
sensors

Article

Integrating Sensor Models in Deep Learning Boosts
Performance: Application to Monocular Depth Estimation in
Warehouse Automation

Ryota Yoneyama 1, Angel J. Duran 1,* and Angel P. del Pobil 1,2

����������
�������

Citation: Yoneyama, R.; Duran, A.J.;

del Pobil, A.P. Integrating Sensor

Models in Deep Learning Boosts

Performance: Application to

Monocular Depth Estimation in

Warehouse Automation . Sensors 2021,

21, 1437. https://doi.org/10.3390/

s21041437

Academic Editor: Gabriel

Oliver-Codina

Received: 21 December 2020

Accepted: 11 February 2021

Published: 19 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Science, Jaume I University, 12071 Castellon, Spain; al388242@uji.es (R.Y.);
pobil@uji.es (A.P.d.P.)

2 Department of Interaction Science, Sungkyunkwan University, Seoul 110-745, Korea
* Correspondence: abosch@uji.es

Abstract: Deep learning is the mainstream paradigm in computer vision and machine learning,
but performance is usually not as good as expected when used for applications in robot vision.
The problem is that robot sensing is inherently active, and often, relevant data is scarce for many
application domains. This calls for novel deep learning approaches that can offer a good performance
at a lower data consumption cost. We address here monocular depth estimation in warehouse
automation with new methods and three different deep architectures. Our results suggest that the
incorporation of sensor models and prior knowledge relative to robotic active vision, can consistently
improve the results and learning performance from fewer than usual training samples, as compared
to standard data-driven deep learning.

Keywords: deep learning in sensing; robot sensors; vision/camera based sensors; 3D sensing;
monocular depth estimation; warehouse automation; optic flow

1. Introduction

In the last years, deep learning has become the mainstream paradigm in computer
vision and machine learning [1]. Following this trend, more and more approaches using
deep learning have been proposed to address different problems in sensing for robotics.
However, robots pose a number of challenges for this methodology, that relate to the fact
that robot sensing is inherently active [2]. This active nature also offers opportunities
that have been exploited for years in the context of active vision [3]; for instance, more
information can be extracted from sensory signals by incorporating knowledge about the
regular relationship between them and concurrent motor actions [4]. Similarly, spatial and
temporal coherence resulting from embodiment can be exploited, for example by taking
advantage of the correlation of consecutive images or those taken from slightly different
viewpoints [2]. In contrast, data-intensive computer vision relies primarily on enormous
amounts of decontextualized images.

As it is well known, the performance of a neural network is directly related to the
adequacy of the training set, and for deep learning, a huge amount of data is typically a
must. Whereas these datasets are normally available for purely data-driven computer vi-
sion or machine learning approaches, performance is usually not as good as expected when
they are directly used for applications in robot vision or, in general, for problems in robot
learning for which results are brought about by motor actions in robotics applications [2].
In these applications, relevant data is often scarce and, moreover, those exhaustive datasets
would turn out to be unfeasible. This calls for novel deep learning approaches that can
offer a good performance from fewer than the usual number of training samples.

In this paper, we address the above issues by means of new methods and the incorpo-
ration of models and prior knowledge based on active vision. The specific robotic problem

Sensors 2021, 21, 1437. https://doi.org/10.3390/s21041437 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-9900-1975
https://doi.org/10.3390/s21041437
https://doi.org/10.3390/s21041437
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21041437
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/4/1437?type=check_update&version=1

Sensors 2021, 21, 1437 2 of 17

we solve here is monocular depth estimation in an eye-in-hand configuration. The main
goal here is to pick and place objects for which the depth cue is the necessary starting point
for most grasping algorithms [5–7]. This problem arises in applications such as warehouse
automation for which adequate datasets are nonexistent (for instance the most popular
datasets for depth estimation such as the KITTI dataset [8] or the Pandora dataset [9] are
oriented to depth estimation by vehicles). Additionally, manipulation in a confined space
would require an RGB-D sensor in hand and, even though state-of-the-art RGB-D cam-
eras are more compact, they are not comparable with the Baxter fully integrated built-in
eye-in-hand cameras (see Figure 1a,b). In addition, RGB-D sensors have problems with
reflective and transparent objects [10,11]. Our goal is, then, not so much to replace existing
3D sensors but to complement them in situations where there may exist some difficulty in
using them. The proposed algorithms allow—using deep learning techniques—to estimate
the depth in a static scene from small displacements of a more compact sensor, such as an
RGB camera.

(a) Baxter robot at Amazon Picking
Challenge 2015.

RGB
Camera

(b) Detail of Baxter eye-in-hand
camera.

Figure 1. (a) Baxter robot with UJI RobInLab team at the Amazon Picking Challenge 2015. Ma-
nipulating items within the confined space of the shelf poses a number of challenges in terms of
visibility and maneuverability. This could not be accomplished with the RGB-D sensor shown in the
image that was mounted on the robot’s elbow. (b) shows a detail of Baxter’s fully integrated built-in
eye-in-hand visual sensor that we propose to use for 3D depth estimation as a complement to the
RGB-D sensor.

Model-based approaches are usually opposed to purely data-driven methods—such
as deep learning—but the use of environment models in combination with model-free
algorithms is a promising trend towards more efficient reinforcement learning [12]. In a
similar way, we explore this research avenue by integrating models and prior knowledge
pertaining to our previous work regarding the relationship between the optical flow and
the displacement of the camera [13]. With this aim, we incorporate into the generic data-
driven deep learning techniques the knowledge of the specific parameters of our sensor.
More specifically, we propose here three deep network architectures in such a way that
information from a modelled and parameterized sensor is considered sequentially in
their design, namely the estimation of image displacements based on the camera model;
the optical flow estimation based on the correlation of two consecutive images and the
subsequent correlation with the change in camera position; the estimation of the camera
displacement from a depth image. The incorporation of each model consistently improves
the results and learning performance with a considerably smaller data consumption cost of
training, as compared to pure data-driven deep learning.

