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Abstract: Jamming is becoming a serious threat to various users of global navigation satellite systems
(GNSS). Therefore, live monitoring tests are required to estimate the sensitivity range of GNSS
receivers under jamming. This study analyses the response of some mass-market and professional-
grade receivers to intentional interferences based on different 3D jammer positions. First, the vertical
jamming was investigated, followed by a horizontal experiment where the receivers were placed at
three locations while the jammer was moving within a triangular area. The aim was to determine a
fingerprint of the influence of the L1/E1 chirp jammer on receivers used in the research. The results
show that low-cost receivers are much more susceptible to interference, while the latest generation of
GNSS geodetic receivers are much more resilient. It is encouraging that positioning in the presence of
jamming could be achieved on a larger scale, especially by using professional receivers. An attempt
to position the jammer will be left for trials when a more frequency stable device is applied.

Keywords: intentional interference; geodetic and low-cost GNSS receivers; vertical/horizontal
jamming profile; L1/E1 chirp jammer

1. Introduction

Today, awareness of the risk of using global navigation satellite systems (GNSS) in
our daily lives and in any public or private infrastructure, known as “jamming”, is very
important. In GNSS positioning, intentional jamming is considered the most disruptive
event that drastically affects the reliability and quality of positioning or, in the worst
case, makes positioning impossible [1,2]. Receiver manufacturers are well aware of this;
hence, they invest a lot of effort in anti-interference features. However, under certain
circumstances, GNSS equipment still proves to be susceptible to intentional interference [3].
Improving the integrity and security of GNSS signals is an important issue that should be
considered to achieve continuous and uninterrupted positioning. Jamming transmitters in
cars alone already pose a major threat to the security and operation of infrastructure. As
a wide range of infrastructure around the world—including industry, broadcasting and
telecommunications, automotive, smart cities, internet of things, aerospace and defence—
are directly dependent on GNSS; all benefit from this accurate and trusted service to
support their operations. GNSS are so vulnerable for the following reasons: (a) the signal
specifications are open to anyone, see [4–7]; (b) no signal protection systems have been
implemented, except for the encrypted GNSS services such as the global positioning system
(GPS) P(Y) and M-code, GLONASS P-code, Galileo’s public regulated service (PRS), and
BeiDou’s military service [8]; (c) an extremely weak signal is below the thermal noise
of the receiver, i.e., −111 dBm for the GPS coarse acquisition (C/A) code signal [9]; (d)
the initial transmission power of the satellite signal of 30 W is reduced by 1016 times at
the receiver [10]; (e) jamming and spoofing devices are readily available on the market,
although their use is strictly prohibited [11].
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Jammers can be used in various scenarios; for example, they can be used in a static
or kinematic mode, and they can be located on various vehicles, i.e., in cars or on the
surface of aircraft. In the context of jamming, the driving motivation for the research
presented in this paper was to perform some further experiments and to analyse the results
in order to better understand some key factors that influence the quality of positioning
under different locations of a jammer as well as under different jamming scenarios. Having
studied the knowledge of the response of different types of geodetic receivers [2], the
researchers extended this study to the problem of the receiver response under the vertical
and horizontal jamming profile. The basic research question was, “How do GNSS receivers
of the same type react to vertical jamming when the jammer is below or above the horizon
of the GNSS receivers?” and secondly, “What is the quality of GNSS positioning while
horizontal jamming?” More specifically, the research focused on two different issues: (a)
the effects of the vertical jammer profile and (b) the ability to determine the presence of a
jammer horizontally by using a simple network of GNSS receivers.

The results of the vertical jamming profile are important in connection with the
establishment and stabilisation of GNSS stations, where the receivers can be mounted on
pillars or higher on buildings [12]. If the jammer on the ground no longer interferes with the
higher receivers on buildings, the suitability of such stabilisation is justified. Unfortunately,
this raises another issue of the stability of buildings, which must be solved through a
deformation analysis in order to obtain a good time series for geodynamic modelling or
for maintaining the coordinate system. Furthermore, the problem of the vertical jamming
profile also relates to unmanned aerial vehicles (UAV) equipped with GNSS-RTK (real-time
kinematic), which allow the process of georeferencing by avoiding the determination of
ground control points to be simplified [13].

The analysis of jamming can be difficult, because in various situations, jammers can
only eliminate a part of the visible satellites, meaning that the position is available but
the accuracy decreases. In this situation, warnings of drastic changes in receiver-satellite
geometry between real and predicted conditions should take precedence. Therefore, in this
study, the researchers also investigated carrier-to-noise-zero (C/N0) values. To estimate
the positioning quality in geodetic applications, it is best to rely on the combined C/N0
values and the number of available satellites [14,15]. Unfortunately, the dilution of the
precision factors (DOPs) cannot be relied upon, since a higher DOP does not always mean
that jamming is present; however, it can occur due to obstacles along the line of sight,
especially in kinematic positioning.

1.1. Overview

In recent years, several jamming detectors have been proposed that use different signal
characteristics to recognise interference. The simplest and most commonly used device is
an energy detector, which can be used in both the time and frequency domain. Balaei et al.
presented a frequency domain detector for the identification of narrowband continuous
wave interference signals [16]. Several measures were introduced for the detection of
interference, namely estimation of the correlator output power, standard deviation of the
correlator output power, carrier-phase fluctuation, and the gain of automatically adjustable
controller between the analogue section of the front-end and the analog-to-digital con-
verter [17]. In the field of signal analysis, signal-to-noise ratio (SNR) or carrier-to-noise
density (C/N0) are often used for the detection of signal quality. Such detectors do not
require access to the internal signal processing in the GNSS chipset, but they can detect
any kind of signal interference. Unfortunately, they cannot distinguish between increased
interference power and decreased GNSS signal power. This is the reason why C/N0 de-
tectors can only be effective at fixed locations without random signal attenuation caused
by buildings. In addition, interference from a combined inertial navigation system and
GNSS sensors, namely GNSS/INS sensors, can be detected [18–21]. Effective interference
detection is based on a network of multiple antennas that can exploit the spatial character-
istics of the signals received from satellites and from a jammer and distinguish whether
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the signals came from different directions. A detector that exploits the spatial properties
of a single moving antenna was introduced in [22]. As a countermeasure to jamming
attacks, adaptive beam-forming techniques can be used for spatial filtering of a jamming
signal. The advantage of multiple antenna arrays is that they can detect the jammer and
are also able to mitigate the effects of interference by using beam-forming and nulling
techniques [23].

