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Abstract: In this paper, we describe a long-range convex cavity-type passive ultra-high-frequency
(UHF) radio frequency identification (RFID) tag to use on various metal and non-metal surfaces,
for IoT sensor energy harvesting. The tag antenna is built on the 3D printed cavity structure with
polylactic acid (PLA) plastic and painted with the conductive ink on the 1 mm protruding area
(convex) of inner surface and the side-walls of the cavity structure to form a cavity structure. The
tag is designed to operate in the UHF band (840–960 MHz). This long-range cavity tag antenna
(CTA) works at both 920 MHz and 915 MHz UHF RFID frequencies. It provides a linear polarized
(LP) frontal reading range of 35 m and side reading range above 15 m when mounted on either
metal or non-metal objects. We describe the antenna characteristics, structure, modeling, simulation,
and experimental results. A mathematical reading range also was calculated and compared with
experimental data.

Keywords: RFID tag antenna; long-range RFID tag; cavity antenna; convex tag antenna; RFID
metal tag; RFID sensors; painted RFID tag antenna; IoT RFID sensor; 3D antenna; concave antenna;
energy harvesting

1. Introduction

Radio frequency identification (RFID) uses a backscattered electromagnetic field to
identify tagged objects or people, and to date many applications and systems have been
introduced [1]. In an RFID system, an interrogator sends the electromagnetic field to power
the tag antenna attached to an object, and then the tag antenna uses that power to send
back the object data requested by the interrogator. There are passive RIFD tag antennas
without a battery having a short reading range of 5–15 m [2,3], while active 433 MHz
RFID tag antennas with a battery having a reading range over 1 km [4–6]. RFID uses
different frequencies according to the applications. There are low-frequency (LF), high-
frequency (HF) and ultra-high-frequency (UHF) RFID tag antenna [7]. RFID applications
are numerous, such as tagging animals, asset tracking, electronic passports, smart cards,
shop security, health care, transport management system, and object logistics [8].

In automotive and other industry applications, tagging a metal object is of strong
interest [9], and a special design for the passive tag to attach on metal without interference
is required [10]. There are many papers published about UHF RFID passive tags to attach
to metal object. Some are: a small-sized dual-band tag for metal objects is developed in
reference [11]. This presents a long reading range of 12 m and can be used in applications
like automotive, aircraft and energy industry. A 900 MHz UHF RFID metal printed inverted
F antenna (PIFA) tag antenna is designed in [12] for the identification of items that are
used in the electricity distribution network, which has a hostile operating environment to
default the normal use of RFID. The antenna was designed to provide a 16 m reading range,
regardless of when it is placed in hostile electricity installation. A simulation study-based
half-wave planar antenna with a parasitic element for a metal-mountable UHF RFID tag is
in work [13]. The bandwidth in the reading range of this tag antenna can be extended by
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increasing the electrical length of the parasitic element. The simulation result reading range
reached 18 m. The authors in [14] developed a long-range metal mountable patch-type
tag antenna for passive UHF RFID systems. The tag antenna has a total height of 3.3 mm
and a 25 m theoretical line-of-sight read range on metal. The overall footprint design with
the substrate and ground plane was 68 × 131 mm. Paper [15] introduces a single ID UHF
RFID tag antenna for both long-range applications like car parking, and a short range for
application like office door control.

A metal cavity type UHF RFID tag antenna is presented in reference [16] with a
219 × 229 × 88 mm3 cube shape and the measured reading range is 8 m. The design
allows a dipole tag antenna to be read in the metal environment. Reference [17] presents
the longest reading range cavity type UHF RFID tag antenna with a 26 m measured reading
range and 36 m mathematical calculated reading range. This compares the performance of
other tags’ antennas in a large table and proves that the tag has a longer reading range than
previously published numerous long-range RFID tag antennas for metal and non-metal
applications. Furthermore, the paper with its longest reading range can be implemented in
the IoT sensor network for energy harvesting in long distances by replacing the tag chip
with the energy harvesting circuits.