Related Work

In the case of deep learning for object recognition, some works have taken advantage
of active vision [14], and even a dataset has been recently proposed that somehow includes

Sensors 2021, 21, 1437 3 of 17

temporal consistency [15]. For an up-to-date compilation of the literature on deep learning
in robotics and interactive perception, see [2,4], respectively.

Inferring a depth map using a monocular camera or a single eye is relatively easy
for humans, but it is difficult for computational models. In computer vision, a number of
methods and algorithms have been established for estimating the depth of a scene using
a single camera or image. For instance, by applying patches to determine the pose of
planes in a single image, it is possible to generate the depth map with a single image [16].
Additionally, from a stream of images, the depth map can be deduced if the velocity of
the camera is known [17]. Recent results on structure from motion with a monocular
camera are based on feature tracking and triangulation methods [18]. Biology is a source
of inspiration in this field too—Antonelli et al. [13] replicated fixational head and eye
movements in primates together with the resulting optical flow to estimate depth.

Related work on monocular depth estimation with convolutional neural networks
(CNN) can be categorised according to the number of input images (single or multiple)
and the learning approach (supervised or unsupervised). A multi-scaled deep network for
supervised learning was proposed to infer the depth map from a single image [19]. Others
followed this single-image approach by considering computational random fields [20]
or using long short-term memory and recurrent neural networks [21]. Even though it
is possible to reconstruct 3D information from a single image, the performance is not as
good as that of networks that consider several images or take into account the camera
motion [22].

Unsupervised learning techniques have been recently proposed, such as a network
composed of depth and pose networks with a loss function based on warping views to a
target [23]; or another based on generative adversarial networks [24]. Still, unsupervised ap-
proaches are not as accurate as recent supervised methods for monocular depth estimation
such as BTS [25], VNL [26], DeepV2D [27], or so-called self-supervised methods [28–30].

All these deep learning techniques depend on a undetermined scale factor that con-
verts the generated depth maps into absolute values. This is not practical for most cases in
robotics since an absolute depth map of the surrounding environment is needed. Pinard et
al. recently pointed out this issue [31], solving the problem by adding the velocity of the
camera as an additional input. Although the concept is similar to the one proposed in this
paper, it should be noted that both the dataset and the objective in [31] are different, since
the objective is the estimation of the depth image from the point of view of a drone moving
at a constant speed. Both the magnitudes of the inputs and their shape are not applicable
to our environment. On the other hand, the distances that are handled in [31] and other
related approaches are very different from the working range that we consider since they
are too large and coarse. The reason is that their focus is on localisation tasks, while we are
dealing with a maximum distance that is determined by the working area of the robot for
manipulation within the competition’s deep shelves as apposed to nearly a bird’s eye view
in existing datasets. Our approach also solves the above-mentioned problem and absolute
distances are provided.

2. Methodology

In order to evaluate the importance of considering prior and external models in the
design of deep network architectures, we propose three architectures to solve the depth
estimation problem in a robot with an eye-in-hand camera for manipulation in an online
shopping warehouse shelf (Figure 1). In this scenario, fixed RGB-D cameras or laser sensors
have been commonly used to get a faithful 3D representation of its surrounding space in
order to deal with a large number of different items [32]. However, those sensors—either
fixed or mounted on the robot—suffer from visibility issues to perceive objects such as
those occluded or not visible within the shelf. Our overall goal is to propose a different
complementary approach by means of an eye-in-hand RGB sensor (Figure 1b) and actively
building a 3D representation by moving this visual sensor towards the regions of interest.

Sensors 2021, 21, 1437 4 of 17

Using techniques of data augmentation, a dataset for training was generated. The
proposed deep networks are trained and tested with this dataset. As a measure to evaluate
to what extent the inclusion of prior knowledge and sensor models in the architectures
improves the training performance and the accuracy of the results, we will use a comparison
of the final error in the resulting estimation of depth.

2.1. Network Architectures

There are previous attempts to estimate a depth image from a single camera us-
ing SLAM (simultaneous localisation an mapping) techniques [33,34] or considering bio-
inspired models [13]. They are based on the use of camera models and the relationship
between the image features and the physical displacement of the camera. These models
are integrated in the proposed deep architectures.

Our approach builds a 3D representation of the surroundings using a monocular
camera mounted on the robot’s hand, differently from approaches using fixed sensors such
as RGB-D cameras. Figure 2 depicts the general view of the proposed approach. While
moving the robot’s hand towards a target object, first the mounted camera captures a scene
of the surroundings (a source image). Then, the hand moves slightly, and the camera
captures a new scene (a target image). Simultaneously, a relative pose between those
images (Tt→s) is calculated based on the joint angles measured by the encoders embedded
in the robot’s arm. We convert the relative pose into a displacement map of each pixel in
the image plane so that it has the same dimensions as the images. Let us denote by pi and
pi+1, the homogeneous coordinates of a pixel in the images i and i + 1, respectively (see
Figure 2). Using a transformation matrix from a target view (t) to a source view (s) (Tt→s),
the displacement of each pixel is defined as follows:

W t

W s

Image i

Image i+1

Z s

Y s

X s

Y t

Z t

X t

T t→s

pi=(hx ,i ,hy , i ,np)
T

pi+1=(hx ,i+1 ,hy , i+1 ,np)
T

Coordinates of pixel (x,y)

Figure 2. An object is projected onto the image plane of the camera in two consecutive instants (i,
i + 1) after a displacement (Ts−>t) taking as reference the frame source (s) of the camera (Ws) and
considering the target (t) frame of the camera (Wt), the displacement of the pixel (pi) in homogeneous
coordinates hx, hy and np (near camera plane), is determined by the difference between the position of
the pixel in the images (i + 1) and (i), i.e., pi+1 − pi = (Tt−>s pi)− pi. x and y denote the coordinates
of the pixel in the image plane.

Sensors 2021, 21, 1437 5 of 17

Displacement(x, y) =

∆px
∆py
∆pz

 = pi+1 − pi = (Tt→s pi)− pi (1)

To compute this displacement, the model of the camera should be defined. Previous
deep learning approaches do not consider the camera model; however, this can be easily
obtained from the camera calibration. In our case, we use the the pinhole camera model [35].
The kinematic model should be known to estimate the pose of the camera from the joint
values. This is easily derived from the Baxter robot’s kinematics [36]. Of course, this
restriction limits the application to this particular type of robot, but the obtained depth
map will be valid for real and measurable space.