The authors demonstrated that jamming can be easily detected [24] and localised [25];
however, practical experience shows the opposite, especially in cases where a jammer is in
its kinematic mode. Simple crowdsourcing methods involving reporting signal losses [26]
up to more sophisticated analyses of signal power or observed C/N0 values [27] are
available to study the effect of interfering signals. The advantage of C/N0-based detectors
is that they recognise any kind of signal interference without any additional requirements;
however, at the same time, there is a serious disadvantage because C/N0 estimates decrease
both in the case of interference of the GNSS receiver and that of attenuation of the desired
GNSS signal by buildings or other obstacles. Therefore, C/N0 detectors are only suitable
at fixed positions at roadsides or on critical infrastructure, whereas in mobile scenarios in
urban environments, their usefulness is questionable.

When interference occurs, there are three ways to geo-locate it, namely by (a) the
received signal strength or strength difference (RSS/RSSD), (b) the signal arrival angle
or direction (AOA/DOA/RSSD), and (c) the signal arrival time or frequency difference
(TDOA/FDOA) [28]. However, the results from all three methods depend to a large
extent on different types of environments, for example, an open space or more complex
suburban and urban environments. Faria et al. investigated jamming in different types of
environments and in different propagation models based on the jamming-to-signal ratio
(J/S) for a wide range of EIRP (effective isotropically radiated power) jamming signals at
different distances in different environments, with the aim of estimating a safe zone for the
operation of GNSS (GPS)-based systems [29]. Their study was based on the determination
of the horizontal safety zone for jamming, where the height of the jammer was set at 60 m
and the height of the GPS receiver was set at 2 m.

Much effort has been put into the development of products that allow the transmission
of warnings or other functions to inform users of any changes detected between the noise
and the jamming signal. In November 2019, Netradar joined the European Space Agency’s
Business Incubation Centres (ESA BICs) to develop a solution based on GNSS performance
data from mobile phones via the Netradar app. For the aviation industry, an innovative
way to detect GNSS jamming incidents on air traffic data based on automatic dependent
surveillance-broadcast (ADS-B) data from open-sky receivers was proposed in [30]. A more
sophisticated approach that goes beyond warnings and tries to overcome jamming is based
on the construction of anti-jamming receivers. A report on specially designed receivers with
an anti-jamming-mechanism was presented by Felski [31]; however, unfortunately such
receivers are not available to everyone. The author mentions two CHRONOS products,
namely CTL3520 and CTL3510 GPS jammer detectors, which can recognise the presence
of jammers in the L1 band. However, the average GNSS user is not able to locate the
interfering transmitter.

The results of a previous study conducted at the University of Ljubljana showed that
the response of receivers from different manufacturers and generations is unique for each
type of receiver tested [2]. The aim of the present research is to determine the response
of several receivers of the same type located in different positions to the same interfering
signal. Evaluations of the quality of detection, tracking processes, and the possibilities of
acquiring signals from GPS, GLONASS, Galileo, or BeiDou were performed in order to
obtain a fingerprint of the influence of the L1/E1 chirp jammer on each individual GNSS
receiver used in the experiment.
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1.2. Previous Research

As GNSS jamming can be harmful to public, governmental, or commercial sectors,
several studies have been carried out in the past. Different types of jammers and their
characteristics have been investigated in [32], with special emphasis on multi-frequency
broadband jammers, which are able to interfere with up to three frequencies simultane-
ously. Since jamming effects were analysed outside vehicles [32], a strong attenuation of
metal structure was observed, while through-window directions were favoured. In [33], a
GNSS localisation of jammers was proposed based on a vehicle ad hoc network within an
accuracy of less than 40 metres to determine the origin of the jammers. Field tests for this
study were carried out in the GATE Berchtesgaden test environment where eight ground
transmitters around the test area played the role of Galileo satellites. AOA, TDOA, and
differential-received-signal strength (DRSS) were used to geolocate the jammers. In [34,35],
the localisation of jammers was performed with low-cost GPS receivers and smartphones
that provided C/N0 measurements. In [16], C/N0 estimates for each satellite were used
to detect a continuous wave (CW) interference signal. The research on the same basis,
namely the approximation of the C/N0 estimate as a Gaussian to obtain a further decision
threshold for each satellite and elevation, was performed in [36]. In this study, the authors
have described a method for estimating C/N0 values that avoids the need to access the
internal signal processing in the GNSS chipset.

In several outdoor jamming experiments [2,33,37–40], the authors limited themselves
to horizontal jamming scenarios by specifying different distances of the jammers depend-
ing on the GNSS receiver. In addition, they investigated the jamming performance in
environments with various obstacles, i.e., in suburban and urban areas [29], in most cases
considering horizontal jamming scenarios. A deliberate jamming attack on GNSS receivers
mounted on an aerial vehicle was presented in [41], in which the authors proposed a
two-stage interference suppression scheme based on antenna arrays that could detect and
mitigate jamming and spoofing. However, based on the authors’ knowledge, no experi-
ments on jamming with multiple geodetic GNSS receivers under a vertical jamming profile,
wherein the same kind of geodetic and mass-market receivers were placed simultaneously
below and above the receiver’s horizon, have been performed to date. To the contrary,
several studies analysed the effects of various jammers at different horizontal distances
and different propagation models [29,42,43].