This paper introduces a new method to design an antenna. The antenna structure is
designed and fabricated with 3D printed convex surface (1 mm protrude surface) antenna
parts. Instead of designing an antenna with the conductive material, the proposed antenna
is designed by painting conductive ink on the convex surface of the antenna instead of the
flat surface of the antenna. For fabricating an antenna on 3D printed plastic, generally, the
designer uses conductive tape or painting with conductive paint. The 3D printed surface is
not smooth enough to attach the tape, and not easy to attach the conductive tape to the
right place to fabricate a delicate antenna design. In addition, painting conductive ink
on an object is not a proper method to design and fabricate an antenna since the liquid
conductive ink smears out, therefore it is impossible to accurately paint the ink at the edges
of the antenna.

3D polylactic acid (PLA)-printed convex cavity type UHF RFID tag antenna for a
non-metal and metal environment has been designed and fabricated. The conductivity of
conductive ink has been tested based on the different thickness of conductive painting.
The concave-type tag antenna and convex were simulated and fabricated with PLA plastic.
The convex type is easier to paint and fabricate than the concave surface. Therefore, the 3D
printed with a convex surface and conductive ink painted cavity structure UHF RFID tag
antenna was designed for metal and non-metal environments with a measured read range
of 35 m.

The structure of this paper is organized as follows. Section 2 presents the needs of the
3D convex cavity tag antenna structure, Section 3 presents our proposed convex long-range
UHF tag antenna with a detailed design process. Finally, Section 4 concludes our work.

2. Benefit of 3D Cavity Concave–Convex Antenna

Designing and manufacturing an antenna using a 3D printer presents several benefits
such as the 3D shape, which can play the role of the high-gain antenna. The 3D printing
allows us to fabricate antennas accurately and easily, and it also allows us to change
the antenna structure easily. The 3D printed cavity structures with concave and convex
structures of antenna were designed and are shown in Figure 1. The convex (1 mm protrude
surface) surface structure is fabricated with yellow PLA, and the concave (1 mm recessed)
type antenna is fabricated with white acrylonitrile butadiene styrene (ABS) plastic shown in
Figure 1. The regions or areas of conductive parts of antennas are painted with conductive
ink, called the convex or concave surface of the inner surface of the cavity structures shown
in Figure 1. The height of the concave area is lower than the flat surface, and the height of
the convex area is higher than the 3D printed flat surface of the plastic shown in Figure 1.
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Figure 1. Yellow PLA convex and white ABS concave 3D cavity antenna structure.

PLA is more biodegradable than ABS, and from renewable resources such as corn
starch or sugarcane. It is somewhat the most popular bioplastic, used for plastic cups and
medical implants. Therefore, PLA has been used to fabricate the convex antenna structures.

A cavity structure antenna in [17] explains that putting a simple tag antenna directly
attached to a metal object causes a loss of the most important characteristic of a passive
tag—the reading range. An antenna cannot work when directly placed on metals or high
permittivity [18]. This is because the metal object in the presence of the electromagnetic
field enables the loss and change of impedance of the tag antenna. To solve the problem,
a dielectric gap must be inserted between the tag antenna and the metal object. Among
the dielectric used, there is Styrofoam or air. The metal object represents the bottom of
the cavity, and the four sides of the dielectric wall must be covered with metal to form the
cavity shape.

The proposed cavity type 3D printed UHF tag antenna in this article is painted with
Elcoat silver paste on the convex area of the inner surface of the cavity structure antenna.
The four inner sides of the cavity structure have also been painted with conductive ink to
form the cavity antenna structure. The metal object, where the PLA 3D plastic is attached,
forms the back metal of the cavity structure. Since the PLA 3D structure has on its inner
side the shape of the antenna, the Elcoat silver paste is painted to the shape of the antenna.
The inner side of the cavity antenna is empty air. The air gap isolates the tag antenna
to touch the back metal on which the convex cavity PLA is attached. This convex tag
antenna–air–metal cavity structure characteristic results in a long reading range of our
design. When attaching the convex tag antenna to a non-metal object, the back-side copper
metal needs to be added to keep the cavity structure performance. The location of the
printed antenna is the inner side of the 3D printed cavity structure. The 3D plastic cavity
protects the antenna and forms the cavity structure. When attaching the convex tag antenna
to the metal object, this metal object will play the role of back metal to realize the cavity
structure. We designed and fabricated the final antenna with the convex shape surface
since it outperforms the concave surface cavity antenna.