2.2. DepthS Neural Network

The first network design combines the knowledge provided by the camera model with
the obtained visual information. The inputs to the network are two consecutive images
and the change in the position of each pixel as estimated using the robot and camera
models [35,36]. This displacement has three components ([∆px, ∆py, ∆pz]T) so that the
dimensions of the displacement map are three channels× height×width, as an RGB image.
The output is the depth image scaled in a depth range defined by the workspace volume.

The architecture of this network is based on a simple convolutional neural network
(CNN). To combine multiple inputs in CNN, a simple choice is to stack all inputs together
and feed the CNN with them. This network is illustrated in Figure 3 and we call this
architecture depthS. DepthS is based on FlowNetSimple [37], an approach that fits well with
our needs, based on our previous experience. First, depthS concatenates these inputs
and convolves them three times before the contracting part. The contracting part is com-
posed of multiple convolutional layers to abstract feature maps. After the contracting
part, the feature maps are extended in the expanding part to generate a final depth map.
The expanding part is mainly composed of up-convolutions, consisting of unpooling and
convolutional layers (Figure 3). To refine the predicted depths, we concatenate the decon-
voluted feature maps with two corresponding feature maps: the feature maps from the
contracting part of the network, and an upsampled coarser depth prediction. For instance,
in Figure 3, the output of upconv3 is concatenated with the products of conv3_1 and depth4.
We repeat this process 5 times. This method of deconvolution was previously used by other
researchers [21,22,38]. The contracting and expanding parts are similar to those in [37],
though we had to adjust them since the number of inputs is different.

2.3. DepthC Neural Network

One of our previous models to compute a depth map [13] is included in the design of
our second architecture, called depthC. In that work, the optical flow and the displacement
of the camera are used to generate the depth image for a static scenario. Our approach to
estimate the optical flow from two images follows FlowNetCorr [37]. Then, this estimation
is combined with the displacement input as described above for depthS. As in FlowNetCorr,
we use so-called correlation layers, which perform multiplicative patch comparisons between
two feature maps. The overall architecture of depthC is shown in Figure 4.

Sensors 2021, 21, 1437 6 of 17

Dispt(x,y)

3x300x480

Source
3x300x480

Target
3x300x480

Concatenation
9x300x480

conv1
64x150x240

conv2
128x75x120

conv3
256x36x12

conv3_1
256x36x60

conv4
512x18x30

conv4_1
512x18x30

conv5
512x18x30

conv5_1
512x18x30

conv6
1024x9x15

Conv6_1
1024x9x15

upconv5

Feature map
depth6

Feature map
depth5

upconv4

Feature map
depth4

upconv3

upconv3

Feature map
depth3

Feature map
depth2

upconv3

Feature map
depth1

upconv3

Concatenation

Concatenation

Concatenation

Concatenation

Concatenation

Concatenation *

*

*

*

*

*

Contracting Part Expanding Part

OUTPUT

Figure 3. Detailed architecture of depthS. The three inputs (source image, target image and displace-
ment map) are convoluted to extract the local features, and then the features are deconvoluted to
generate the depth image. Each box represents a layer of the network where convolutional operations
take place in the contractive part, and an unconvolutional and unpooling operations are performed
in the expanding part.

First, depthC processes three inputs with identical streams, a pair of images and a
displacement map. Then, feature maps of the images are combined by the first correlation
layer. Subsequently, the product of the first correlation layer is convolved three times,
and it is associated with a feature map of the displacement at the second correlation layer.
Moreover, the product of the second correlation layer is concatenated with a feature map
of a target image denoted by conv_redir in Figure 4. In this way, the feature map generated
from the source image is combined with the features generated from the correlation between
the visual displacement and the target image. Finally, contracting and expanding parts
process the product and generate a final depth map as in DepthS.

Sensors 2021, 21, 1437 7 of 17

The correlation layer is used to associate two feature maps patch by patch [37]. It
convolves a feature map with another map similarly to one step of convolution in a CNN,
with the important difference that a CNN convolves inputs with weights, whereas there
are no weights in the correlation layer.

Correlation
 Layer

Figure 4. Architecture of depthC. The features extracted from the images are processed by two
convolutional branches that are merged by a correlation layer. The result is convoluted and correlated
with the third stream of features extracted from the displacement map. An example illustrating how
the correlation layer operates is shown at the bottom.

2.4. DepthCSx Neural Network

This network combines a single depthC with multiple depthS networks. Its design
was inspired by FlowNet2 [39], DeMoN [22] and SfM-Learning [23]. This type of network
is denoted by depthCSx, where x is the number of depthS networks used in the network
design. The architecture of depthCSx is shown in Figure 5. To combine two different
neural networks effectively, we introduce a brightness error and a subconvolutional neural
network diverging from the mid of depthS, which computes a relative pose. First, depthC
processes a pair of images and a displacement map, and predicts a first depth map. After
obtaining the first depth map from depthC, depthS processes the following information:
a pair of images, a predicted depth map, a warped image and brightness differences. To
effectively link the first depth map with a pair of images, we introduce a warped image
and a brightness error [23,39]. The warped image Ĩw is obtained from a target view It by
projecting pixels onto the source view Is, based on the predicted depth map D̂ and relative
pose T̂t→s and using bilinear interpolation to obtain the value of the warped image Ĩw at
location pt. To do so, we define pt as the homogeneous coordinates of a pixel in the target
view, and K is the camera intrinsic matrix. The coordinates of captured objects in the target

Sensors 2021, 21, 1437 8 of 17

view P are expressed with the projected coordinates of pt , the predicted depth of the object
D̂(pt) and the camera matrix K as follows:

P ∼ D̂(pt)K−1 pt., (2)

where P is calculated on the target view’s camera frame coordinates. Then, we can calculate
the projected coordinates of pt onto a source view ps as follows:

ps ∼ KT̂t→sP ∼ KT̂t→sD̂(pt)K−1 pt, (3)

Ĩw = ∑
i∈top,bottom,j∈le f t,right

wij Is(pij
s), (4)

where wij is the approximate value between projected and neighbouring pixels, which
sums up to 1; i and j refer to relative pixels around the current pixel (x, y) and in the sum i
and j vary from top to bottom and from left to right, respectively, since they are references
relative to pixel (x, y). The brightness error Lbright is an absolute mean of differences
between It and Ĩw on each pixel, expressed as follows:

Lbright =
1

wh ∑
x,y
|It(x, y)− Ĩw(x, y)|, (5)

where w and h are the width and height of an image, respectively, and x and y are the
coordinates of each pixel in the image.

