phenomenon sensing data from smart
IoT sensors in real-time, we can make input vectors, and then we can compute output
results (between 0 and 1) based on the trained/optimized deep neural network model.
If the output result is bigger than 0.5, we can make a decision on whether the green tide
phenomenon occurred or not in the position.

4.2. Performance Evaluation Results

In this subsection, we describe the simulation results in several respects. The simula-
tion is processed under the simulation settings, already mentioned above.

First, we derive the local model performance for each edge of the river, increasing the
size of D from D = 10 to D = 250. As the value of D becomes larger, the accuracy of the
local model, which is trained on one edge is increased. As we can see in Figure 6, the local
model’s accuracy rises sharply at the moment where D size is between 20 and 50. When
D size is over 50, the accuracy is slightly higher and is converging to 90% or more from
D is 100. Because the frequency and number of smart sensors generating water quality
observation data in the Keum river are fixed, the total amount of data that exists within the
entire system is also defined. Therefore, it is necessary to set the appropriate value of D
in advance. Based on the result in Figure 6, the simulation is set to target where the local
model of each edge guarantees more than 80% accuracy.

100 T T T T

L ———-—‘/—
850 A X 100

wor

60

Accuracy(¥a)

50
X 20

4o b | Y 37.5
-

30 r

20 | i i
0 50 100 150 200 250

Batch Size(D)

Figure 6. Average local model accuracy with training initiation threshold D.

We evaluate the scheduling performance based on the number of I. The value of I
indicates whether I edges have enough data and are able to learn the local models in
the system. As we set the condition in the proposed scheduling algorithm’s equation,
only when each edge gets more than D amount of data, I becomes 1 and the size of D
guarantees the corresponding local model accuracy. For these reasons, the results represents
that the higher the value of I, the more edges that have sufficient learning data through
the matching methods used in the experiment, and each edge can train the green tide
prediction model, which can participate in the global model generation. We proceed with
the simulation during 50 iterations and compare the proposed optimally fair scheduling
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algorithm performance results. Baseline matching (i.e., randomly matched method), which
ignores filling D, is used as a comparative group.

This evaluation has the performance results, as shown in the Figure 7. The results,
based on the size of D, are distinguished with different marker types and line colors in
Figure 7 and the black dash line with a plus-shape marker represents a baseline. The
baseline mechanism, which is a mechanism to let each edge use all the received data,
even if the data are too small and unsuitable for local learning, and always has the largest
value that is equal to the number of edges in the system. On the other hand, for the
proposed matching algorithm, which lets all edges satisfy the D size, there are performance
differences depending on the value of D. In Figure 7, when the training initiation threshold
D is set 20, the proposed scheduling algorithms always match the baseline performance.
The larger the setting for the D value, the greater the amount of data that the edge must
receive from the sensors to meet the conditions. The size of sampling data produced by
the sensors in every iteration is always constant. For these reasons, the number of edges,
which satisfy D for each period, decreases compared to the results with small D. However,
even in this situation, the proposed algorithm matches the sensors and the edges in an
optimally fair direction and produces as many federated learning participants (i.e., edges)
as possible.

1
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Numbers of available edges for training

Numbers of available edges for training

Figure 7. The numbers of available edges for training in Keum River: Baekjae barrage (left) and Gongju barrage (right).

We also measure the number of edges that satisfies the training threshold D and the
actual data size of the edges over the 50 iteration. Table 3 shows the number of accumulated
edges that satisfies the conditions according to the value of D, as tested using 5 edges
located in Backjae barrage and Gongju barrage. The random matching, which is represented
with gray color, results in all edges being able to start local learning with the received
data no matter the size. It also has the most variety in the numbers of data distribution.
If D = 20, 5 edges always meet the threshold during all iterations. If D = 50, most edges
satisfy the D value according to Figure 7, and eventually approximately 220 edges always
have more than D data. Even if D = 100, as seen in Figure 7, only two or three edges meet
D on average, and less than 50% of the edges of D = 20 have 100 or more data. Figure 8
shows the amount of data the edges have based on the cumulative number of edges that
meet the D condition. For D = 20, edges obtained between 30 and 55 pieces of data, and
always exceeds the threshold value of 20. For D = 50, 75% or more of the cumulative
number of edges receive data as much as the value of D, and in some cases have more
than D. If D = 100, all of the data on the edge in Figure 8 that are distributed have at least
100 pieces of data applied to approximately 110 cumulative edges as seen in Table 3. About
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140 edges, excluding 110 out of 250 total, always receive less than 100 pieces of data and
fail to perform the learning.