3. Convex RFID Tag Antenna Design

This antenna design will help the engineer understand the antenna theory background
and put it into practice by designing a UHF RFID sensor tag for the IoT system step by
step. The basics of UHF wave propagation enumerated here will give an idea of the
physical characteristics of UHF waves and help to design an antenna fitting with the proper
application. Antenna parameters that impact antenna performance will be shown. The
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antenna simulation will be performed by using computer simulation technology (CST) [19]
and fabricated with a 3D printer. Antenna tuning capabilities will be shown too.

3.1. UHF RFID Tag Antenna Wave Propagation and Reading Range

Figure 2 shows the communication in free space between the reader’s transmitting an-
tenna and a sensor tag receiving antenna. The Friss Equation (1) [20–22] shows the relation
between all parameters involved in the transmission and receiving system. Those parame-
ters are transmitted power Pt, transmission antenna gain Gt, tag antenna received power
Pr, gain of reader antenna Gr, wavelength λ and the distance between the transmitting and
the receiving antenna R:

Pr = Pt

(
λ

4πR

)2
GtGr , (1)

The maximum power delivered from the reader to the tag antenna is given if the
tag antenna input impedance (Za) is a complex conjugate matching the transponder chip
impedance (Zc). Thus, Za = Z∗c , separated into real and imaginary, we have real part
Ra = Rc and imaginary part Xa = −Xc. Read range is the most important tag performance
characteristic. It can be calculated with τ which is the matching coefficient that determines
how well the tag antenna and IC chip are matched (2), and the reading range is calculated
with Equations (2) and (3) [3,21,23]:

τ =
4R2

a

|Za + Zc|2
(2)

RR =
λ

4π

√
PtGtGr

Pth
τ 0 ≤ τ ≤ 1, (3)
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3.2. UHF RFID Tag Antenna Design Flow

The simulation is performed using computer simulation technology (CST). We start
by defining the constant values that are the dielectric constant of air (ε = 1), and the PLA
plastic cover ε = 1.3, which were then inserted into the CST for design. The other constant
is the tag sensitivity, which is also called the minimum operating power supply Pth which
is equal to −20.5 dBm, provided by the Alien Higgs 4 datasheet. Alien’s Higgs-4 chip
operates in the frequency range of 840–960 MHz. Thus, Pth (data sheet) can be expressed in
watt as Equation (4):

Pth = 10
−20.5

10 = 8.913 uW (4)

3.2.1. Convex Tag Antenna

Figure 3 shows the inner shape of the convex tag antenna in yellow. The convex
antenna is at 1 mm protruding with the top inner PLA cover which is called the convex
area. The inner size of the cavity is 140 × 60 × 10 mm. The copper in yellow color is on
four sides of the PLA plastic, and the copper on four edges allows contact with the metal to
which the cavity will be attached (back copper). This copper metal helps to form the cavity
structure. The concave (1 mm recessed) tag antenna has been built similarly to the convex
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antenna, however, the performance was not as good as that of the convex one because the
liquid conductive ink clumps in the corner of the convex area of the antenna. Therefore,
only the design of a convex structure is shown here.
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Figure 3. 3D shape of the convex cavity structure tag antenna.

Figure 4 shows the 2D CST design of the convex tag antenna design. The antenna has
two main parts. The dipole part of the antenna with length of dip-w, ant_h, dipL, port, and
gap. The T-matching loop area of the antenna, which is the matching network with mtlpw,
mtplh, lph, lpw as first matching parameters and the second matching loop parameters
loopw, looph, mlph, and mlpw.
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Figure 4. Parameters of the convex cavity structure tag antenna.

