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Abstract: In this paper, we present a high-speed, unified elliptic curve cryptography (ECC) processor
for arbitrary Weierstrass curves over GF(p), which to the best of our knowledge, outperforms other
similar works in terms of execution time. Our approach employs the combination of the schoolbook
long and Karatsuba multiplication algorithm for the elliptic curve point multiplication (ECPM) to
achieve better parallelization while retaining low complexity. In the hardware implementation, the
substantial gain in speed is also contributed by our #n-bit pipelined Montgomery Modular Multiplier
(pPMMM), which is constructed from our n-bit pipelined multiplier-accumulators that utilizes digital
signal processor (DSP) primitives as digit multipliers. Additionally, we also introduce our unified,
pipelined modular adder/subtractor (pMAS) for the underlying field arithmetic, and leverage a
more efficient yet compact scheduling of the Montgomery ladder algorithm. The implementation
for 256-bit modulus size on the 7-series FPGA: Virtex-7, Kintex-7, and XC7Z020 yields 0.139, 0.138,
and 0.206 ms of execution time, respectively. Furthermore, since our pMMM module is generic
for any curve in Weierstrass form, we support multi-curve parameters, resulting in a unified ECC
architecture. Lastly, our method also works in constant time, making it suitable for applications
requiring high speed and SCA-resistant characteristics.

Keywords: elliptic curves cryptography (ECC); high speed implementation; unified; Montgomery
multiplication; field-programmable gate array (FPGA)

1. Introduction

The advances in technology have resulted in the emergence of various applications,
such as 5G and blockchain-based services [1,2]. In most cases, acquiring high speed and low
latency without compromising security aspects has become of great importance. Hence,
elliptic curve-based cryptography (ECC) has become prominent in modern cryptography
compared to the Rivest-Shamir—Adleman (RSA) due to its smaller key size for an equivalent
security level [3]. Several protocols based on ECC are the Elliptic Curve Diffie-Hellman
(ECDH) for the key agreement, as well as Elliptic Curve Digital Signature Algorithm
(ECDSA), which is used extensively in the current digital signature schemes.

Among the existing ECC protocols, the use of the Weierstrass curve remains prevalent.
In fact, this curve has still been widely adopted in the current implementations, rang-
ing from blockchain-based applications to 5G services. For instance, Bitcoin, Ethereum,
and Zcash employ the secp256k1 curve for their signature verification [4] while public-key
schemes based on SM2 remain the standard for use in electronic authentication systems, key
management, and e-commercial applications within China [5,6]. Additionally, Transport
Layer Security (TLS) as the favored protocol for securing 5G communications, employs
ECDH in its handshake process [7].

Since improving the performance of ECC is essential, several methods have been
proposed to speed up the computation of the protocol. One of the techniques is by utilizing
special primes (also known as generalized Mersenne primes), as recommended by the
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National Institute of Standards and Technology (NIST) [8], which greatly simplifies the
modular reduction operation. Another approach is by employing efficiently-computable
endomorphisms [9] to accelerate elliptic curve point multiplication (ECPM) in the curves
with special properties (e.g., secp256k1), such as by using the Gallant-Lambert-Vanstone
(GLV) method [10].

However, these schemes are specific to each modulus and curve’s domain parameters.
Even though a very fast computation can be achieved, it comes with a huge trade-off
in flexibility for the hardware implementation. This drawback is undesirable because in
real-life use, we may need to employ more than one curve to facilitate different purposes.
For instance, a web server may require multiple curves to comply with different security
requirements among various platforms. Furthermore, recent applications of ECC have
explored a nonstandard prime field that does not make use of a specific prime structure [11],
such as the post-quantum supersingular isogeny-based key exchange (SIKE) algorithm [12]
and bilinear pairing [13].

To maintain hardware implementation flexibility, several methods in literature have
proposed to accelerate ECC computation for generic curves rather than a special curve,
including [11,14-20]. In 2013, Ma et al. [16] proposed a generic ECC processor, which
leverages the combination of a quotient-pipelining Montgomery multiplication with a
parallel array design. Their technique, implemented on Virtex-5, yields a speed of 0.380 ms,
which can be considered the fastest among other proposals. Other works on a more recent
platform (e.g., Xilinx 7-series) can be found in [11,14,15]. Specifically, Asif et al. [14] utilized
a residue number system (RNS) based ECC processor whereas Bajard et al. [15] leveraged
a Montgomery Cox-Rower architecture, which gives a relatively lower speed of 0.730 and
0.612, respectively.

Recently, Roy et al. [11] proposed a fast implementation of ECC multiplication that
works for arbitrary Montgomery curves using DSP cores on modern FPGA. Their proposed
modular multiplier gives a competitive result: around 0.343 ms for the low area, and 0.39 ms
for the single-core implementation, making their paper the state-of-the-art ECC processor
for generic Montgomery curves. Additionally, the authors also provide the extension to the
generic Weierstrass curve, which yields a slightly lower speed of 0.459 ms. However, their
technique has dependent iterative variables, making further optimizations (e.g., pipelining
method) infeasible. Using their approach, multiple cores will need to be used when dealing
with simultaneous execution of several multiplications.

Since the performance of an ECC processor mostly depends on the underlying mod-
ular multiplication operation, especially when the point operation is optimized using
a Jacobian coordinate to avoid modular inversion during ladder operation, an efficient
multiplication technique will significantly increase the speed of the processor. The support
for pipelining and parallelization, for example, may give a considerable speed increase in
the hardware implementation. To date, one of the most favorable methods for multiplica-
tion is the Karatsuba—Ofman multiplication [21] since it offers a relatively low complexity.
However, it would be very difficult to employ parallelization due to its recursive approach
when dealing with higher bit length. On the other hand, the naive way to perform mul-
tiplication is the schoolbook long multiplication, which scales quadratically in terms of
complexity. Nevertheless, all digit multiplications can be executed in parallel, which can
be efficiently implemented in the high-performance hardware by adopting a divide-and-
conquer method.