1.3. Paper Focus and Outline

Within the research area, the driving motivation for this study was to perform some
further experiments under real jamming conditions and to analyse the results to get a
better understanding of the performance of GNSS receivers under vertical and horizontal
jamming profiles. The focus of this research is on the vulnerability of different types of
GNSS receivers under two scenarios of jamming set up by radio frequency interference (RFI)
for the GNSS L1/E1 spectrum. In order to achieve the goal, the authors conducted outdoor
tests. First, the effects of static and kinematic jamming signals at the positions where
the jammer was located below and above the receiver horizon were estimated. Secondly,
the effects of kinematic horizontal jamming signals at the positions where the distances
between the jammer and the GNSS receivers varied were estimated and tachymetrically
determined within the jamming session. The key to this research is to gain experience by
establishing a network of different types of GNSS receivers that could be used as C/N0
jamming detectors.

The remainder of this document is structured as follows: Section 2 describes the
setup and measurement campaigns, which is followed by a description of the experiments.
Section 3 describes GNSS observation models for jamming detection, followed by a descrip-
tion of data processing and the procedure for evaluating the results from the experiments
(Section 4). Section 5 contains results and data analyses, including a discussion. Finally,
Section 6 presents a summary of the most important results and a description of further
ideas for experiments.
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2. Materials and Methods
2.1. Setup and Measurement Campaign

The test areas were set up at two different locations in Slovenia, the first one near
Stara Vrhnika for the vertical test, while the second was used for horizontal tests and
was set up for previous tests in Črnotiče. The main reasons for these locations were that
they are located in a remote area where the impact of jamming on users is minimal. In
addition, there is almost no traffic at the sites, and the location in Črnotiče allowed outdoor
observations because there are no elevated obstacles near the location of the GNSS receivers
that would disturb the GNSS signal reception. In addition, the Stara Vrhnika site has a
22-metre-high wooden observation tower, which enabled vertical jamming tests to be
performed. Since jammers are illegal to use in Slovenia, the campaign was authorised by
the Agency for Communication Networks and Services of the Republic of Slovenia (AKOS).

The experiments were conducted on the 202nd day of 2020 (20 July 2020). At the Stara
Vrhnika site, the observations were carried out from about 7:15 to 8:45 UTC with a jamming
time of 8:15 to 8:40 UTC. At the Črnotiče site, the observations lasted from 13:45 to 15:20
UTC with a jamming time from 14:30 to 14:59 UTC. In the experiments, GNSS receivers from
various manufacturers, namely Trimble Inc. (Sunnyvale, CA, United States), Javad GNSS
Inc. (San Jose, CA, USA), Leica Geosystems AG (Heerbrugg, Switzerland), ArduSimple
(Lleida, Spain), and u-blox (Thalwil, Switzerland) were used, specifically: one Trimble R8S
receiver (antenna type: TRMR8S NONE), one Trimble R10 receiver (antenna type: TRMR10
NONE), one Javad Triumph-VS receiver (antenna type: JAVTRIUMPH_VS NONE), three
Javad Triumph-LSA receivers (antenna type: JAVTRIUMPH_LSA NONE), three Leica
GS15 receivers (antenna type: LEIGS15 NONE), three Leica GS18T receivers (antenna
type: LEIGS18 NONE), and three u-blox ZED-F9P modules with ANN-MB00 multi-band
GNSS antennas [44,45] (see Figure 1). GNSS receivers were placed close together on
tripods and tribrachs. Of these, the Trimble R8S and Javad Triumph-VS were configured
for GPS and GLONASS reception, while the others also allowed Galileo observations.
Javad Triumph-LSA, Leica GS18T, and u-blox ZED-F9P additionally allowed the reception
of BeiDou.
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Figure 1. Testing sites in Slovenia: (a) near Stara Vrhnika and (b) near the village of Črnotiče.

To precisely locate the position of the jammer during the jamming process, Leica
SmartPole equipment consisting of a Leica GS18T GNSS receiver, a Leica TS16 total station,
and a 360◦ prism was used. The station setup was performed using a resection method
before jamming. Orientation points were determined using the GNSS RTK (real-time kine-
matic) method in the Slovenian realisation of the ETRS89 coordinate system, D96-17/TM.
Figure 2 shows the station setup and further determination of the positions of the jammer
for each location. During jamming, the position of the jammer was determined by using a
terrestrial positioning system (TPS).
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jamming at Stara Vrhnika; (b) horizontal experiments at Črnotiče.

A commercially available in-car jammer was used for the experiments. With reference
to Borio et al. [46], it was an unmarked jammer L1/E1 of the subminiature version A
(SMA), without data from a manufacturer, powered by a battery; its external antenna with
an omnidirectional radiation pattern was connected through an SMA connector, which
emitted a single saw-tooth chirp signal, according to [32,35,47], belonging to the group
of class II. According to their tests, the output of the jammer has a period of 10 µs, while
according to the test carried out for this study, the device increases the noise power by up
to 50 dB in a frequency band of 1570 ± 20 MHz. Following the STRIKE3 (Standardisation
of GNSS Threat reporting and Receiver testing through International Knowledge Exchange,
Experimentation and Exploitation) attempt at standardised threat reporting of jamming
events [48], the effect of this particular jammer should be described as a type B interfering
event, which exerts a 10 dB decrease of C/N0 that lasts longer than 5 s [49].

2.2. Vertical Jamming Performance

The vertical jamming experiments followed a pre-planned library of scenarios con-
sisting of setting up the instruments under and on the tower (Table 1), determining the
position of the jammer, and determining the static and kinematic jamming mode timings.