3.2.2. Tuning of an Antenna

The loop size and the dipole length are the parameters to use for tuning the antenna
to obtain proper matching between the antenna and chip impedance. Loop size and dipole
size parameters are shown in Table 1. The parameter values in the table are the final values
obtained after many tunes in CST simulation. The tuning is performed for ant_h which
equals 4 mm, and ant_h which equals 9 mm. These two resonate at a different frequency.
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Table 1. Convex tag antenna parameters.

Parameters Size (mm)

ant_h4 ant_h9

dip-w 48.5 48.5
ant_h 4 9
mlph 2 2
mlpw 101.5 101.5
looph 50 50
loopw 14 14
port 2 2
dipL 24.5 20
gap 1 1
lph 7.5 7.5
lpw 2.5 2.5

mtlpw 83.5 83.5
mtlph 5 5

According to the simulation, the variation of the size of back copper mimic of the
metal object in Figure 5 did not show a big change in the value of reflection coefficient S11.
This can be interpreted as no matter the size of the metal where the convex antenna is
attached, the antenna characteristic reading range will not be significantly changed.

The reflection coefficient describes either the amplitude or the intensity of a reflected
wave relative to an incident wave and hence describes the ratio of the reflected wave
to the amplitude of the incident wave. A low reflection coefficient is an indication of
good matching between chip impedance and antenna impedance. Figures 6 and 7 show
the parameter sweeping simulation result of the reflection coefficient S11 by tuning the
value of ant_h. The matching at the resonance frequency 920 or 988 MHz between the
convex antenna and the Higgs4 chip impedance was calculated using S11 Equation (5).
The result shows that the UHF convex tag antenna (CTA) resonates at 920 MHz while other
parameters resonate at a higher or lower frequency than 920 Mhz. The chip impedance is
calculated using the parallel impedance Equation (6):

S11 (dB) = 20 log10

(
Za − Z∗c
Za + Zc

)
(5)

Zc =
R

1 + ω2R2C2 − j
ωR2C

1 + ω2R2C2 (6)

where Zc is the chip impedance, angular frequency ω = 2π f , R is the chip resistance, and
C is the chip capacitance (refer to the Alien Higgs-4 datasheet).
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Figures 6 and 7 show that the simulation S11 value of the parameter ant_h varies from
3 to 12 mm, respectively, and S11 equals −15 dB at 920 MHz and S11 equals −21 dB at
988 MHz. Figure 8 shows only the results of S11 with ant_h = 4 mm, and ant_h = 9 mm
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cases, to compare them clearly. The simulation antenna impedance value is calculated using
this complex equation Za = a + jb, where a is the real part and b is the imaginary value. At
920 MHz, the antenna impedance is Za = 12.98 + j181.17 and Zc is the chip impedance. In
the Alien Higgs-4 datasheet, R = 1800 kΩ and C = 0.95pF. The frequencyω = 2πf, where
f is 920 MHz. Using Equation (6), the chip impedance is Zc = 18.258− j180.34 at 920 MHz.
The conjugate chip impedance is Z∗c = 18.258 + j180.34.

The impact of ant_h on the matching and performances is shown in Figure 9. Figure 9
shows the parametric reading range of the tag in the function of the ant_h dimension. It can
be observed how the tuning of the antenna will change by increasing the loop dimension
parameter ant_h. An increase in the loop dimension will decrease the resonance frequency
(loop “resonance”) of the tag antenna. This means that if the ant_h increases, the loop area
will decrease, and the resonating frequency increases. For ant_h equals 4, the reading range
RR = 35.91 m. The reading range was calculated using the Equation (3) where τ is given by

τ =
4RcRa

[Zc + Za]
2 = 0.938, 0 ≤ τ ≤ 1, (7)

Where, [Zc + Za]
2 = (Ra + Rc)

2 + (Xa + Xc)
2.