In our study, we find that combining these two methods for our multiplication enables
us to perform better parallelization, which in turn brings a substantial gain in speed for the
FPGA implementation. Furthermore, we design our ECC architecture to support pipelining
for achieving an even higher speed. In particular, the speed-up is mainly contributed by
our n-bit pipelined Montgomery Modular Multiplier (referred to as pMMM), which is
built upon n-bit pipelined multiplier-accumulators utilizing DSP primitives as digit multi-
pliers. To support the high-speed use, we modify the modular adder/subtractor in [11]
to support pipelining, which here is referred to as pipelined Modular Adder/Subtractor
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(pMAS). Additionally, we adapt the Montgomery ladder algorithm recently presented
by Hamburg [22], which to date, provides the most efficient computation. Moreover, we
managed to employ a more efficient scheduling compared to the original approach, in
which we eliminate the use of an additional temporary register. Tested in the 7-series
FPGA (i.e., Virtex-7, Kintex-7, and XC7Z020), our method yields the latency of 0.139, 0.138,
and 0.206 ms, respectively, which to the best of our knowledge, is the fastest in literature for
generic curves. In fact, even when compared to the methods that use special prime forms
(e.g., [23-26], which take 0.054, 0.101, 0.400, and 0.620 ms, respectively), our approach is
still considerably competitive.

Apart from speed, another advantage of our approach is that it can work for arbitrary
prime modulus. Hence, multi-curve parameters can be provided in a single, unified ECC
processor. This will be very beneficial in the real-life cases, as previously discussed. Lastly,
we also aim to minimize the risk of side-channel attacks (SCA), in which adversaries may
extract secret key information without breaking the primitives by analyzing the variations
of timing (i.e., timing attack), power consumption (i.e., differential power analysis attack
(DPA)), and electromagnetic emission (i.e., EM attack)) of the cryptographic device [27]. Our
architecture performs all the underlying operations invariant for any key value, executing
the ECPM in a fully constant manner. This includes utilizing Fermat's little theorem for
the field inversion operation instead of extended Euclidean as the more commonly used
algorithm. Thus, SCA-resistant property can be preserved [28].

The contributions of this paper can be summarized as follows:

1.  We propose a high-speed, unified ECC processor that is generic for arbitrary prime
modulus on Weierstrass curves. To the best of our knowledge, in terms of generic
implementation, it is the fastest among the existing literature.

2. For the underlying architecture, we propose a novel and fast pipelined Montgomery
Modular Multiplier (pMMM), which is constructed from an #n-bit pipelined multiplier-
accumulator. The speed-up comes from combining two existing multiplication algo-
rithms: schoolbook long and Karatsuba-Ofman multiplications, enabling paralleliza-
tion of digit multiplications while preserving low complexity. Moreover, to further
optimize the process, we utilize DSP cores as digit multipliers, resulting in a higher
speed multiplier compared to other existing methods.

3. To balance the speed of our fast pMMM, we also propose a unified and pipelined
Modular Adder/Subtractor (pMAS) for the underlying field arithmetic operations.
In particular, we modify the modular adder/subtractor in [11] to support pipelining,
and employ an adjustable radix. The proposed design offers better flexibility in
adjusting the performance of the ECC processor.

4.  Additionally, we propose a more efficient and compact scheduling of the Montgomery
ladder for the algorithm for ECPM in [22], in which our implementation does not
require any additional temporary register as opposed to one additional register in
the original algorithm. As a result, it only needs 97 clock cycles to perform ladder
operation per bit scalar (for 256-bit size).

5. Since our ECC processor and the underlying field multiplier (i.e., pPMMM) are generic
for arbitrary prime modulus, we can support multi-curve parameters in a single ECC
processor, forming a unified ECC architecture.

6.  Lastly, our architecture performs the ECPM in constant time by employing a time-
invariant algorithm for each module, including using Fermat’s little theorem to carry
out field inversion, making the algorithm secure against side-channel attacks.

The remainder of this paper is organized as follows. We provide several preliminaries
in Section 2 before moving on to the detail of our proposed ECC architecture in Section 3.
In Section 4, we present our result of hardware implementation and the discussions
regarding its comparison to the existing methods. Lastly, Section 5 concludes the paper.
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2. Preliminaries
2.1. Hamburg's Formula for ECPM with Montgomery Ladder

An elliptic curve over a prime field GF(p) is defined by the coordinates (x,y) that
satisfies the short Weierstrass equation as follows:

¥=x+ax*+b mod p 1)

where a and b satisfy 4a® + 27b% # 0 to avoid singularity on the curve.

The Montgomery ladder [29] is a general algorithm for computing the power or
scalar multiple of points, which is considered resistant against side-channel attacks due
to its constant-time operation. Let k be a scalar and P = (xp, yp) be a point in an elliptic
curve E. An elliptic curve point multiplication (ECPM) Q = kP is the repeated addition
of point P (i.e.,, P+ P + P + ... 4+ P) for k-times. This operation can be performed using
the Montgomery ladder, which generally consists of point addition and point doubling
operations. In 2020, Hamburg [22] proposed an improved Montgomery ladder formula for
ECPM that reduces the number of arithmetic operations in the ladder algorithm to as low
as eleven multiplications and eight additions. This formula allows four multiplications
and three additions to be performed in parallel. To date, this algorithm is considered as the
state-of-the-art for the Weierstrass curve.

Let Equation (2) be the initial state of the Montgomery ladder for an elliptic curve in
the short Weierstrass equation as previously shown in Equation (1).

P = (xp,yp),Q:= (xQ,yq), R =P+ Q:= (xr,yr) 2

A single step of the ladder operation calculates:

P = (xp,yp),S = Q+ R = (xs5,ys), T := 2R = (x1,YT) 3)

The ladder operation from Equations (2) and (3) can be calculated using Algorithm 1.
Before performing ladder operation, the input P = (xp, yp) is encoded into Hamburg’s
ladder state (Xop, Xgp, G, Yo, Yr), here referred to as the ladder setup. Accordingly, at the
final step, the ladder state is decoded back to Q = (xQ, yQ), which is the ECPM result in
the affine coordinate. Consequently, the complete Montgomery ladder algorithm for ECPM
with Hamburg’s formula is given in Algorithm 2. Note that since the initial state of the
ladder calculates (Q, R) < (Py,2P), which requires the most significant bit (MSB) of input
scalar k to be 1, the input scalar is rewritten by adding a multiple of 4.

Algorithm 1 Hamburg’s Montgomery Ladder Formula [22].