The jammer was initially kept static for one minute at different locations on the tower,
which ranged about 2–4 m apart (Figure 2). At each location, which was determined by TPS
and indicated by M1–M8 (Table 2), static jamming was performed for about one minute.
The jammer was turned off when transferred between the two consecutive locations. When
reaching the top, a kinematic test was performed after a while (from 8:36:01 to 8:39:29 UTC),
during which the operator went down the steps of the wooden tower at a constant speed.

Table 1. Positions of the receivers at the Stara Vrhnika in the Slovenian realisation of the ETRS89 coordinate system. The
receivers were set up under and on the top of the wooden tower. Normal heights (H) were acquired from the ellipsoidal
heights (h) by using the SLO_VRP2016/Koper geoid model.

Receivers’ Position B-Latitude L-Longitude h [m] H [m]

On the tower 45◦58′17.6” N 14◦15′06.0” E 802.9–803.2 756.3–756.6

Below the tower 45◦58′17.2” N 14◦15′06.9” E 777.3–778.9 730.7–732.3
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Table 2. Locations of the jammer and times of jamming in UTC at the Stara Vrhnika location (the Slovenian realisation of
the ETRS89 coordinate system).

Location of Jammer Start and End Times
of Jamming (UTC) B-Latitude L-Longitude h [m] H [m]

M1 8:17:10–8:17:32 45◦58′17.4938” N 14◦15′06.1969” E 780.904 734.295

M2 8:18:42–8:19:57 45◦58′17.5938” N 14◦15′06.0527” E 783.072 736.463

M3 8:21:24–8:22:24 45◦58′17.5442” N 14◦15′06.0827” E 785.923 739.314

M4 8:23:06–8:24:11 45◦58′17.5527” N 14◦15′06.0782” E 789.905 743.296

M5 8:25:22–8:26:33 45◦58′17.5381” N 14◦15′06.0878” E 793.526 746.917

M6 8:27:36–8:28:42 45◦58′17.5397” N 14◦15′06.0872” E 797.321 750.712

M7 8:29:28–8:30:50 45◦58′17.5446” N 14◦15′06.1431” E 802.871 756.262

M8 8:31:45–8:32:51 45◦58′17.5446” N 14◦15′06.1431” E 803.471 756.862

M8→M1 8:36:01–08:39:29 kinematic jamming from M8 to M1

In this scenario, jamming was performed for three minutes intermittently. The Leica
GS15, Leica GS18T, Javad Triumph-LSA, and u-blox ZED-F9P were at the top of the tower,
while others were mounted below the tower, namely: Javad Triumph-VS, Javad Triumph-
LSA, Leica GS15, Leica GS18T, Trimble R8S, Trimble R10, and another u-blox ZED-F9P.
Figure 3 shows the positions of the receivers at the top and bottom of the tower, while the
start/end times of the jammings and the positions of the jammer are listed in Table 2.
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Figure 3. Vertical profile of jamming at the Stara Vrhnika location, top–down view, acquired by a
Mavic Air 2, DJI drone. The upper metallic fence structure and flagpole are grounded.

The horizontal distance between the jammer and the GNSS receivers was about 25 m
for the receivers below the wooden tower and about 5 m for the receivers on top of the
tower. In the vertical direction, the height differences decreased/increased from 26/0 m to
±2–4 m for each individual location of the jammer relative to the receivers at the top and
below the tower.
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2.3. Horizontal Jamming Performance

Horizontal jamming tests were carried out at Črnotiče. First, the TPS set up with
the resection was performed (see Figure 4). At three different locations, labelled C1, C2,
and C3 (Figure 4, Table 3), the receivers were placed so that each location contained at
least one receiver from the same manufacturer, namely, location C1, Javad Triumph-LSA,
Javad Triumph-VS, Leica GS15, Leica GS18T, and u-blox ZED-F9P; location C2, Javad
Triumph-LSA, Leica GS15, Leica GS18T, Trimble R10, and u-blox ZED-F9P; location C3
Javad Triumph-LSA, Leica GS15, Leica GS18T, Trimble R8S, and u-blox ZED-F9P. Each of
the receivers performed static observations at a time rate of 1 s.

Table 3. Locations of the jammer and times of jamming in UTC at the Stara Vrhnika location (the
Slovenian realisation of the ETRS89 coordinate system).

Site B-Latitude L-Longitude h [m] H [m]

C1 45◦33′45.8” N 13◦53′43.1” E 477.1–478.2 431.7–432.9

C2 45◦33′45.7” N 13◦53′39.8” E 478.7–479.3 433.3–434.0

C3 45◦33′45.7” N 13◦53′42.0” E 477.6–479.0 432.2–433.7
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(b) the jammer was mounted on a telescopic pole below the 360◦ prism.

The horizontal distances between the sites were 74, 82, and 62 m, for C1C2, C1C3, and
C1C3 respectively. Continuous kinematic jamming was performed, whereby the operator
carried a telescopic pole with a 360◦ prism on which the jammer was mounted (Figure 4).
The trajectory of the jammer was in the inner triangular area, but in some cases also outside.
The positions of the jammer were determined every 3 to 5 s, from which a continuous
trajectory of the jamming was acquired. Figure 5 presents the trajectory of the jammer,
which is defined by TPS, during the kinematic session. The hue of the trajectory represents
the time in seconds within a minute. The start of each minute is denoted by a small red dot.
There is a label on every five minutes to make reading easier. The white dots represent the
points at which the prism measurements occurred. The other points are interpolated.
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3. Observation Models used for Jamming Detection

Since the double-differencing (DD) of observations effectively eliminates orbital and
atmospheric delay errors, it is a widely used positioning technique, in particular because
of the added value of the RTK method, which allows direct coordinate acquisition in the
national coordinate systems. Signal-to-noise (SNR) values could be used to monitor signal
quality. Since interference affects SNR values, the deterioration of positioning quality in the
event of float or false fixed ambiguities can be explained by a sudden drop in SNR values.
The following describes a basic observation model for the relative positioning approach,
the SNR-dependent model, and its application.