Target Image

Source Image

Displacement

Depth

Warped

Brightness
difference

DepthC DepthS

Tt→s

Tt→s

Camera
params

K

X

Depth

X times
Target Image

Source Image

Warping

Source image plane

p t

P≈ D (pt) K
−1 p t

ps≈ KT (t→ s) P

≈ KT (t→ s) D (pt) K
−1 p t

ps

D (p t)

T (t → s)

Target image plane

Figure 5. Architecture of depthCSx. DepthC predicts a first depth map, then depthS processes a
pair of images, the predicted depth map, a warped image and brightness differences to generate an
improved depth map and a new relative pose Tt→s. We iterate depthS x times so that depth maps
and relative poses are improved repeatedly.

Thus, depthS processes a pair of images, a predicted depth map, a warped image, and
brightness differences together, and it generates an improved depth map and a new relative
pose Tt→s. The new Tt→s is calculated from the subconvolutional network diverging from
the mid of depthS. We iterate depthS multiple times so that depth maps and relative poses
are improved repeatedly. The updated relative pose and predicted depth map are used to
compute a new warped image and brightness difference with Equations (3) and (5). Next,
depthS processes the new warped image and brightness differences along with a pair of
images and previously predicted depth maps repeatedly.

Sensors 2021, 21, 1437 9 of 17

3. Experimental Setup

The considered scenario is a robot arm with an eye-in-hand camera for manipulation
in a confined space. Under these conditions, the goal is to estimate a dense and faithful
depth map, especially in the space within reach of the robot’s gripper since this is critical
for succefully grasping a target object.

3.1. Dataset Generation

Most existing datasets for monocular depth estimation were designed for the localisa-
tion of vehicles or mobile robots. The distances in the dataset samples are too large and
coarse for our manipulation application. This is the case for the most popular datasets for
monocular depth estimation, such as the KITTI [8] or the Pandora [9] datasets. It is clear
that these datasets cannot be used to train the network architectures that we propose, in
which the images are captured by a video camera on a robotic arm that produces small
displacements. Therefore, we need to generate our own small, ad-hoc dataset. To do so,
we used the Gazebo/ROS simulator [40] with a Rethink Robotics Baxter with which it is
ideally possible to get the ground truth for depth maps, camera poses and images. A model
of Baxter allows to transform from joint space to camera poses. The environment in front
of the robot is limited by a wall and two types of walls were used in the dataset generation.

In order to have enough diversity in the dataset, 30 ordinary object models were used
such as a newspaper, book, bowl, cinder block, cube, ball, pencil, etc. In our first trials,
the objects where placed on a table (Figure 6a), randomly changing their poses as well as
the objects present in each scenario. Subsequently, the number of samples in the training
dataset was increased with data augmentation techniques. In particular, the objects were
placed randomly in front of the robot within the workspace volume (Figure 6b) so that
their depths spread over the robot visual area.

A depth camera simulation placed in the location of the RGB camera was used to
capture the depth images and generate the ground truth. The movements of the arm are
limited in such a way that an initial pose is defined to capture the maximum area of the
workspace, and then different poses are generated into a sphere centerer in the initial pose
and with maximum radius of 5 cm. The selection of this value was based on geometric
calculations from camera angular FOV, the limitations of Baxter, and the nature and size
of the workspace defined by the shelf. The 6 DoF of the camera are randomly changed
within the limits of this sphere, in such a way that the end effector is moved within these
limits while keeping the orientation of the camera unchanged, so that only the translational
component will need to be input into the neural networks, reducing their complexity. This
point differs significantly from the case proposed in [31] in which the camera is mounted on
the drone and its speed is used for distance estimation. In addition, the total displacement
values there are up to 30 cm.

To reproduce the noise present in a real setting, Gaussian noise was added to images
and relative camera poses. The standard deviation used to generate the white noise was
0.07 for the images and 1 mm for the poses. The values of these deviations are referred
to the official hardware description of Baxter. The procedure to generate the dataset is
divided into three steps:

1. The robot captures the first image with the monocular camera embedded in its arm.
2. The camera is moved slightly and captures the second image with its depth map.

The relative camera pose is saved as well. This pair of images, the depth map for the
second image, and the relative pose are stored as one element in the set of data.

3. A new scene is generated by randomly shuffling objects.

Finally, our resulting dataset is composed of 10,000 such elements (for 5000 scenes
with objects on a table and 5000 with objects in the workspace), which is one or two orders
of magnitude smaller than the typical datasets for deep learning. For example, the KITTI
dataset [8] for depth estimation and prediction contains 93,000 depth images and the
Pandora dataset [9] is composed of 250,000 images; both of them are oriented to depth

Sensors 2021, 21, 1437 10 of 17

estimation by moving vehicles. We split the dataset into 8000 and 2000 sets for training
and validation, respectively. In addition, we prepared 600 additional samples for inference.

(a) A scene with objects on a table.

(b) A scene with objects placed randomly within the workspace

Figure 6. Examples of generated scenes for the dataset. The insets show the images captured by the
eye-in-hand camera.