Input: (Xop, Xrp, Y0, Y&, G)
Output: (Xsp, X1p, Ys, Y1,G')

1: Xbp = XQPG 7: Xsp =H.L

2. X%P = Xzp.G 8 V= H(X/QP —L)
3: L =Y. Yr 9: X715 = X%P.]—l- \%
4 H=Y} 10: Ys=(J.L+V).H
5 ] =Xgp—L 11: Yr = M. X7s + Ys
66 M=]+Xpp—H 122 G = X2
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Algorithm 2 Montgomery Ladder.
Input: k,g < 2", P € E(F))
Rewrite k < 2" + (k—2" mod q)
Output: Q = kP
1: (XQPI XRrp, YQ, YR, G) — LADDER_SETUP(XP, ]/p)
2: fori=n—1to0do
3 if k; then
4: (Xop, Xrp, Y0, YR, G) <~ LADDER_UPDATE(Xqp, Xrp, Y0, Y&, G)
5
6

else
(Xrp, Xopr, YR, Y0,G) + LADDER_UPDATE(Xgp, Xor, YR, Y0, G)

7 (XQ,]/Q) — LADDER_FINISH(XRP,XQP,YR,YQ, G)
8: return (xo, Q)

2.1.1. Ladder Setup

Essentially, the ladder setup calculates R = 2P, which is the point doubling operation.
To eliminate the costly field inversions in the ladder operation, Jacobian projective coordi-
nates are generally used; in our case, we use Z = 2yp, giving the ladder setup formulas as
presented in Equations (4)—(7).

2
= 3x2pyj: b7 — 3x% +a 4)
Xgp = (xg — xp)Z* = M? — 3xpZ? (5)
YR =2MXgp + Yp (6)
G = (xr —xQ)*Z* = Xgp 7)

Note that since Q = P, then Xpp = (xg — xp)Z? = 0 and Yo=Yp= 2ypZ3 = 7%,

2.1.2. Ladder Final

In order to complete the ladder operation, the final xg and yo must be recovered from
the ladder state, as shown in Equations (8)—(10).

Yp = Yg — MXgp (8)
1 _ 2yp(M? —Xgp — Xgp) 9
Z N 3prp

By calculating 1/Z from Equation (9), we obtain Equation (10).

Xop Yo
(eryQ) = <Z2 + xp, ZZ3> (10)

2.2. Montgomery Modular Multiplication

Montgomery modular multiplication [30] is an efficient method for modular mul-
tiplication proposed by Peter L. Montgomery in 1985, which operates without any trial
divisions by transforming the number into a special form such that the dividend is always
a multiple of the divisor. Let R > P with gcd(R, P) = 1. The Montgomery multiplication
calculates ABR™! mod P with 0 < AB < RP. Algorithm 3 shows a constant-time imple-
mentation of the Montgomery modular multiplication. Since n-bit P is an odd modulus, we
can take R = 2", which results in an easy division by shifting. Montgomery multiplication
requires the number to be transformed into the Montgomery domain. However, the trans-
formation is performed only once when used with many intermediate multiplications in
the algorithm (e.g., ECPM).
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Algorithm 3 Montgomery Multiplication.

Input: an odd modulus p of n-bits, R = 2", gcd(R, p) =1
M = — mod R,
AB:AB<p<R

Output: ABR™! mod p

1: x < AB > 1st multiplication
2: 5 < (x mod R)M mod R > 2nd multiplication
3t (x+sp)/R > 3rd multiplication
4 ust—p > subtraction
5: if u < 0 then > MSB of u
6: return {

7. else

8: return u

3. Proposed Architecture

This section presents the proposed generic hardware architecture for high-speed ECC
processors over GF(p). Since the performance of ECC processors mostly depends on the
underlying modular multiplication, our proposed architecture focuses on optimizing the
modular multiplier module, mainly to reduce the latency of multiplication as well as
the number of multiplication for each Montgomery ladder step. Moreover, for further
optimization, we adopt the modular adder/subtractor first introduced in [11], then modify
it to support pipelining, which yields even higher speed performance.

First, to realize a generic ECC architecture, we employ the Montgomery modular
multiplier, which does not require any special prime form. Although this approach tends
to be slower, it offers much greater flexibility when dealing with various curve parameters.
Montgomery multiplication does require the input operands to be transformed into the
Montgomery form. The conversions are performed twice: at the beginning (i.e., before the
multiplication), and at the end to convert the number back to its original form. Nevertheless,
the cost of conversion is negligible compared to the advantage of the execution in the
Montgomery domain.

Furthermore, to achieve a high-performance ECC processor, we propose an n-bit
pipelined Montgomery Modular Multiplier (pMMM), which is essentially constructed
from n-bit pipelined multipliers and the corresponding Montgomery reduction circuit.
The calculation for Montgomery reduction is presented in Algorithm 3, whereas the mod-
ular multiplication is performed via three multiplications and one subtraction, executed
in sequence while interleaved with other pMMM threads. In our FPGA implementation,
the n-bit pipelined multiplier-accumulator is mainly constructed from DSP primitives as
digit multipliers.

Consequently, to match the speed of p MMM when performing the point multiplication
(i.e., ECPM), we also propose a fully pipelined Modular Adder/Subtractor (pMAS), which
offers better flexibility in adjusting the performance of the ECC processor (e.g., maximum
frequency and latency).

We also implement the Montgomery ladder algorithm for ECPM by Hamburg [22],
which is complete (i.e., works on any input point and scalar), and thus, can work on
generic Weierstrass curve over GF(p). Furthermore, to date, [22] offers the most efficient
computation among other existing algorithms. By utilizing this algorithm, we can unify
the construction for multiple curves into a single-core ECC processor.

Furthermore, we managed to yield a slight improvement from [22] in our implemen-
tation. Instead of utilizing six registers as presented in [22], our compact and efficient
scheduling reduces the need to only five, without any additional temporary registers. This
is achieved by interleaving four modular multiplications using pMMM and d-stage pMAS.

In terms of the field inversion, we employ Fermat’s little theorem to preserve the
SCA-resistant property by performing the inversion in constant time. This approach also
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does not require a separate module because the inversion computation, which essentially
is exponentiation, is also carried out by pMMM.