3.1. DD Observation Model

In DD, the baseline vector must be resolved using the linear model of the observations.
Neglecting distortions between the different navigation systems, DD follows the simplified
form for the residuals in the code pseudo-range P and carrier-phase ϕ [50]:

∇∆vP = (∇∆ρ +∇∆MP ++∇∆εP)−∇∆P
∇∆vϕ =

(
∇∆ρ +∇∆N +∇∆Mϕ +∇∆εϕ

)
−∇∆ϕ

(1)

with∇∆ as DD operator. ρ stands for the distance between satellites and receivers, N is the
carrier-phase ambiguity, which should be resolved as an integer, M and ε denote multipath
and noise, which are different for code and carrier-phase observations. The model of the
variances of the observations is defined according to the elevation angle E of the satellite
and arbitrarily chosen coefficients a and b, namely [51]

σ2 = a2 +
b2

sin2(E)
. (2)

A detailed description of DD processing with an emphasis on explaining the elimina-
tion of impacts on observations can be found in [50].
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3.2. Signal Strength from GNSS Receivers

The exact information about signal-to noise (SNR) values determination from GNSS
receivers of different manufacturers is not always available. Some of the manufacturers give
direct definitions of SNR, while the others retain the detailed description for themselves.
The fact is that manufacturers can change the approach through the firmware improvement
for the particular generation of the receivers. SNR values come for the signal-to-noise
counts (SNC) or arbitrary mystery units (AMUs) in the receivers and are scaled to match a
measurement over a 1 kHz bandwidth [52]:

SNC = S/σN , (3)

where S stands for the amplitude and σN stands for the noise amplitude. The 1 kHz
results from the fact that early receivers were integrated for 1 millisecond, resulting in an
effective bandwidth of 1 kHz. Furthermore, SNR values are expressed as a power ratio on
a logarithmic scale instead of an amplitude ratio on a linear scale. SNR, expressed in the
1 kHz bandwidth, i.e., 1 dB, follows the equation [52]:

SNR(dB) = 10·log
(

SNC2/2
)

, (4)

or in its simplifications, namely:

SNR(dB) = 10·log
(

SNC2
)
− 3 dB,

SNR(dB) = 20·log(SNC)− 3 dB.
(5)

SNR expresses the amount by which a signal level exceeds its noise in decibels. SNR
values are acquired for each of the frequencies and for each of the satellites, so it is obvious
they are elevation dependent.

A more technically precise measurement for GNSS signal strength is C/N0. Some
of the receivers have the ability to display such values, but they are determined from
directly measured SNC. In the NMEA-0183 GSV sentences, namely $GPGSV and $GLGSV,
C/N0 values for the GPS and GLONASS satellites are displayed. The C/N0 is identified as
the carrier power divided by the noise power spectral density per unit bandwidth. It is
expressed as follows [53]:

C/N0 = C− (N− BW) = C−N0 = SNR− BW. (6)

where C represents the carrier power in dBm or dBW; N and N0 represent the noise power
and noise, respectively; and BW is the bandwidth of the observation, which is usually
the noise equivalent bandwidth of the last filter stage in the receiver (≈4 MHz, which
corresponds to 66 dB for L1 C/A code receiver). C/N0 is the SNR (usually in dB) in a 1 Hz
bandwidth power density. That bandwidth is 1000 times less than the “standard”, which
implies a 30-dB change in dB-power units:

C/N0(dBHz) = 30 dBHz + 10·log
(

SNC2/2
)

(7)

or by simplification according to Equation (5)

C/N0(dBHz) = 27 dBHz + 10·log(SNC). (8)

All the above expressions of SNR and C/N0 are approximate but nonetheless useful
for expressing weak and strong signals. For example, if SNC is 10, SNR is 17 dB, and C/N0
is 47 dBHz, which is a strong signal. A weak signal is equal to SNC 3 and corresponds to
the 6.5 dB and 36.5 dBHz for SNR and C/N0. C/N0 is an important measure that can be
used to determine the lock condition of the carrier and tracking loops and to control the
channel scheduling [27].
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4. Data Processing and Evaluation
4.1. Carrier-Phase Observation Processing

To determine the positions of the receivers, a relative positioning with a virtual ref-
erence station (VRS) near the study area was used as a reference. The VRS was obtained
from the Slovenian SIGNAL network of continuously operating reference stations. VRS
enabled processing of the shortest baseline, the maximum number of usable constellations,
and there were no issues with GLONASS hardware bias caused by the use of different
receivers at the end of a baseline. GNSS observations were processed using the RTKLIB
software (demo5_b33e) [54,55] using all available navigation constellations and broadcast
ephemerides. The ultimate goal of observation processing was to achieve a variation of the
solution position over time, so coordinates were acquired for each particular epoch, which
provided an insight into the performance of the positioning, especially since the observa-
tions were collected during jamming. Since the analyses were performed in post-processing,
a combined mode with continuous ambiguity resolution (algorithm LAMBDA [56]) was
used instead of the forward mode with activated fix-and-hold. The additional run-through
(forward and backward) made it possible to avoid situations in which a fixed solution had
to be found without the risk of committing to an incorrect fix that fix-and-hold could cause.

The evaluation approach of jamming comprises two aspects, namely the determination
of sudden changes in SNRs, which influence the position quality during or after jamming.
First, static GNSS observations at 1 Hz for at least one hour were performed to determine
the reliable positions of the receivers, which were then used to determine position errors
from jammed observations.