Sensors 2021, 21, 1437 11 of 17

3.2. Training Setup
3.2.1. Loss Functions

The root mean square error (RMSE) of depth is adopted as loss function because it is
one of the most commonly used and, therefore, it is convenient for comparisons. Depth
RMSE is calculated using a predicted depth d̂ and ground truth d as follows:

Lrmse =

√√√√ 1
wh

w

∑
i=1

h

∑
j=1

(d̂i,j − di,j)2, (6)

where w and h are the width and height of a depth map, respectively.
In addition to RMSE, the smoothness error is used. This can be considered as L1 norm

of the second-order gradients for the predicted depth maps [23,38].
For the training of depthC and depthS, we used only depth RMSE, whereas smooth-

ness loss and brightness loss are used in the training of depthCSx. Hence, the loss function
for an iteration i of depthCSx is the weighted sum of loss functions expressed as follows:

Li
f inal = wi

rmseLi
rmse + wi

brightL
i
bright + wi

smoothL
i
smooth, (7)

where wi are weights for each loss function, and the superindex i refers to the current
depthS iteration in depthCSx network, as explained in Section 2.4 and shown in Figure 5.

3.2.2. Optimizer and Regularization

To circumvent overfitting and learn a depth map efficiently, the Adam optimizer [41]
and regularization techniques were applied. A stochastic gradient descent method (SGD)
was first tested but the Adam optimizer converged faster.

As for regularization in the training process, two techniques were used: L2 regular-
ization gives a penalty on a loss function with the coefficient of a sum of squared weights.
The selected value for L2 regularization used for training was 10−4. The second technique
was dropout [42]. Moreover, a normalisation technique was also used. In particular, group
normalisation [43]. The size of the group was configured as 16. As usual, the choice of these
two values was based on a prior systematic tuning of the parameters of the neural network.

3.3. Evaluation Metrics

To analyse the results with multiple criteria, several evaluation metrics were computed:
L1-inv, L1-rel, sc-inv amd RMSE [22,23,44]. L1-rel calculates a depth error relative to the
ground truth. L1-inv can relatively increase if there is a large error for small values of
depth. Finally sc-inv is a scale-invariant error introduced [33].

3.4. Training and Validation

DepthS, depthC, depthCS and depthCSS were trained with the generated dataset
(the code is available in: https://gitlab.com/aduranbosch/depthCSSx (accessed on 19
February 2021)). The above evaluation metrics were used to analyse the results from
multiple viewpoints. The results are separated into training and validation phases as well
as an inference phase. In one epoch of training and validation, the networks were first
trained on the 8000 scenarios in the training set, and the learning was evaluated on the
2000 scenarios in the validation set. The best weights in the validation were saved for
inference. For the inference, the networks tried to predict depth maps on additional 600
unseen scenarios.

3.4.1. DepthC and DepthS

First, we trained depthS and depthC to evaluate how much the correlation layers
contribute to the performance. Both networks were trained for 29 epochs with the dataset.
The parameters used for training are summarised in Table 1.

https://gitlab.com/aduranbosch/depthCSSx

Sensors 2021, 21, 1437 12 of 17

Table 1. Training parameters.

Parameter DepthS DepthC DepthCSx

Regularization

L2 10−4 10−4 10−4

dropout 0.0 0.0 0.5

Adam

learning rate 10−3 10−3 10−3e(−0.95∗ep)

Beta (0.9,0.999) (0.9,0.999) (0.9,0.999)

Coefficient of loss

wrmse 1.0 1.0 1.0

wbright 0.0 0.0 0.01

wsmooth 0.0 0.0 0.01

3.4.2. DepthCSx

Next, we trained depthCSx. To do so, first depthCS (one depthC + one depthS) was
trained for 30 epochs, reusing the best weights learned previously for depthC. In the
training of depthCS, we only optimised the weights of depthS while fixing the weights
of depthC. After the training of depthCS, we moved to training depthCSS, which stacks
one depthC and two depthS. We similarly optimised only the second depthS for 30 epochs,
while using the best weights of depthCS learned previously. The parameters of this training
are shown in Table 1

4. Results
4.1. Training Progress
4.1.1. DepthS and DepthC

From Figure 7, it is apparent that depthC outperforms depthS in both training and
validation scores. Also, it can be observed that the training and validation scores converge
with a very small oscillation. However, the validation scores did not decrease well after
around 15 epochs.

The training progress along 30 epochs for depthCS and depthCSS is shown in Figure 7
(blue and green curves) both for the sum of loss functions (dotted lines) and RMSE
(solid lines).

0 5 10 15 20 25 30
Epoch

0.05

0.1

0.15

0.2

0.25

0.3

R
M

S
E

 (
m

)

Evolution of RMSE during training and validation

depthS
depthC
depthCS
depthCSS

Figure 7. Evolution of RMSE for the proposed neural networks during training and validation.
Dashed lines correspond to validation, solid lines to training, and dotted lines represent the sum of
the weighted loss functions.

Sensors 2021, 21, 1437 13 of 17

4.1.2. Sensitivity Analysis to Dataset Size

We trained the proposed networks using different fractions of the main dataset of
10,000 samples. We then evaluated their performance using a test set that had not been
used for any of the training sessions and that, although it is similar in the typology of
objects, they are not the same as those used in the training parts. The structural similarity
index (SSIM) is used to assess the results [45]. SSIM provides us with information about
the structural similarity between the depth image generated by the neural networks and
the ground truth. The main advantage of this index is that its range of possible values
extends from 0 to 1, and two images are more similar the closer SSIM is to 1. The plots of
the percentages with respect to the maximum size of the dataset versus the estimation of
the SSIM index for each neural architecture are shown in Figure 8.

020406080100
Percentage of samples

0.5

0.6

0.7

0.8

0.9

1

S
S

IM
 in

de
x

Sensitivity analysis to dataset size

fitted DepthC
DepthC
fitted DepthS
DepthS
fifted DepthCS
DepthCS
fifted DepthCSS
DepthCSS

Figure 8. Sensitivity analysis to dataset size. The plots show the estimation of the SSIM index for
each neural architecture versus the percentage of samples (number of scenes in the training and
validation datasets) using as reference the maximum size of 10k. Note how with only 3000 samples
(30%) the SSIM index is already over 0.9 for depthCS and depthCSS and it keeps over 0.8 for only
1000 samples (10%). Even for DepthC and DepthS, the SSIM index is close to 0.9 for 7000 samples
(70%), though it decreases for larger sizes, most probably due to overfitting.