3.1. Pipelined Montgomery Modular Multiplication (pMMM)
3.1.1. Overview of p MMM

Modular multiplication is the most extensive arithmetic operation in an ECC proces-
sor, which heavily affects the performance and the occupied area of the processor. Our
proposed approach, namely the pipelined Montgomery Modular Multiplication (pMMM),
can process multiple input operands. The pipelined architecture of p MMM enables the
sequence of multiplications to be executed concurrently, hence sharing the same resources.
Additionally, the heart of p MMM is a multiplier that supports pipelining as well, enabling
a greater speed-up in the computation. In the following subsection, we will first go into
the detail of our proposed pipelined multiplier-accumulator before discussing the general
architecture of the pMMM.

3.1.2. Proposed Pipelined Multiplier-Accumulator

Our pipelined multiplier-accumulator is essentially a combination of schoolbook
long multiplication and Karatsuba—Ofman multiplication algorithm [21]. Schoolbook
long multiplication is a naive way to perform multiplication with n2 complexity, where
n is the number of digits. Even though it has a relatively high complexity, all the digit
multiplications can be executed in parallel. Furthermore, it supports high-performance
hardware implementation by adopting the divide-and-conquer method. On the other
hand, Karatsuba—Ofman multiplication offers lower complexity but with the trade-off that
it is difficult for parallelization due to its recursive approach when dealing with higher
bit length. We have managed to find a better approach by combining both algorithms to
support multiplication in parallel while retaining the small complexity.

The mathematical formulation for our algorithm is as presented in Equations (11)—(14).
Let a and b be the two n-bit numbers to be multiplied, « be the chosen radix, whereas
i,f, and k be the indices. A general schoolbook long multiplication (Equation (11)) can
be split into two terms: by certain index k, that is when j = i; and when j # i, as shown
in Equation (12). The derivation to Equation (14) shows that the second term is, in fact,
a Karatsuba—Ofman multiplication method while the first term remains the schoolbook long
multiplication formula. Utilizing the property of schoolbook long multiplication, which
can be run in parallel since there is no dependency to the previous nor the succeeding
computation, while also reducing the length of multiplication by employing the Karatsuba-
Ofman method, a significant gain in speed can be acquired. To be exact, the time complexity
is reduced to % (n? +n) from n? in the original schoolbook case. Compared to Karatsuba-
Ofman, our algorithm indeed is higher in complexity, but with the significant advantage of
parallelization for the hardware implementation.

m—1m—1 o
ab=Y Y abulith (11)
i=0 j=0
Z abea® + Z Z a;b; i) (12)
i= 0] O,];éz
Z akbkacZkJr Z Z [ﬂlb +Ll] ] (i+7) (13)
i= 0] i+1
— 2 abea® + Z(:J 21 a; + ;) (b; + b;) — a;b; — ajbj]al ) (14)
1 j=i+

In terms of the hardware implementation, the speed increase in our approach is mainly
contributed by the digital signal processor (DSP) cores in the modern FPGA that function
as digit multipliers. The proposed multiplier is fully pipelined, in which new input can be
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processed for each cycle. The divide-and-conquer method employed in the schoolbook long
multiplication is adopted, but each digit is optimized with Karatsuba-Ofman multiplication,
which is later assembled with the compression module, the Carry Save Adder Tree (CSAT).
All ripple-carry adders (RCAs) used in the multiplier module are implemented using a
fast carry chain in modern FPGA. This primitive works in conjunction with Lookup Tables
(LUTSs) to construct the adders [31].

Equation (14) is implemented as an 8-stages pipeline, shown in Figure 1, as de-
scribed below.

E Stage 1 i Stage 2 i Stage 3 i Stage 4 i Stage 5 E Stage 6-7 i
. S S = —— ——
S M et b |1 (e + @) (b + b)) - ashi — asby :
e = > 17-bit MAC (DSP 34bit | [ ]
| > T6bi || . —_'r:I “bit MAC (DSP) H rRea M [
mul_ia |1 - I
Lalllo| ] RcA 2 _*I - H 34-bit
2 17-bit MAC (DSP .
tata| B (OSP) RCA [ N H[l
s bi+b; = | : : ! 1. I]I:l% 2n-bit
- 1 4=
- | = — | & Sl e T} Carry mul_or
— (»{ 16-bit N zl 17-bit MAC (DSP) 3:":'( |f> % qé L I]H > ‘néa Select ol
_ PLRA Al T % | €] |2 1 2| | Adder
::I 16-bit Multiplier (DSP) } > CSAT
mul_ib] || o ::] 16-bit Multiplier (DSP) } E R
[] a0
T Qb & >
| | 16-bit Multiplier (DSP) | > T —
mul_ival _::I | LA AN s LA mul_oval
mul_ictl :] Shift Register ) mul_octl
— r |
+ mul_ocrdy Imul_ic

Figure 1. Proposed pipelined multiplier-accumulator.

¢  Stage-1: Two inputs A and B are split based on the radix (digit size), which is into 16
bits in our design. Afterward, a parallel 16-bit RCA is used to compute a; + a; and
bj + b;. At the same time, parallel DSP cores are utilized as 16-bit digit multipliers to
compute aibr. As shown in Figure 2a, we employ a two-stage pipeline for the DSP
cores to achieve better performance, as recommended in [32].

e  Stage-2: We again utilize the DSP cores as a 17-bit Multiply-Accumulate (MAC)
function to compute the Karatsuba-Ofman multiplication, (a; + a;)(b; + b;) — a;b;.
(a; +a;) and (b; + b;) are obtained from the output of RCAs at the first stage, as shown
in Figure 2b.

®  Stage-3: The outputs of 16-bit multipliers a;by are routed to the input accumulator in
the MAC modules as a;b;.

¢  Stage-4: The final accumulation for Karatsuba—Ofman is computed by a 34-bit RCA.
The equation (a; + a;)(b; + bj) — a;b; — a;b; results in a 33-bit length. At this stage,
mul_ocrdy is set when the CTL value is 3. It means that the input mul_ic is ready
to be included in the CSAT at Stage 5 as the final accumulation of the Montgomery
reduction algorithm. The algorithm itself is as presented in Algorithm 3.