4.2. Evaluation of C/N0

However, due to the jamming, the observations were either affected by reduced
availability or suffered from ambiguity determination problems, which further affected the
positioning accuracy. The proximity of a jammer caused signal losses but not always for all
the satellites. Some of the receivers were able to collect observations for GLONASS, while
GPS and Galileo had failed. According to expectations, the receivers were more affected
when the jammer was close to them. Figure 6 shows some typical carrier-to-noise ratio
(C/N0) dependencies over the distance of the jammer for various satellites. As expected, the
affected GPS and Galileo satellites exhibit a weak yet pronounced dependency. Sometimes,
the effect of the jammer approaching can be balanced (or hypothetically even exceeded
in the case of a really slow jammer motion) with the increasing elevation of a particular
satellite. On the other hand, the GLONASS satellites operate outside the affected frequency
band. Their C/N0 is almost independent of the vicinity of the jammer, except for a very
near region. As seen from Figure 6, signals from GPS and Galileo satellites show a weak
correlation between the distance of the jammer and C/N0. GLONASS satellites, on the
other hand, only become affected in close vicinity when using an L1/E1 chirp jammer.
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4.3. Positional Quality Assessment

In addition, the study was conducted on the resolution of ambiguities. First, the
percentage of fixed and float ambiguities and of cases without resolutions was determined.
Based on the awareness that situations with false fixed solutions could occur because of
jamming, the same algorithm as in the authors’ previous research [2] was used to estimate
the distance between the actual and the measured position. In this case, the first step was to
determine the actual position from all observations: ϕ-latitude λ-longitude and ellipsoidal
height (h). Since some of them were jammed and possibly incorrectly fixed, it was not
a good idea to simply calculate the mean value of all observations. Based on the use of
weighted coefficients, the mean value was instead calculated using:

a =
1
N

N

∑
n=1

wnan, (9)

where a is any of the position components (ϕ, λ or h), wn is the weighted function, and N is
the number of samples. The variance could be obtained in a similar way:

σ2
a =

1
N − 1

N

∑
n=1

wn(an − a)2. (10)

Ideally, the weighting function should be selected so that it is 1 for non-jammed
samples and 0 for others. The algorithm made it possible to determine the presence of
jamming independently of the already known times of jamming, which was particularly
advantageous for kinematic jamming scenarios. For this purpose, all wn were initially set
to 1 to get a rough estimate of a and σa for a further iterative procedure to define wn. In the
next step, all samples that had at least one of the three quantities from the region 3σa were
considered jammed, and wn was set to 0 for them. The new weighting function improved
the accuracy of a and σa. Then, the procedure was repeated until no change in wn was
detected. This was usually done in five to six steps. After the mean values were obtained,
the horizontal position deviations for each sample point n could be defined as:

δHzn = (R + hn)·
√
[(ϕn − ϕ) cos(λn)]

2 +
(
λn − λ

)2
(11)

and where R stands for the mean radius of the ellipsoid at the point (ϕn, λn, hn).
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5. Results and Discussion

The results of both the vertical and horizontal jamming tests showed that the jammer
affected the measurements of the specific receivers differently. The performance of the re-
ceivers was evaluated according to their ability to calculate their position and the deviation
of the solution from the exact value. In addition, the effect on the C/N0 of the satellite was
calculated, showing reception of the receivers of GPS, GLONASS, Galileo, and BeiDou, if
possible. Interestingly, GLONASS reception in the receivers was affected by the presence
of the jammer, although the jammer used did not significantly interfere with the frequency
band used by the GLONASS satellites.

5.1. Vertical Jamming Profile

For the vertical jamming scenario, it was intended that receivers would be positioned
on the top of the tower, wherein no significant influence from the jammer was expected
due to the antennae radiation pattern of receivers. Non-intentionally, a grounding con-
ductive low-impedance structure apparently transmitted surface electromagnetic waves
as interference and caused weak errors, which occurred when the jammer was switched
on. It appears that the receivers most affected in the vertical jamming scenario were Javad
Triumph-LSA and u-blox ZED-F9P, which are located below the tower and offered no (or
almost no) fixed solutions. During jamming, positioning of the receivers below the tower
failed to a greater extent or remained in float ambiguity resolution mode. This was the case
for all types of receivers located at the bottom of the tower except the Leica GS18T. The
response of this receiver was the same regardless of the location (see Tables 4 and 5).

Table 4. Positioning quality with ambiguity resolution for the vertical profile of jamming for the
receivers at the top of the tower at the Stara Vrhnika site.

Quality of Carrier-Phase Ambiguity Resolution

Receiver Type Site Phase Fix Phase Float No Solution

Javad Triumph LSA Stara Vrhnika, on the top 74.4% 15.6% 10.0%

Leica GS15 Stara Vrhnika, on the top 68.5% 22.2% 9.3%

Leica GS18T Stara Vrhnika, on the top 88.1% 0.4% 11.5%

u-blox ZED-F9P Stara Vrhnika, on the top 75.5% 4.8% 19.7%

Table 5. Positioning quality with ambiguity resolution for the vertical profile of jamming for the
receivers below the tower at the Stara Vrhnika site.