4.2. Evaluation Metrics

After training the different deep networks, the established metrics are used for esti-
mating the inference error of the testing dataset. These results are shown in Table 2. One
representative example of the depth maps predicted by DepthS, DepthC, DepthCS and
DepthCSS is displayed in Figure 9 along with the ground truth and the target image. The
target image was captured by the monocular camera at a given moment. The ground
truth was provided by a simulated depth camera located at the same coordinates as the
eye-in-hand camera. The depth maps are colored to visualise the distance from the camera.

Table 2. Results for error metrics.

Network
Error Metrics

RMSE (m) L1-rel L1-inv SC-inv

depthS 0.1173 0.1650 3.1450 0.1767

depthC 0.0856 0.1219 0.9603 0.1240

depthCS 0.0766 0.1089 0.7879 0.1183

depthCSS 0.0732 0.1050 0.7649 0.1119

Sensors 2021, 21, 1437 14 of 17

G
ro

un
d

tr
ut

h

R
G

B
 Im

age

de
pt

hS
 o

ut
pu

t R
M

S
E

 depthS

de
pt

hC
 o

ut
pu

t R
M

S
E

 depthC

de
pt

hC
S

 o
ut

pu
t R

M
S

E
 depthC

S

de
pt

hC
S

S
 o

ut
p

ut

R
M

S
E

 depthC
S

S

Figure 9. Representative example of depth maps predicted by depthC, depthS, depthCS and
depthCSS. The ground truth and RGB image are also shown. The units of the color bars on the right
are meters. Closer distance is colored in blue and farther distance in red and yellow. The RMSE value
for each pixel is shown in the images in the right column.

5. Discussion

Beyond the interest of the proposed approach for our particular application domain,
the results in Table 2 support the hypothesis that integrating prior knowledge and sensor
models relative to robotic active vision into deep learning can significantly improve perfor-
mance. The three neural networks have been trained with the same number of epochs.

Also, leveraging the camera model in depthS, allows us to define the absolute units
of the obtained depth images (Figure 3); a clear advantage over alternative deep learning
methods, for which a scale factor is needed to estimate the real distance. For depthS and
depthC, the training parameters and procedures are similar. However, the incorporation in
the depthC design of the model of depth estimation from optical flow and the displacements
of the camera improves its performance with respect to depthS around 25% (as measured

Sensors 2021, 21, 1437 15 of 17

with RMSE). Embedding prior knowlegde in depthC from two previously established rules
for the estimation of optical flow from two images and the correlation of this magnitude
with the variation of the camera position allowed us to define the correlation rules between
these elements. The correlation layers extract features of each input before the layer and
link them patch by patch in the layer. On the other hand, depthS failed to properly learned
to link these features through training by itself. This result suggests that our approach
contributes to a better accuracy and the reduction of training time.

Also, depthCSx is a combination of the two previous architectures, but with the
incorporation of the roto-translation camera model to estimate the change of position of
each pixel of the first image, using the depth prediction provided by depthS. By itself,
this fact implies the use of prior knowledge represented by the pre-trained depthS, and
an additional source for the improvement of performance. The way the camera model
predicts the pixel variation from the depth estimated by depthS, is crucial to enhance the
global network performance: around 10% with respect to depthC and 34% over depthS, in
terms of RMSE.

From these results, it can be drawn that as models such as the camera model (depthS),
the estimation of optical flow and variation of the position (depthC), and the model of the
estimation of the translation of the camera from a depth image, are incorporated in the
network designs, the resulting performances are better for the same dataset.

Though it is customary to asses the performance of a system by means of comparisons
with other methods, this endeavour turned out to be impossible in our case, and our
preliminary tests using some methods proposed in the literature did not generate reason-
able results. The main reason is that those methods are based on training the network
with images from video sequences generated for a constant camera displacement over the
scenario, whereas in our case the camera executes random oscillatory movements around
a point and, therefore, our dataset is not compatible with them. Comparing directly our
RMSE values with those reported by state-of-the-art methods—such as Pinard et al. [31],
BTS [25], VNL [26], or DeepV2D [27]—would also made no sense—even though our values
are much smaller—since it would simply mean comparing two problems that do not have
the same scale. Similarly, using standard datasets—such as KITTI [8] or Pandora [9]—for
the sake of comparison is not an option either, since they do not match the requirements
of our use-case in terms of the work environment or necessary camera displacements, as
already mentioned.

Finally, our results have been obtained with an ad-hoc dataset that is one or two orders
of magnitude smaller than the typical datasets used in deep learning. This fact suggests
that the incorporation of prior knowledge and sensor models relative to robotic active
vision can contribute to the development of sample-efficient deep learning by significantly
reducing the size of the required datasets. The results of our sensitivity analysis to dataset
size clearly confirm this claim, since with only 3000 samples the SSIM index is already over
0.9 for depthCS and depthCSS and it keeps over 0.8 for only 1000 samples (Figure 8). This
promising results suggest the feasibility of physically generating the ad-hoc data in the real
world in the near feature, and resorting to data augmentation when necessary.

Author Contributions: Conceptualization, R.Y. and A.J.D.; methodology, A.J.D.; software, R.Y.; vali-
dation, R.Y., A.J.D. and A.P.d.P.; investigation, R.Y. and A.J.D.; resources, A.J.D.; writing—original
draft preparation, R.Y.; writing —review and editing, A.J.D. and A.P.d.P.; visualization, A.J.D.; super-
vision, A.P.d.P.; project administration, A.J.D. and A.P.d.P.; funding acquisition, A.P.d.P. All authors
have read and agreed to the published version of the manuscript.

Funding: This paper describes research conducted at UJI Robotic Intelligence Laboratory. Support
for this laboratory is provided in part by Ministerio de Ciencia e Innnovación (DPI2015-69041-R), by
Universitat Jaume I (UJI-B2018-74), and by Generalitat Valenciana (PROMETEO/2020/034).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2021, 21, 1437 16 of 17

References
1. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
2. Sunderhauf, N.; Brock, O.; Scheirer, W.; Hadsell, R.; Fox, D.; Leitner, J.; Upcroft, B.; Abbeel, P.; Burgard, W.; Milford, M.; et al.