*  Stage-5: Before being processed by the CSAT, all intermediate values are aligned to

reduce the number of inputs in CSAT as well as the depth of the tree. This is due to
the additional bit length on each intermediate value, i.e., 33-bit instead of 32-bit length.
Figure 3 shows the example of the alignment process for four-input CSAT.
All aligned intermediate values, including the input mul_ic, are assembled by CSAT
where the compressor components in the CSA use LUT6_2, a similar 3:2 compressor
circuit proposed by [11]. However, while they use multiple compressor circuits
(e.g., a4:2 compressor in [11]) to construct the multiplier, we employ the homogeneous
3:2 compressor to achieve a balanced performance, as illustrated on Figure 4.

e  Stage-6 and 7: The sum and carry as the outputs of CSAT are then fed to the carry-select
adder to obtain the final product. Note that we use the carry-select adder proposed
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by Nguyen et al. [33] due to its relatively short delay propagation. In the carry-select
adder by [33], both options for the carry are computed. Subsequently, the carry is
solved similarly to that of the carry-lookahead adder (CLA). Lastly, the sum output is
then generated with the final carry for each bit [34].

e  Stage-8: A register is used to hold the output mul_or. The outputs o_val and o_ct! are
given with respect to the input values i_val and i_ctl, respectively, which are shifted
through the stages via a shift register.

() (b)
Figure 2. Digital signal processor (DSP) utilization setup: (a) 16-bit multiplier; (b) 17-bit
multiply-accumulate.

o1 370
102 I P
103 [ 33bn :
Lo4 [[33-bit P 01 EESEENTSZTEE] 32-bit | 32-bit
105 EVE 3 E> 102 | 33Bit. | 326 | 32bitt _
L6 [ 33bit i i

L07 IEEET:

L8 3Z-bit
L09 [33hit |

L10 [RSRETEN

t |

dodn

Figure 3. Example of alignment for intermediate values in a 64-bit multiplier.
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Figure 4. Example of Carry Save Adder Tree (CSAT) for nine inputs.
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3.1.3. Montgomery Modular Multiplication Using pMMM

In our pMMM architecture as shown in Figure 5, a single execution of Montgomery
modular multiplier consists of three steps of multiplications and one step of subtraction,
divided into four steps as follows:

1.  The pMMM starts by multiplying the n-bit inputs pmmm_ia and pmmm_ib, resulting
in a 2n-bit product, which is then stored in the first-in, first-out (FIFO) buffer. This
product will be used later in the third multiplication. Note that our FIFO buffer uses
block RAM (BRAM) to reduce the required number of registers, where the depth of
the FIFO buffer depends on the number of possible multiplication processes that can
be executed concurrently.

2. The n-bit LSB product of Step 1 is multiplied with the precalculated constant
PARAM_M.

3. Accordingly, the n-bit LSB product of Step 2 is multiplied by the modulus PARAM_P.
In this multiplier, the product that was previously stored in the FIFO at Stage 1 is
used as the input mul_ic to be included in CSAT in the multiplier module. This gives
the benefit that we do not need to make additional 2n-bit adders. Instead, we include
it in the CSAT.

4. The n-bit MSB of the third multiplication product is then evaluated and corrected us-
ing the carry-select subtractor, so that the output of pMMM is within the range [0, P].

pmmm_ival

mul_ictl

mul_or
SLIN
»

1
mul_octl

pmmm_ia] pmmm _ia_| mul_oval
>

(Pipelined) |mulocty

Multiplier |mul_or

Register

i

mul_ mul_ocrd mmm_or

} overflow Car

pmmm _ib] pmmm _ib mul_ic > ] Y

> Select

PARAM_M J3 Subtractor
s -
PARAM_P orrow
= > dout rden |11 param_p
dk,| BRAM din

T rst_n (FIFO) wr_en mul_oval

mul_octl==1

mul_octl

pmmm _oval
mul_octl==3—»D Reg |—1>

Figure 5. Proposed Pipelined Montgomery Modular Multiplier (pMMM).

Since the multiplier can be pipelined, the input operand for pMMM can as well be
pipelined. In particular, we support up to eight pipelined multiplications, in accordance
with the number of pipeline stages of our multiplier. Each execution in a single p MMM
operation is controlled by CTL, which is propagated during pMMM execution and incre-
mented for each step. However, in our case, Hamburg’s formula for Montgomery ladder,
as previously discussed in Algorithm 1, can only be performed up to four multiplications
concurrently. Therefore, we adjust the FIFO depth to four, with a data width of 2n. Each
PMMM operation does not need to be executed in sequence next to each other in one cycle,
yet it can be performed even if there is a delay step between input operand. However, all
sequences must fit in eight clock cycles and can be used again after the first pMMM output
is received. This is done to ensure that no internal steps of pMMMs are in conflict. The full
sequence of multiple inputs of pMMMs is illustrated in Figure 6.
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MMUL1 | MUL || MUL || MUL || SuB |
MMUL2 | MUL || MUL || MUL || suB |
MMUL3 | MUL || MUL || MUL || SUB |
MMUL4 | MUL || MUL | | MUL | | SuB |
Cycle

Figure 6. Example of scheduling for four pipelined Montgomery Modular multiplier (p)MMM) processes.
3.2. Pipelined Modular Adder/Subtractor (pMAS)

Modular addition and subtraction operations also play a significant role in an ECC
architecture, which also affect the processor’s performance. The authors of [11] propose a
unified 64-bit modular adder/subtractor that is designed to work with redundant numbers.
However, their design can not be pipelined and uses a shift register to compute modular
adder for higher bit length. In this paper, in order to match the speed of our multiplier,
we introduce the pipelined version of the modular adder/subtractor in [11], which is also
able to operate as a modular adder or subtractor by specifying the input i_op. Furthermore,
instead of fixing the radix to a 64-bit operand, the radix in our design can be adjusted by
specifying the number of stage d. Thus, the performance of our modular adder/subtractor
can be adjusted depending on the requirement and available hardware resources. We refer
to our architecture as the pipelined modular adder/subtractor (pMAS).

Let d be the number of pipeline stages and m be the radix size. Each pipeline stage
takes m-bit input operand, as shown in (15). An m-bit ripple-carry adder/subtractor is
implemented on each stage as the building block of pMAS.

m= {ZJ (15)

Our pMAS is performed in constant time. As shown in Figure 7, computation of both
a=£band a=+ b= p are performed simultaneously whenever arbitrary input is received so
that the secret values cannot be retrieved using power and timing analysis.

