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Abstract: Phenology is an indicator of crop growth conditions, and is correlated with crop yields. 
In this study, a phenological approach based on a remote sensing vegetation index was explored to 

predict the yield in 314 counties within the US Corn Belt, divided into semi-arid and non-semi-arid 

regions. The Moderate Resolution Imaging Spectroradiometer (MODIS) data product MOD09Q1 

was used to calculate the normalized difference vegetation index (NDVI) time series. According to 

the NDVI time series, we divided the corn growing season into four growth phases, calculated phe-

nological information metrics (duration and rate) for each growth phase, and obtained the maxi-

mum correlation NDVI (Max-R2). Duration and rate represent crop growth days and rate, respec-

tively. Max-R2 is the NDVI value with the most significant correlation with corn yield in the NDVI 

time series. We built three groups of yield regression models, including univariate models using 

phenological metrics and Max-R2, and multivariate models using phenological metrics, and multi-

variate models using phenological metrics combined with Max-R2 in the whole, semi-arid, and non-

semi-arid regions, respectively, and compared the performance of these models. The results show 

that most phenological metrics had a statistically significant (p < 0.05) relationship with corn yield 

(maximum R2 = 0.44). Models established with phenological metrics realized yield prediction before 

harvest in the three regions with R2 = 0.64, 0.67, and 0.72. Compared with the univariate Max-R2 

models, the accuracy of models built with Max-R2 and phenology metrics improved. Thus, the phe-

nology metrics obtained from MODIS-NDVI accurately reflect the corn characteristics and can be 

used for large-scale yield prediction. Overall, this study showed that phenology metrics derived 

from remote sensing vegetation indexes could be used as crop yield prediction variables and pro-

vide a reference for data organization and yield prediction with physical crop significance. 

Keywords: yield prediction; corn; MODIS; NDVI time series; crop phenology; growth phase length; 

growth rate 

 

1. Introduction 

Timely and accurate predictions of crop yield before harvest at a large scale is critical 

for food security and administrative planning, especially in the current continually chang-

ing global environment and international situation [1]. At the same time, early-season 

crop yield predictions are also often required as essential information for decision making 

in the harvest, processing, storage, transportation, and marketing of agricultural com-

modities [2]. 

After decades of research, crop yield prediction methods can be summarized in two 

groups, i.e., empirical models and process-based models [3]. Empirical models determine 
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the relationship between the prediction parameters and yield and process-based models 

simulate the growth process of the crop. The latter requires many calibration parameters, 

which are relatively difficult to obtain. Empirical models are more commonly used in 

large-scale yield prediction and mainly employed two parameters: environmental and re-

mote sensing variables [4]. The former includes the four most important variables: soil 

productivity, accessibility of water, climate, and pests or diseases [5]. The rapid develop-

ment of remote sensing technology has produced more remote sensing variables to serve 

crop yield prediction, which can be further divided into two types: a variable to monitor 

crop growth, such as vegetation indices (VIs) and photosynthetic activities [6–9], and the 

other variable to describe living conditions, such as heat stress [10,11] and water stress 

[12,13]. 

Recently, some studies have employed remote sensing derived phenological varia-

bles to predict crop yields [14,15]. These phenological variables are phenological period 

date information and belong to the variables that monitor crop growth. The date infor-

mation assesses whether every phenological stage occurs during a period of favorable 

weather conditions [16] and how an accelerated or delayed phenological stage will affect 

crop growth conditions, especially when the current climate changes drastically [17]. For 

example, dates of anthesis, lengths of vegetative and reproductive growth periods, and 

the growing season can reflect climate change influences [18]. The plant breeding commu-

nity also has a keen interest in developing crops that “stay-green” for longer, increasing 

the duration of grain-fill and decreasing senescence rate [19–21]. 

The phenological period date information provides practical support for the devel-

opment of remote sensing in crop yield prediction. Many models predict crop yield based 

on remote sensing variables within a fixed timescale [3,4,22–24], such as the month. The 

representation of crop phenological date information is simplified in these models, such 

that understanding the yield variations is critical because crop growth characteristics and 

sensitivities toward different environmental events vary with changes in the growth 

phases (GPs) defined by phenological dates. This condition leads to spatial-temporal het-

erogeneity between the yield prediction variables. Experiments have shown that pheno-

logical dynamic information can solve this heterogeneity issue and improve the yield pre-

diction or estimation accuracy [25,26]. For example, the accumulative leaf area index (LAI) 

in a specific GP had the highest correlation with the regional crop yield [27], and the time 

series index, combined with phenological date information, can effectively improve the 

yield prediction accuracy [28,29]. 