Quality of Carrier-Phase Ambiguity Resolution

Receiver Type Site Phase Fix Phase Float No Solution

Javad Triumph LSA Stara Vrhnika, below 0.2% 92.4% 7.4%

Javad Triumph-VS Stara Vrhnika, below 1.5% 85.2% 13.3%

Leica GS15 Stara Vrhnika, below 47.1% 6.9% 46.0%

Leica GS18T Stara Vrhnika, below 90.9% 7.7% 1.3%

Trimble R8S Stara Vrhnika, below 53.6% 13.7% 32.7%

Trimble R10 Stara Vrhnika, below 56.7% 12.5% 30.8%

u-blox ZED-F9P Stara Vrhnika, below 0.3% 53.3% 46.5%

However, in the overall solution, the receiver most affected by the vertical jamming
scenario was the Javad Triumph-LSA. The u-blox ZED-F9P and Javad Triumph-VS receivers
performed slightly better, albeit still poorly. In the case of the receiver at the top of the
tower, the jamming could be detected by situations with some float solutions for situations
where the jammer was below the receiver or without a solution that occurred when the
jammer was at the same level or above the receiver. However, the receivers below the
tower suffered much more, as shown in the left in Figure 7. This could be attributed to
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the receiving antenna that is probably designed for better reception of the signals in the
upward direction.
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The jammer caused signal losses, and in available positioning situations between
successive one-minute static jamming, the receiver was unable to resolve the ambiguities
as fixed and remained in the float solution mode. The Javad Triumph-LSA below the
tower beside a low proportion of phase fix solutions (or any solution at all) yielded a few
apparently wrong solutions that it claimed to be phase fixed. Results for two receivers
are presented in Figure 8: a poorly performing Javad Triumph-LSA (upper plots) and
an example of a good performing Leica GS15 (lower plots). The left plots represent the
receivers below the tower, while the right ones denote the receivers on the top.
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The first plot in Figure 8 shows carrier-phase fix solutions (a single point as they are
close to each other) with a displacement of up to 0.7 m in the vertical direction and up
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to 0.2 m in the horizontal. The same figure also shows the Javad Triumph-LSA receiver
on the top of the tower, where it performs much better, although there were a few phase
fix solutions deviating up to 0.5 m in the jammer proximity. The same figure also shows
an example of a receiver that performed better: Leica GS15. The receiver at the top of the
tower provided more solutions compared to the one below the tower. However, those
solutions were mostly the carrier-phase floating type.

The next figure (Figure 9) shows the same two receivers and their reception of the G26
satellite of the GPS constellation at both positions. Again, Leica GS15 had better reception
compared to Javad Triumph-LSA, and both receivers receive better at the top. The last
two plots represent the reception of the R09 of the GLONASS constellation on the Javad
Triumph-LSA and E12 of Galileo on Leica GS15. The GLONASS satellites obviously have a
lower C/N0 drop since they are out of the jamming frequency band. On the other hand, the
Galileo satellites show an instantaneous drop of their signal once jammed. As a curiosity,
Figure 10 shows the number of satellites used to compute the position. It is interesting that
Javad Triumph-LSA uses more satellites than Leica GS15. Furthermore, Leica GS15 has
a particularly big proportion of acquisition of less than the theoretical minimum of four
satellites. Nevertheless, it outperforms Javad Triumph-LSA.
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for Leica GS15 (c) at the bottom of the tower and (d) on the tower; (e) GLONASS satellite R09 from Javad Triumph-LSA
from down and (f) signal for Galileo satellite E12 from Leica GS15 from down. Colour of the points represents the satellite
elevation. The other plots are available on [57].
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5.2. Horizontal Jamming Profile

The horizontal jamming scenario followed the kinematic mode of the jammer location.
Comparing the response behaviour of different receiver types at the same location, namely
C1, C2, and C3 (Tables 6–8), first, it becomes clear that the geodetic receivers performed
much better than the u-blox ZED-F9P low-cost receivers, although Javad Triumph-LSA
did not perform much better by means of position precision, as will be shown shortly. In
all situations, especially at the site C1, the u-blox ZED-F9P type suffered from a situation
whereby no one solution was much better than the others (33.6% compared to 10% for
the remaining receivers at the C1 location), while among all the possible solutions at all
locations, the float mode of ambiguity resolution prevailed (Table 6). In this scenario, it is
obvious that geodetic receivers perform better, because they are equipped with much more
effective approaches against interference that affect the resolution of ambiguities or the
possibilities of an incorrect carrier-phase fix. However, low-cost receivers near continuously
operating reference stations (CORS) could be used for the early detection of interference.

Table 6. Positioning quality with ambiguity resolution for the horizontal jamming profile for the
receivers at location C1, Črnotiče.

Quality of Carrier-Phase Ambiguity Resolution

Receiver Type Site Phase Fix Phase Float No Solution

Javad Triumph LSA Črnotiče, C1 49.9% 39.3% 10.8%

Leica GS15 Črnotiče, C1 53.9% 30.3% 15.8%

Leica GS18T Črnotiče, C1 53.7% 23.9% 12.3%

Trimble R8S Črnotiče, C1 58.8% 32.1% 9.2%

u-blox ZED-F9P Črnotiče, C1 6.7% 59.7% 33.6%

At site C1, Trimble R8S showed the best performance in available positioning (9%
versus 10% to 16% for other geodetic receivers) and also in ambiguity fixing (59% of all
available solutions); see Table 6. The other receivers at site C1 performed similarly well
but slightly worse than the Trimble R8S. Additionally, by means of precision, Trimble R8S
superseded the others (first plot in Figure 11).
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As can be seen in Table 7, the performance of the Trimble R10 receiver at site C2 was
successful with the available solution (more than 90%), but only 5% of them were able
to achieve the best quality, i.e., integer ambiguity resolution. The remaining receivers, if
u-blox ZED-F9P is excluded, achieved phase fixes of 46, 48, and 72% respectively for the
Leica GS18T, Javad Triumph-LSA, and Leica GS15.

Table 7. Positioning quality with ambiguity resolution for the horizontal jamming profile for the
receivers at location C2, Črnotiče.