3.3. Modular Inversion Implementation

In order to be a fully constant-time ECPM, we use the modular inversion based on
Fermat'’s little theorem rather than the binary extended Euclidean algorithm. In summary,
the theorem states that if p is a prime number and a is any number not divisible by p, then
it satisfies Equation (16) [35].

a’~1 = 1(mod p) (16)

By multiplying both sides with a~!, we obtain Equation (17), which infers that an
inversion can be accomplished by utilizing exponentiation.

a1 =aP"2(mod p) (17)

The inversion can be easily performed by using the Montgomery ladder for exponen-
tiation [29], which is also SCA-resistant due to its characteristic of constant-time operation.
However, many proposals refrain from leveraging Fermat’s little theorem for modular
inversion due to the extensive use of multiplications (i.e., 2n multiplications to achieve an
exponentiation). Nevertheless, in our case, the hardware implementation of Fermat's little
theorem still gives a competitive advantage by incorporating pMMM,, yielding a relatively
fast implementation via concurrent execution of two modular multiplications (i.e., a;a
and a% or a% in Algorithm 4). Furthermore, no additional module for inversion is required,
which directly reduces the slice overhead.
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Algorithm 4 Constant-time Field Inversion algorithm

Input: 2 and prime modulus p of n-bits, 0 < a < p
Output: a~! mod p

1: procedure FIELDINVERSE(4, p)
2 e=p-—2
3 ay =a, ap = a>
4 fori=n—2to0do
5: if ¢; = 0 then
— —_ 2
6 ap =aydaz, a; = ajy
7 else
— _ 2
8 ay =aydp, a = a;
9 return a;
pmas_ival add/sub 0 pmas_ia  pmas_ib 0 PARAM_P
ifbn {I—bit {n—bir {nfbit {n—bit {nfbit N nbit
|>op |D resO ID A |D B |D resl |
m-bit ) pis
Y~ i b 1%t stage
m-bit 1 J
”| |AbD/suB )
p T m'bi’
m-bit ‘
| n|-bit
A [ ”|_ADb/suB
A 1-bit A n-bit An-bit I 2
[ B Y o2 D S i---’"-‘bi_t----w -------------------
op |Dre50 |D A |D B ||>resl |
o mebit py_pis
(] F" .
ko] 7y Lobit Vi | 2™ stage
8 | m-bit
o ”| |AbD/suB )
& ya | m-bz,
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) .
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I A . D l--!”-'bi-t ------------------------
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: : : : : dth stage
resO resl
| |
resl MSB
(borrow)
B ¢ ¢
pmas_ival pmas_or

Figure 7. Proposed Modular adder/subtractor (pMAS).

3.4. Montgomery Ladder Scheduling

The improved Montgomery ladder formula by [22], as depicted in Algorithm 1, incurs
eleven multiplications and eight additions, and allows parallelization up to four multi-
plications and three additions per bit scalar. To date, this latest algorithm is considered
the fastest for the Weierstrass curve. We adopt and optimize the scheduling of this algo-
rithm by incorporating pMMM and pMAS in the ladder update (Algorithm 1), as well
as the ladder setup (Equations (4)—(7)) and ladder final (Equations (8)—(10)), as presented
in Figure 8. Up to four modular multiplications and modular adder/subtractors can be
pipelined, making a compact scheduling process. Moreover, our proposed scheduling does
not require any additional registers, as opposed to the original approach in [22], which
requires a temporary register.
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Figure 8. Proposed scheduling for Montgomery (a) ladder setup; (b) ladder update; and (c) ladder final.

Note that a complete ECPM algorithm, as illustrated in Algorithm 2, includes ladder
setup and ladder finish. Ladder update is the part that severely contributes to the latency
of the circuit since it is executed iteratively per bit scalar.

3.5. Generic ECC Architecture

The main building blocks of ECC processors are pMMM and pMAS, which play a
major role in improving the speed of ECPM. The use of p MMM eliminates the restriction
of modulus to the special prime form, making our ECC architecture generic for arbitrary
prime modulus. The modular inversion uses Fermat'’s little theorem, which also exploits the
use of pMMM, making the algorithm fast even with an extensive number of multiplications.
PMMM enables the modular inversion implementation without any additional modules.

The proposed generic ECC architecture is shown in Figure 9. In addition to the p MMM
and pMAS module, True Dual Port (TDP) RAM is implemented using BRAMs, which
reduces the slice overhead. All operands and constants are stored in the TDP RAM.

The Montgomery ladder, as illustrated in Algorithm 2, requires conditional swap for
Xgp < Xgp and Y <> Yg depending on the scalar bit, which may pose a security risk of a
side-channel leakage. However, the benefit of using BRAM is that it indirectly preserves
side-channel resistance since the actual swap is applied to the operand address instead of
the operand values, which is a few bits length. Thus, the ECPM with our proposed archi-
tecture is performed in constant time and does not have any scalar-dependent branches.



Sensors 2021, 21, 1451

14 of 20

Since both pMMM and pMAS use registers to hold the output values, the intermediate
result can be fed back to its input instead of being stored in TDP RAM, making the execu-
tion faster and allowing efficient utilization of the BRAM. Additionally, the multiplexer
is connected to each input operand so that it can provide the input depending on the
ladder scheduling.

Py
Control Unit
in_sel_a
dina p
pmmm_ival FsM pmm (Pipelined) | pmmm_or
— I douta | ; pmmm_ia_| Montgomery
pmmm_oval addra P
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I ena -[I;ruel
pmas_ova N ua
) t_sel
Scheduler addrb Block out_sel.a
web
q RAM mas_ia L.
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scalar
Key register out_sel_b
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Figure 9. Proposed elliptic curve cryptography (ECC) architecture.

Unified Architecture

Our architecture also supports multi-curve parameters in a single ECC processor.
The architecture in Figure 9 can be transformed into a unified architecture since p MMM
and pMAS do not restrict to any modulus value or form. However, a few modifications
are required in the pMMM modules. In particular, the input and output of the third
multiplication in Algorithm 3 require to be sliced, depending on the modulus size. This
can be done by implementing a multiplexer to both input and output of pMMM at Step 3.
Nevertheless, other components in the architecture remain the same. Additionally, since
the curve domain parameters are stored in the BRAM, extending the support to different
curve parameters will only increase the BRAM depth without affecting other modules
(e.g., PMMMSs, pMASs). The address map is shown in Figure 10.
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Figure 10. Address map.
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4. Hardware Implementation Result and Discussion

Our proposed design has been described by SystemVerilog HDL. Synthesizing, map-
ping, placing, and routing were carried out using Xilinx Vivado 2020, targeting three
modern devices: Xilinx Virtex-7 (XC7VX690T), Kintex-7 (XC7K325T), and Zynq (XC7Z020)
FPGA, for a more comprehensive evaluation and a thorough comparison with other recent
works that use the 7-series FPGA.