The limits and potentials of deep learning for robotics. Int. J. Rob. Res. 2018, 37, 405–420. [CrossRef]
3. Bajcsy, R.; Aloimonos, Y.; Tsotsos, J.K. Revisiting active perception. Auton. Rob. 2018, 521, 436–444. [CrossRef] [PubMed]
4. Bohg, J.; Hausman, K.; Sankaran, B.; Brock, O.; Kragic, D.; Schaal, S.; Sukhatme, G.S. Interactive Perception: Leveraging Action

in Perception and Perception in Action. IEEE Trans. Rob. 2017, 33, 1273–1291. [CrossRef]
5. Satish, V.; Mahler, J.; Goldberg, K. On-policy dataset synthesis for learning robot grasping policies using fully convolutional

deep networks. IEEE Rob. Autom Lett. 2019, 4, 1357–1364. [CrossRef]
6. Morrison, D.; Corke, P.; Leitner, J. Closing the loop for robotic grasping: A real-time, generative grasp synthesis approach.

arXiv 2018, arXiv:1804.05172.
7. Wang, C.; Zhang, X.; Zang, X.; Liu, Y.; Ding, G.; Yin, W.; Zhao, J. Feature sensing and robotic grasping of objects with uncertain

information: A review. Sensors 2020, 20, 3707. [CrossRef]
8. Geiger, A.; Lenz, P.; Stiller, C.; Urtasun, R. Vision meets Robotics: The KITTI Dataset. Int. J. Rob. Res. 2013, 32, 1231–1237.

[CrossRef]
9. Borghi, G.; Venturelli, M.; Vezzani, R.; Cucchiara, R. POSEidon: Face-from-Depth for driver pose estimation. In Proceedings of

the 30th IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 5494–5503.
[CrossRef]

10. Alhwarin, F.; Ferrein, A.; Scholl, I. IR Stereo Kinect: Improving Depth Images by Combining Structured Light with IR Stereo. In
PRICAI 2014: Trends in Artificial Intelligence; Pham, D.N., Park, S.B., Eds.; Springer International Publishing: Cham, Switzerland,
2014; pp. 409–421.

11. Chiu, W.C.; Blanke, U.; Fritz, M. Improving the kinect by cross-modal stereo. In Proceedings of the British Machine Vision
Conference, Dundee, UK, 29 August–2 September 2011; p. 2009.. [CrossRef]

12. Yu, Y. Towards Sample Efficient Reinforcement Learning. In Proceedings of the Twenty-Seventh International Joint Conference
on Artificial Intelligence, Stockholm, Sweden, 13–19 July 2018; pp. 5739–5743.

13. Antonelli, M.; del Pobil, A.P.; Rucci, M. Depth estimation during fixational head movements in a humanoid robot. In
Proceedings of the International Conference on Computer Vision Systems, St. Petersburg, Russia, 16-18 July 2013; pp. 264–273.

14. Malmir, M.; Sikka, K.; Forster, D.; Fasel, I.; Movellan, J.R.; Cottrell, G.W. Deep active object recognition by joint label and action
prediction. Comput. Vision Image Underst. 2017, 156, 128–137. [CrossRef]

15. Lomonaco, V.; Maltoni, D. Core50: A new dataset and benchmark for continuous object recognition. arXiv 2017,
arXiv:1705.03550.

16. Saxena, A.; Sun, M.; Ng, A.Y. Make3D: Learning 3D scene structure from a single still image. IEEE Trans. Pattern Anal. Mach.
Intell. 2009, 31, 824–840. [CrossRef] [PubMed]

17. Matthies, L.; Szeliski, R.; Kanade, T. Kalman Filter-based Algorithms for Estimating Depth from Image Sequences. Int. J.
Comput. Vision 1989, 3, 87–130. [CrossRef]

18. Schonberger, J.L.; Frahm, J.M. Structure-from-Motion Revisited. In Proceedings of the 2016 IEEE Conference on Computer
Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 4104–4113. [CrossRef]

19. Eigen, D.; Puhrsch, C.; Fergus, R. Depth map prediction from a single image using a multi-scale deep network. arXiv 2014,
arXiv:1406.2283.

20. Liu, F.; Shen, C.; Lin, G. Deep convolutional neural fields for depth estimation from a single image. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 5162–5170.

21. Kumar, A.C.; Bhandarkar, S.M.; Prasad, M. Depthnet: A recurrent neural network architecture for monocular depth prediction.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, UT, USA, 18–22
June 2018; pp. 283–291.

22. Ummenhofer, B.; Zhou, H.; Uhrig, J.; Mayer, N.; Ilg, E.; Dosovitskiy, A.; Brox, T. Demon: Depth and motion network for learning
monocular stereo. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA,
21–26 July 2017; pp. 5038–5047.

23. Zhou, T.; Brown, M.; Snavely, N.; Lowe, D.G. Unsupervised learning of depth and ego-motion from video. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1851–1858.

24. Almalioglu, Y.; Saputra, M.R.U.; de Gusmao, P.P.; Markham, A.; Trigoni, N. GANVO: Unsupervised Deep Monocular Visual
Odometry and Depth Estimation with Generative Adversarial Networks. arXiv 2018, arXiv:1809.05786.

25. Lee, J.H.; Han, M.K.; Ko, D.W.; Suh, I.H. From big to small: Multi-scale local planar guidance for monocular depth estimation.
arXiv 2019, arXiv:1907.10326.