Table 3. Cumulative total values of edges that satisfy the training threshold D.

Baekjae Barrage Gongju Barrage
D =20 250 250
D =50 222 221
D =100 114 111

100

Count (%)
Count (%)

30 40 50 60 70 80 90 100 110 30 40 50 60 70 80 90 100 110
Batch size (D) Batch size (D)

Figure 8. Data distribution of edges over D in Keum River: Baekjae barrage (left) and Gongju barrage (right). The value of
Count (%) means the ratio of the number of edges according to the x-axis value compared to the cumulative total of edges
that satisfy the value D during 50 iterations.

Model accuracy is also tested using real data received by the scheduling results above
D. We derive CDF graph for the performance of the local model generated by each edge.
In Figure 9, the results of different D sizes are distinguished by the color of the line and the
shape of the marker. One marker represents the cumulative distribution of model accuracy
corresponding to the x-axis. Both Backje barrage and Gongju barrage have a concentration
between 90 and 100 accuracy at D = 100, and have a relatively even distribution compared
to other cases. For D = 20, there are models with an accuracy of less than 40, which matches
the data distribution between 30 and 50 of Figure 8. At D = 50, the models generally have
performance accuracy of above 80 and, in particular, the number of edges where the accu-
racy increases rapidly in 80
performance range.

Consequently, the results of the proposed scheduling algorithm show that the case of
D = 50 satisfies the appropriate balance between the number of local learning available
edges and accuracy. In Table 4, when D has value of 50, the largest number of edges during
all iterations satisfy target performance. When D has a small value such as 20, the proposed
scheduling with D = 20 has a similar ratio to the random scheduling in Table 4. Even if
almost all edges are allowed to start training, the performance of edges being more than
80% is not always guaranteed. The experiments also present that, if D is too large, high
performance models can always be obtained. However, in this case, each edge should
receive more than the threshold value D and it is impossible to get many edges that can
perform learning.
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Figure 9. Accuracy CDF of Keum River: Baekjae barrage (left) and Gongju barrage (right).

Table 4. Achieved accuracy ratio of Kuem River (>= 80 total percentage).

D =20 D =50 D =100 Random

Baekjae barrage 172 201 114 161
250 222 114 250

0.688 0.905 1.000 0.644

D=20 D =50 D =100 Random

Gongju barrage 166 198 111 165
250 221 111 250

0.664 0.896 1.000 0.660

5. Conclusions and Future Work

Nowadays, various deep learning algorithms are widely used for major environmen-
tal problems, and this paper designs a novel green tide phenomenon prediction model
which is one of major environmental problems. In order to gather the green tide related
indicator information in real-time, smart sensors are used and the gathered data will be
delivered to intermediate edge servers (not directly to a centralized computing platform)
due to the limitations of transmission distances and the burdens of massive accesses. Then
the edge servers conduct their own local training, and the trained parameters are delivered
to the centralized platform for building our desired global prediction model via federated
learning computation. In order to improve the performance of federated learning, gathered
data should be fairly distributed over the edges’ servers for avoiding overfitting. Therefore,
this paper proposed a novel federate learning scheduling algorithm in order to fairly
schedule sensing data over edge servers. Our data-intensive simulation results verify that
the proposed algorithm presents remarkably effective performance due to balanced data
gathering. As future research directions, various factors, such as the positions of network
components (i.e., smart sensors, and edges), distribution ratios, and communication chan-
nel qualities can be considered. In addition, experiments can be extended using various
real-world data for a wider range of regions.
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