4.1. Result and Analysis of Generic Implementation on Weierstrass Curve

The result of our generic ECC implementation as well as several related papers on
the Weierstrass curve are presented in Table 1. In our case, we achieve the fastest speed
among other proposals for 256-bit modulus size, with 0.139, 0.138, and 0.206 ms on Virtex-7,
Kintex-7, and Zynq, respectively. Our fastest implementation (Virtex-7) requires 6909 slices,
while Kintex-7 and Zynq utilize a slightly higher number of slices (7115 and 7077). On all
of the three platforms, we utilize 136 DSPs and 15 BRAMs. As can be inferred from the
table, our architecture yields the highest performance in terms of execution time compared
to other existing techniques. This can be achieved due to the fact that our implementation
requires lower clock cycles. In detail, the performance of each arithmetic and ladder
operation for Kintex-7 is presented in Table 2.

Table 1. Performance comparison of the proposed generic ECC processor for Weierstrass curve up to 256-bit modulus size.

Designs Platform Slices DSP BRAM Max. Freq. MHz) Cycles Time (ms) Time x Area?
Virtex-7 6909 136 15 232.3 0.139 0.96
This work Kintex-7 7115 136 15 234.1 32.3k 0.138 0.98
XC7Z020 7077 136 15 156.8 0.206 1.46
Roy et al. [11] XC77020 2223 40 9 208.3 95.5k 0.459 1.02
Bajard et al. [15] Kintex-7 1630 46 16 281.5 1723k 0.612 1.00
Asif et al. [14] Virtex-7 18.8k (LUT) - - 86.6 63.2k 0.730 3.43°
Ma et al. [16] Virtex-5 1725 37 - 291 110.6k  0.380 0.66
Lai et al. [18] Virtex-5 3657 10 10 263 2262k 0.860 3.15
Shah et al. [17] Virtex-6 443k (LUT) - - 221 1437k 0.650 7200
Vliegen et al. [19]  Virtex-Il Pro 1947 7 9 68.17 1074.4k  15.760 30.68
Hu et al. [20] Virtex-4 9370 - - 20.44 609.9k  29.840 279.60

@ TA = Slices x Time; ? TA = LUTs/4 x Time (Assume 1 slice has 4 LUTs)

Table 2. Performance analysis of proposed generic ECC processor (256-bit) on Kintex-7.

Operation Clock Cycles Latency @234.1 MHz (ns)
1 x Input Modular Addition 5 21.36
3 x Input Modular Addition 7 29.90
1 x Modular Multiplication 26 111.07
4 x Modular Multiplication 29 123.89
Modular Inverse 6911 29,523.79
Ladder Setup 131 559.63
One Step Ladder Update 97 414.38
Ladder Finish 7050 30,117.60
One ECC Scalar Multiplication 32,272 137,865.98

Prior to our work, the implementation with the fastest speed is the proposal by
Ma et al. [16] in 2014, which gives the execution time of 0.380 ms. It also achieves a con-
siderably high maximum frequency of 291 MHz and consumes a relatively low resource
of 1725 slices and 37 DSPs. The speed mainly comes from their quotient pipelined Mont-
gomery multiplier combined with a parallel array design. However, since they run on an
older platform (i.e., Virtex-5), it is not comparable to our result.
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To the best of our knowledge, the state-of-the-art generic ECC processor for high-speed
implementation in the 7-series FPGA is the method by Roy et al. [11]. Their technique is
primarily intended for the Montgomery curve, but since their proposed method focuses
on implementing the Montgomery multiplier, they also extend their implementation to
short Weierstrass curves and provide the performance analysis of their approach. In par-
ticular, they require eight dual multiplications and three single additions to perform one
Montgomery ladder iteration.

In comparison to the method in [11] for the same target device (i.e., XC7Z020 FPGA),
our approach yields an execution time of 0.139 ms whereas [11] requires 0.459 ms for a
single ECPM execution. In other words, our method is approximately three times faster.
However, readers may notice from Table 1 that in terms of the maximum frequency,
the implementation in [11] reaches a higher value of 208.3 MHz while ours is 156.8 MHz.
Nevertheless, since our method employs fewer clock cycles (i.e., 32.3k cycles as opposed to
95.5k), our overall speed outperforms their proposed approach.

In terms of the area overhead, our implementation indeed requires a relatively larger
area compared to the existing proposed methods. It requires a higher number of hard IPs
(i.e., DSP and BRAM). However, from the time/area efficiency perspective, as shown in
Table 1, the cost of our method is relatively similar to the existing 7-series implementations.
Note that the time-area is calculated from the occupied slices only. Furthermore, modern
devices available in the market (i.e., Virtex-7, Kintex-7) are generally equipped with a
relatively large resource. In fact, from the hardware utilization perspective, as presented
in Table 3, the overall architecture only utilizes below seven percent of the total area in
the FPGA. Hence, our high-speed architecture would still be greatly suited for services
requiring low latency (speed-critical applications), such as for runtime authentication in
automated vehicles, web server certification, etc. [11].

Table 3. Resource consumption of proposed generic ECC architecture on Virtex-7 field-programmable
gate array (FPGA).

Resource Used Available Utilization %
LUT 22,736 433,200 5.25
FF 12,511 866,400 1.44
Slice 6909 108,300 6.38
DSP48E1 136 3600 3.78
BRAM 15 1470 1.02

Regarding other proposals in the 7-series FPGA implementation, Bajard et al. [15]
proposed a residue number system (RNS)-based ECC processor that utilizes Cox—-Rower
architecture for fast parallel Montgomery multiplication, which was initially introduced
by [36]. They introduce a new ALU design utilizing the second level of Montgomery
reduction within each RNS unit, increasing the maximum working frequency compared
to the original one. On Kintex-7, they consume 1630 slices, 46 DSP cores, and 16 BRAMs,
operating at 281.5 MHz maximum frequency, with a latency of 0.612 ms for a 256-bit ECPM.