Quality of Carrier-Phase Ambiguity Resolution

Receiver Type Site Phase Fix Phase Float No Solution

Javad Triumph LSA Črnotiče, C2 47.7% 41.3% 10.9%

Leica GS15 Črnotiče, C2 71.8% 17.2% 11.0%

Leica GS18T Črnotiče, C2 46.3% 38.2% 15.4%

Trimble R10 Črnotiče, C2 5.1 % 38.9% 9.1%

u-blox ZED-F9P Črnotiče, C2 0.3% 81.7% 18.1%
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At site C3, Javad Triumph-LSA was most successful in available positioning (22%
vs. 30% or more without solutions), but of all the possible solutions, the Leica GS15 was
most successful in carrier-phase fixing (see Table 8). However, a large proportion of Javad
Triumph-LSA’s solutions were not accurate (second plot in Figure 11), some of them even
being labelled as carrier-phase fixed. The Leica GS18T performed similarly but slightly
worse than the Leica GS15. The Javad Triumph-VS did not perform well, its performance
was comparable to the u-blox ZED-F9P receiver.

Table 8. Positioning quality with ambiguity resolution for the horizontal jamming profile for the
receivers at location C3, Črnotiče.

Quality of Carrier-Phase Ambiguity Resolution

Receiver Type Site Phase Fix Phase Float No Solution

Javad Triumph LSA Črnotiče, C3 37.6% 39.8% 22.6%

Javad Triumph VS Črnotiče, C3 15.4% 48.7% 35.9%

Leica GS15 Črnotiče, C3 50.9% 15.7% 33.4%

Leica GS18T Črnotiče, C3 47.8% 23.3% 28.9%

u-blox ZED-F9P Črnotiče, C3 18.3% 48.3% 33.4%

When comparing the same receiver type at different locations (Tables 6–8), the Leica
GS18T was most resistant to interference at site C1, while the Leica GS15 was most resistant
at site C2, and their effectiveness was quite similar at site C3. While the Trimble R8S at
site C1 was comparable to the other receivers except u-blox ZED-F9P, the Trimble R10
at site C2 was not as successful. Its performance was even worse than that of the u-blox
ZED-F9P receiver.

In terms of satellite reception, as previously mentioned, the correlation between the
jammer distance and the carrier-to-noise ratio is very weak. However, it can be noted
that the receivers that have better performance in a particular measurement have a more
noticeable dependency (Figure 12). The only exceptions are the u-blox based ZED-F9P
receivers, which have a very striking dependency despite performing poorly. The authors
suspect that this could be attributed to a less sophisticated algorithm that does not take
the previous measurements much into account and the position calculation relies more on
immediate signal acquisition. Although no direct proof can be given for this statement,
there are some indications that point in this direction. It has been seen in previous experi-
ments [2] that geodetic instruments report the correct position in some short time just after
the jamming started and need some time to recover after it. As previously discussed, the
GPS and Galileo satellites are affected in a similar way, while the GLONASS reception is
only affected in close proximity to the jammer.

The number of satellites used does not differ much from the vertical jamming experi-
ment. Once again, Figure 13 shows that the use of more satellites in a position calculation
does not mean better precision. However, the correlation between the number of satellites
and the distance between a receiver and jammer is very prominent.
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6. Conclusions

This paper presents the evaluation of the performance of geodetic and low-cost GNSS
receivers under chirp L1/E1 jamming, which was performed vertically and horizontally.
With the knowledge of the competent authorities, jamming experiments were performed
on the same day—20 July 2020—at specific times and at two different locations in Slovenia.
The jammer was placed at the first vertical and the second horizontal at different locations,
and observations from the GNSS receivers were acquired simultaneously in order to
obtain information about the respective weak point of each type of receiver depending
on the position of the jammer. The position quality and the potential for detection of the
displacement of geodetic and low-cost GNSS receivers in relation to the knowledge about
the presence of the jammer was further investigated. The results obtained in this study
lead to the following conclusions:

• In situations where the position of a jammer is above a GNSS receiver, the susceptibility
and poor performance of the receiver are much more pronounced than in situations
where the position of a jammer is below the same type of the receiver. The statement
is even more pronounced in the case of low-cost receivers, which obviously do not
contain any interference mitigation to the same extent as geodetic receivers;

• The latest generation of geodetic receivers, such as the Leica GS18T, responded simi-
larly regardless of whether the jammer was below or above the horizon of the receiver,
while other receivers responded better to situations where the jammer was below
their horizon;

• Both in the vertical and horizontal experiments, u-blox ZED-F9P suffered the most
from situations with jamming. When positioning was possible, it usually remained in
float mode;

• While the Trimble R8S at site C1 was comparable to the other receivers except u-blox
ZED-F9P, the Trimble R10 at site C2 was not as successful; the reason for this could be
the small size and different geometry of the Trimble R10 receiver’s antenna, according
to the authors’ current opinion;

• The reception of GLONASS satellites is almost unaffected, except in close proximity
(10 m or less) to the jammer, as can be seen from their C/N0 values.

However, it should be noted at this point that all the tests were carried out under
favourable conditions, without any other sources of disturbances that could constitute an
additional source of interference. The authors assume that the results would be worse
under other conditions, especially in suburban and urban scenarios. Therefore, it would be
useful to conduct further tests in the future, in which several additional factors should be
analysed. In further studies, the authors will analyse a wider range of low-cost navigation
receivers, including different types of antennas. The receivers should be analysed to
determine their performance separately for each antenna and receiver type.

The performance of such experiments and the interpretation of the results is always
somewhat limited. There are many factors in the overall workflow that influence the results.
Nevertheless, the authors believe that the results and conclusions from their experiments
contribute to a better understanding of the effects of problems that occur when using GNSS
receivers in the event of jamming. To this end, further work will focus on identifying the
reasons for the elimination of false ambiguity fixing and the quality of jammer localisation
in different jamming scenarios.

Another direction of research could also be the investigation of the impact of jammers
on GNSS reception in some less idealistic environments where reflections and involuntary
electromagnetic interferences are present (e.g., urban areas). However, a permission from
the authorities to perform such kinds of experiments would probably be impossible to
obtain. Despite those limitations, we already thought of performing a simulation of those
situations, such as in an abandoned remote village with a lot of geographic obstacles with
the presence of some equipment that is known to produce a lot of interference.
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