Note that Za, Ra, Xa are CST antenna simulation data. The calculation here uses
antenna simulation data for ant_h = 4 mm. Gr is the tag antenna gain. The gain is 6.73 dBi
as stated in the simulation result of the gain pattern in Figure 10. The gain can be written as

Gr = 10
6.73
10 = 4.71 (8)

The radiation pattern of the convex RFID tag antenna is shown in Figure 10. Due to
the metal cavity, at 920 MHz, the gain of the antenna is 6.73 dB, the direction of the main
lobe 2.0 degree (blue line), and the 3 dB angle in the main direction is 118 degree (sky
blue line).

Figure 11 shows the simulated 3-D convex tag antenna radiation pattern at 920 MHz.
The convex tag antenna structure is positioned in the x–y plane with arms pointing in the
z direction. The simulated 3-D characteristics of the label antenna show a typical dipole
behavior and the directivity of maximal 6.72 dB in the x and in z direction. The 3D radiation
pattern of the antenna, which would be seen by an ideal linear polarized reader antenna,
moving around the y axis rotated with the angle Phi (the rotation angle around the z axis);
and moving around the x axis rotated with the angle Theta (the angle in the x–z plane).
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3.2.3. Fabrication and Result of Long-Range RFID Tag on Convex Surface

The Figure 12 shows the fabricated copper and painted silver CTA RFID tag antenna
inner and back metal views for convex with ant_h equals 9, respectively. The fabricated
figure for ant_h looks like Figure 1, the copper CTA, antenna, side copper, and back copper
all are attached on yellow PLA plastic. For the silver CTA tag antenna, the silver paste
is painted on a convex antenna shape and four sides of PLA plastic. The antenna was
fabricated using copper and another SILVER COAT paste. The PLA plastic was fabricated
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using a 3D printer. The UHF RFID strap has been attached with the silver adhesive slow
hardening solder.
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Figure 12. Fabricated copper and silver painted tag antenna (ant_h = 9 mm).

We fabricated 12 convex cavity tag antennas with 12 different values of ant_h. Some
of the different tag antennas had different sizes of ant_h. Table 2 shows the comparison of
the simulation and outdoor measured reading range of multiple antennas, which differ
by ant_h value and by fabrication material type (copper c, silver paste s). The parameter
ant_h = 4 mm resonated at 920 MHz with the reflection coefficient of S11 −15 dB, and
S11 equals −9.9 dB for 915 MHz. The reading range measured by Alien’s reader was
5–11 m for the two fabricated antennas, while the simulation calculated reading range
was 35.91 m. The difference in result was caused by the fabrication loss which caused
a mismatch between the tag antenna and the IC chip. This may be from the soldering
resistance, less than 1 ohm.

Therefore, we tuned the antenna for high frequency. Antenna ant_h = 9 and 10 mm
were also fabricated but simultaneously tuning to higher resonating frequencies of 988 and
998 MHz. The CTA ant_h9 had a reflection coefficient of S11 =−20.94 dB and was fabricated
with copper and silver paste. The ant_h9 with copper had a measured reading range (RR)
maximum of 35 m with a 920 MHz Alien reader. Silver ant_h9 was 36 m RR. The CTA
ant_h10 also shows a similar result with ant_h9. Their simulation resonance was 988 and
998 MHz, respectively, but they presented a measured RR with the Alien reader 920 MHz
of about 36 m. This result was also due to fabrication loss. However, this gives us a way of
obtaining a long-range fabricated CTA tag antenna.

Figure 13 shows the graph of simulated and fabricated ant_h4 CTA tag antenna. The
simulation reflected that coefficient S11 is−15.3 dB. After the fabrication of the antenna, we
measured the reflected coefficient using Agilent’s E5071B network analyzer. The antenna
presents a measured S11 of −14 dB. The bandwidth at −3 dB is 45 MHz, the frequency
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range is from 897.5 to 945.5 MHz, considering 920 MHz as the center frequency. This shows
that our antenna can operate at both 920 and 915 MHz according to the use. Figure 14
shows the graph of the simulated and fabricated ant_h9 which resonate 988 MHz, and the
simulation reflected coefficient S11 is −20.94 dB with 40 MHz bandwidth. The measured
reflected coefficient S11 is −11 dB.