Asif et al. [14] proposed a residue number system (RNS)-based ECC processor that
utilizes a serial-parallel approach for its modular reduction to balance its time and area
performance. With the hardware utilization of 18.8k LUTs, their method achieves 86.6 MHz
maximum frequency and a relatively larger latency compared to other recent approaches.

On the earlier platform, Shah et al. [17] proposed a redundant-signed-digit (RSD)-
based ECC processor leveraging Montgomery multiplier that uses parallel computation
technique operating in (X,Y)-only co-Z arithmetic. They also provide a relatively compre-
hensive comparative analysis with other methods, in which they evaluate their proposed
method in Virtex-2 up to Virtex-6, without using any DSPs and BRAMs. In their most
recent platform (i.e., Virtex-6), they consume 44.3k LUTs, operating at 221 MHz maximum
frequency, and acquire 0.650 ms execution time.
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Previously, Lai et al. [18] in 2012 also utilized a pipelined Montgomery multiplier and
performed their ECPM using the addition-and-subtraction method. They also proposed
three different types of operation scheduling, in which their fastest approach (namely
with their Type-III scheduling) was then compared to other works for Virtex-2, Virtex-4,
and Virtex-5 platform. The implementation on their latest platform utilizes 3657 slices,
10 DSPs, and 10 BRAMs, which yields 0.860 ms execution time and 263 MHz maximum
frequency. Their result is largely surpassed by Ma et al., whose latency is nearly half of
that of [18]. Additionally, Vliegen et al. [19] and Hu et al. focused on developing low-area
implementation, in which [19] uses 1947 slices, 7 DSPs and 9 BRAMs (Virtex-II Pro) for
achieving 68.17 MHz maximum frequency and 15.760 ms execution time while [20] only
uses slices without any other components, topping at 9370 for a maximum frequency and
latency of 20.44 MHz and 29.840 ms, respectively.

4.2. Result and Analysis of Unified ECC Architecture

Besides high-speed, our method also supports multi-curve domain parameters. For in-
stance, different standards (e.g., P-256 from NIST [8], secp256k1 from SECG [37], SCA-256
from SM2 [38], and Brainpool256 from the German Brainpool standard [39]) would be able
to be implemented with just a single ECC processor. Moreover, our processor does not
incur any additional costs besides BRAMs when adding support for different curves.

Currently, our implementation supports up to 256-bit modulus size. Nevertheless, it
can be easily extended to the larger modulus size since our proposed pipelined multiplier-
accumulator, constructed based on Equation (14), is scalable due to the divide-and-conquer
characteristics of the employed algorithm. Table 4 presents the comparison of our method
to the other two proposals on unified architecture. As shown, it can be inferred that our
approach is notably faster than other similar works of [40,41].

Table 4. Performance comparison of the proposed unified ECC processor for Weierstrass curve up to 256-bit modulus size on

Virtex-7 FPGA.

Designs Curve Modulus Size (Bits) Slices DSP BRAM Max. Freq. (MHz) Time (ms)
192 0.119
This work Any 224 7281 136 15* 204.2 0.138
256 0.158
192 0.296
224 0.389
Wu et al. [41] NIST 256 8411 32 310 0.526
384 1.070
521 1.860
192 0.690
Amiet etal. [40] Any 256 6816 (LUT) 20 225 1.490
384 4.080
521 9.700

* Adding more curve parameters will only increase BRAM size without affecting number of Slices and DSPs.

In [40], Amiet et al. focused on building a flexible ECC processor that accommodates
arbitrary curves in short Weierstrass form. Their design mainly improves the Montgomery
modular multiplier previously proposed by [42] to support the pipeline and utilizes a
different mechanism for treating the carry result. They leverage DSP cores to parallelize
point addition and point doubling operations. Realized on Virtex-7 FPGA, their fastest
implementation, which uses a word size of 64, requires 6816 LUTs and 20 DSPs to yield in
the maximum frequency of 225 MHz and runtime speed of 0.69, 1.49, 4.08, and 9.7 ms for
192, 256, 384, and 512-bit modulus, respectively.

Wau et al. [41] proposed a word-based modular division and utilized parallel point ad-
ditions and doublings as well as pipelined scalable multiplications and modular reductions
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to achieve a fast and unified ECC implementation for five NIST primes. To support those
primes, the authors employ a scalable multiplication algorithm to deal with integers of
different lengths. Employing 8411 slices and 32 DSPs, this approach works in the frequency
up to 310 MHz, achieving 0.296, 0.389, 0.526, 1.07, and 1.86 ms on NIST-192, 224, 256, 384,
and 521-bit modulus size, respectively.

5. Conclusions

In this paper, we have proposed a high-speed and unified ECC processor that works
for generic Weierstrass curves over GF(p) on FPGA. The speed is obtained by utilizing
our fast pipelined Montgomery Modular multiplier (pMMM) for performing ECPM, con-
structed from our n-bit pipelined multiplier-accumulator, which combines schoolbook
long and Karatsuba-Ofman multiplication, allowing the multiplication to be performed
in parallel while maintaining a low complexity. Furthermore, digit multipliers are han-
dled by DSPs, resulting in an even faster execution time. Additionally, we also propose
to modify certain components to maximize the speed gain and the overall performance:
employing our unified and pipelined Modular Adder/Subtractor (pMAS) for the under-
lying field arithmetic based on the work of [11], as well as implementing a more efficient
yet compact scheduling of Montgomery ladder algorithm previously proposed in [22].
Moreover, the generic architecture employed by our pMMM module enables a unified
ECC architecture that supports multi-curve parameters. The implementation in the 7-
series FPGA: Virtex-7, Kintex-7, and XC7Z020, shows that our technique executes in 0.139,
0.138, and 0.206 ms, respectively, which is the fastest in literature for generic curves as
far as we know. It is worth to mention that our current approach is extensible to support
more curve parameters for up to 256-bit modulus size, by only incorporating additional
BRAMs. Lastly, our method is also resistant to side-channel attacks, making it suitable for
applications requiring high speed and SCA-resistant characteristics, such as for the use in
autonomous vehicles.
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