26. Yin, W.; Liu, Y.; Shen, C.; Yan, Y. Enforcing geometric constraints of virtual normal for depth prediction. In Proceedings of the
IEEE International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 5683–5692. [CrossRef]

27. Teed, Z.; Deng, J. DeepV2D: Video to depth with differentiable structure from motion. arXiv 2018, arXiv:1812.04605.
28. Goldman, M.; Hassner, T.; Avidan, S. Learn stereo, infer mono: Siamese networks for self-supervised, monocular, depth

estimation. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops,
Long Beach, CA, USA, 16–17 June 2019; pp. 2886–2895. [CrossRef]

http://doi.org/10.1038/nature14539
http://dx.doi.org/10.1177/0278364918770733
http://dx.doi.org/10.1007/s10514-017-9615-3
http://www.ncbi.nlm.nih.gov/pubmed/31983809
http://dx.doi.org/10.1109/TRO.2017.2721939
http://dx.doi.org/10.1109/LRA.2019.2895878
http://dx.doi.org/10.3390/s20133707
http://dx.doi.org/10.1177/0278364913491297
http://xxx.lanl.gov/abs/1611.10195
http://xxx.lanl.gov/abs/1611.10195
http://dx.doi.org/10.1109/CVPR.2017.583
http://dx.doi.org/10.5244/C.25.116
http://dx.doi.org/10.1016/j.cviu.2016.10.011
http://xxx.lanl.gov/abs/arXiv:1304.1678
http://dx.doi.org/10.1109/TPAMI.2008.132
http://www.ncbi.nlm.nih.gov/pubmed/19299858
http://dx.doi.org/10.1007/BF00133032
http://xxx.lanl.gov/abs/1701.08493
http://dx.doi.org/10.1109/CVPR.2016.445
http://xxx.lanl.gov/abs/1907.12209
http://dx.doi.org/10.1109/ICCV.2019.00578
http://xxx.lanl.gov/abs/1905.00401
http://dx.doi.org/10.1109/CVPRW.2019.00348

Sensors 2021, 21, 1437 17 of 17

29. Guizilini, V.; Ambrus, , R.; Pillai, S.; Raventos, A.; Gaidon, A. 3D packing for self-supervised monocular depth estimation. In
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19
June 2020; pp. 2482–2491. [CrossRef]

30. Andraghetti, L.; Myriokefalitakis, P.; Dovesi, P.L.; Luque, B.; Poggi, M.; Pieropan, A.; Mattoccia, S. Enhancing Self-Supervised
Monocular Depth Estimation with Traditional Visual Odometry. In Proceedings of the 2019 International Conference on 3D
Vision, 3DV, Québec City, QC, Canada, 16–19 September 2019; pp. 424–433. [CrossRef]

31. Pinard, C.; Chevalley, L.; Manzanera, A.; Filliat, D. Learning structure-from-motion from motion. In Proceedings of the
European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018.

32. del Pobil, A.P.; Kassawat, M.; Duran, A.J.; Arias, M.A.; Nechyporenko, N.; Mallick, A.; Cervera, E.; Subedi, D.; Vasilev, I.; Cardin,
D.; et al. UJI RobInLab’s Approach to the Amazon Robotics Challenge 2017. In Proceedings of the IEEE International Conference
on Multisensor Fusion and Integration for Intelligent Systems. MFI, Daegu, Korea, 16–18 November 2017; pp. 318–323.

33. Engel, J.; Schöps, T.; Cremers, D. LSD-SLAM: Large-scale direct monocular SLAM. In Proceedings of the European Conference
on Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 834–849.

34. Mur-Artal, R.; Montiel, J.M.M.; Tardos, J.D. ORB-SLAM: A versatile and accurate monocular SLAM system. IEEE Trans. Rob.
2015, 31, 1147–1163. [CrossRef]

35. Forsyth, A.; Ponce, J. Computer Vision, A Modern Approach; Prentice Hall: Upper Saddle River, NJ, USA, 2003.
36. Ju, Z.; Yang, C.; Ma, H. Kinematics modeling and experimental verification of baxter robot. In Proceedings of the 33rd Chinese

Control Conference, Nanjing, China, 28–30 July 2014; pp. 8518–8523. [CrossRef]
37. Dosovitskiy, A.; Fischer, P.; Ilg, E.; Hausser, P.; Hazirbas, C.; Golkov, V.; Van Der Smagt, P.; Cremers, D.; Brox, T. Flownet:

Learning optical flow with convolutional networks. In Proceedings of the IEEE international conference on computer vision,
Santiago, Chile, 7–13 December 2015; pp. 2758–2766.

38. Vijayanarasimhan, S.; Ricco, S.; Schmid, C.; Sukthankar, R.; Fragkiadaki, K. Sfm-net: Learning of structure and motion from
video. arXiv 2017, arXiv:1704.07804.

39. Ilg, E.; Mayer, N.; Saikia, T.; Keuper, M.; Dosovitskiy, A.; Brox, T. Flownet 2.0: Evolution of optical flow estimation with deep
networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, Honolulu, HI, USA, 21–26 July
2017; pp. 2462–2470.

40. Gazebo. Available online: http://gazebosim.org/ (accessed on 28 May 2019).
41. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
42. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks

from overfitting. J. Mach. Learn. Res 2014, 15, 1929–1958.
43. Wu, Y.; He, K. Group normalization. In Proceedings of the European Conference on Computer Vision (ECCV), Munich,

Germany, 8–14 September 2018; pp. 3–19.
44. Xu, D.; Wang, W.; Tang, H.; Liu, H.; Sebe, N.; Ricci, E. Structured attention guided convolutional neural fields for monocular

depth estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA,
18–23 June 2018; pp. 3917–3925.

45. Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity.
IEEE Trans. Image Process. 2004, 13, 600–612. [CrossRef] [PubMed]

http://xxx.lanl.gov/abs/1905.02693
http://dx.doi.org/10.1109/CVPR42600.2020.00256
http://xxx.lanl.gov/abs/1908.03127
http://dx.doi.org/10.1109/3DV.2019.00054
http://dx.doi.org/10.1109/TRO.2015.2463671
http://dx.doi.org/10.1109/ChiCC.2014.6896430
http://gazebosim.org/
http://dx.doi.org/10.1109/TIP.2003.819861
http://www.ncbi.nlm.nih.gov/pubmed/15376593

	Introduction
	Methodology
	Network Architectures
	DepthS Neural Network
	DepthC Neural Network
	DepthCSx Neural Network

	Experimental Setup
	Dataset Generation
	Training Setup
	Loss Functions
	Optimizer and Regularization

	Evaluation Metrics
	Training and Validation
	DepthC and DepthS
	DepthCSx

	Results
	Training Progress
	DepthS and DepthC
	Sensitivity Analysis to Dataset Size

	Evaluation Metrics

	Discussion
	References