Table 2. Simulation and measured parameter reading range with different sizes of ant_h.

Parameters

Simulation Data Based Calculated Reading Range (RR)
Outdoor Real Measured
RR (m) with LP Antenna.

Copper c,
Silver s

Resonance Frequency F S11 (dB)
RR(m) at
920 MHz

RR(m) at
915 MHzF

(GHz)
S11
(dB)

RR
(m)

920
MHz

915
MHz

ant_h3 0.899 −14.3 36.7 −1.57 −2.34 20.08 23.67 Not made

ant_h4 0.92 data 35.91 −15.3 −9.9 35.91 34.7 (s.2pc) 5–11

ant_h5 0.934 −15.9 35.44 −3.61 −2.35 27.4 23.68 (s.1pc) 11–17

ant_h6 0.948 −16.86 35 −1.41 −1.05 19.17 16.98 (s.1pc) 11–21

ant_h7 0.962 −17.67 35.56 0.74 −0.6 14.44 13.13 (s.2pc) 17–28

ant_h8 0.976 −19.09 34.14 −0.47 −0.38 11.51 10.66 (s.1pc) 17–30

ant_h9 0.988 −20.94 33.8 −0.34 0.29 10.01 9.37
(s.2pc) 27–36
(c.1pc) 27–35

ant_h10 0.998 −22.24 33.48 −0.28 −0.24 9.01 8.54
(s.2pc) 27–36
(c.1pc) 27–36

ant_h11 1.01 −24.35 33.17 −0.22 −0.2 8.17 7.76
(s.2pc) 27–36
(c.1pc) 23–30

ant_h12 1.02 −26.44 33 −0.21 −0.19 7.86 7.49
(s.2pc) 24–36
(c.1pc) 20–23
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We measured the reading range with an Alien RFID reader with a linear polarized
linear polarized (LP) antenna, and a circular polarized (CP) antenna. Figure 15 shows the
outdoor reading range pattern of the fabricated CTA with ant_h9 size measured using CP
antenna. The measurement was performed by turning the antenna according to Phi and
Theta angle directions. The backside of the antenna where there is metal shows a short
reading range of 1 m at 180 degrees, while the front side shows the maximum reading
range of about 36 m at 0 degrees. The simulated radiation pattern also shows that the
maximum power of the antenna is obtained when the convex tag antenna faces the reader.
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The shape of the measured reading range pattern is circular like the simulated radi-
ation pattern in Figure 10, when measuring the reading range with a CP antenna. The
shape of the measured reading range pattern is flat instead of the circle when using an LP
reader antenna.

4. Discussion

This work presents a convex UHF tag antenna with a long reading range and wideband
range. This mathematically and experimentally demonstrates that our proposed (ant_h = 9
and ant_h10) long-range UHF RFID convex cavity-type tag antenna (CTA) has a longer
reading range than the existing passive tag. 3D polylactic acid (PLA)-printed convex cavity
type UHF RFID tag antenna for non-metal and metal environments has been designed
and fabricated. Our tag was designed to be attached to the metal object and nonmetal
object with 140 × 60 × 10 mm size and reached a 36 m measured reading range and
33 m simulation mathematically calculated reading range. It is longer than the existing
passive tag antennas. The difference in results is based on the fabrication and misalignment
problems. The back copper of our antenna can be replaced by the metal on which the
antenna will be attached. The cavity structure used air instead of Styrofoam. There is no
RF board; the tag antenna is attached on the top-inner side of the plastic, PLA cover. Thus,
our structure saves material. In addition, with this long-range advantage, the proposed
CTA tag antenna can be designed to harvest power for the IoT sensor network by replacing
the tag chip with the energy-harvesting circuits.
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