In addition to the phenological date, one piece of essential phenological information 

is GP duration [30]. Bai et al. [31] noted that the phase duration could be combined with 

remote-sensing-based parameters to improve crop yield prediction. The GPs in their 

study were divided by the effective accumulated temperature. Other than the effective 

accumulated temperature, the Normalized Difference Vegetation Index (NDVI) is widely 

used for monitoring crop growth conditions and is an effective way to extract phenology 

[32–35]. Magney et al. [36] used ground-based sensors to collect NDVI readings to divide 

GPs and calculate crop phenological information (the NDVI rate at different GPs and the 

duration of different GPs) at the field level; the results of their study indicated that NDVI 

rate and GP duration were good predictors for crop yield. NDVI rate represents the crop 

growth rate. The crop growth conditions can be reflected under the comprehensive effect 

of the external environment and crop characteristics by combining the growth duration 

and rate. Field observation data is a first-hand source of accurate and reliable information 

for crop phenology research. However, field observation experiments usually require sub-

stantial manpower, financial resources, material resources, and time. Therefore, field ob-

servations are not suitable as a method to obtain data for long-term and large-scale crop 

phenology. 

Satellite remote sensing technology can effectively obtain long-term and large-scale 

phenological information. Although the technology has certain limitations, such as sur-

face information accuracy (i.e., mixed pixel) and inherent complexity (i.e., cloud 
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contamination and atmospheric variability), it lowers the cost of large-scale crop monitor-

ing and possesses substantial potential for detecting crop regional phenology patterns 

through the VI time series [25,37,38]. For example, most remote-sensing-based studies 

have employed the data from the National Aeronautics and Space Administration’s 

(NASA) Moderate Resolution Imaging Spectroradiometer (MODIS) [39–41]. The spatial 

resolutions (250-m, 500-m, and 1000-m) are suitable for monitoring different scales from 

the county-level to the global scale, and the temporal resolutions (8- and 16-day) allow for 

continuous and in near-real-time monitoring within the whole growing season. Thus, the 

satellite remote sensing data is suitable to derive phenological metrics (duration and rate). 

It is also worth investigating the further application of phenological metrics in predicting 

yield at a large-scale. 

The overall goal of this study was to predict corn yield using phenological infor-

mation metrics extracted from the MODIS-NDVI time series. The specific objectives were 

to: (i) analyze the relationship between phenological metrics derived from satellite remote 

sensing VI and the yield, (ii) evaluate the capacity of phenological metrics to predict large-

scale corn yield, and (iii) test the ability of the combined phenological metrics and other 

parameters derived from remote sensing for the prediction of corn yields. 

2. Materials and Methods 

2.1. Study Region 

The study focused on agricultural counties in six states within the central US Corn 

Belt, including Illinois, Indiana, Iowa, Nebraska, Wisconsin, and North Dakota. There are 

a total of 314 counties in which the corn area exceeds 10,000 ha [28], and the mean field 

size in the US is 19.3 ha [42]. To account for the impact of geographical conditions on crop 

phenological metrics, the central US Corn Belt was divided into semi-arid and non-semi-

arid regions according to the geographic variation in climate, topography, and edaphic 

conditions (Figure 1). 

 

Figure 1. Spatial distribution of selected counties, which are divided into semi-arid and non-semi-

arid regions. 
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2.2. Data 

MODIS 250-m and 8-day composite reflectance product data (MOD09Q1, version 6) 

for 2008–2018 were acquired from the National Aeronautics and Space Administration 

(NASA) Reverb (http://reverb.echo.nasa.gov/ (accessed on December 29, 2019)). There 

were 46 reflectance composites each year. Three MODIS tiles (h10v04, h11v04, and 

h11v05) were used to cover all counties fully and were re-projected using the MODIS re-

projection tool (MRT) to the UTM (Universal Transverse Mercator) system. The 250-m and 

8-day reflectance product allows for the calculation of VIs with a higher temporal resolu-

tion than that of the standard VI product (MOD13Q1) at 250-m and 16-day. 

The county-level corn yields from 2008 to 2018 were obtained from the United States 

Department of Agriculture (USDA) National Agricultural Statistics Service (NASS) 

(https://quickstats.nass.usda.gov/ (accessed on April 21, 2019)). The yield estimation unit 

was converted from bushels acre−1 to kg ha−1. As some counties lack individual annual 

yield data, the total number of yield samples was n = 3,320 for the whole region, 460 for 

the semi-arid region, and 2,860 for the non-semi-arid region. The corn-planting map data 

were extracted from the 30-m resolution Cropland Data Layer (CDL, http://nassgeo-

data.gmu.edu/CropScape/ (accessed on April 21, 2019)) from 2008 to 2018, re-projected to 

match the geographic projection of the MODIS data, and finally used to distinguish pixels 

dominated by corn from those dominated by other land cover types. 
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2.3. Yield Modeling Approach 

Our general approach includes four main steps (Figure 2): 

 

Figure 2. Flow diagram of the datasets and processing used in the model, indicating four steps of 

model development: 1—obtaining the normalized difference vegetation index (NDVI) time series 

from the start date to end date of corn at a pixel level, 2—computing the county-level NDVI time 

series, 3—deriving the prediction variables (duration and rate in four growth phases, maximum 

correlation NDVI), and 4—constructing the regression relationships between the corn yield and 

predictors. 

(1) Acquire pixel-based NDVI time series 

We used band1 (red, 620–670 nm) and band2 (near-infrared, 841–876 nm) from 

MOD09Q1 to calculate the NDVI. The MODIS data were processed by an 8-day maximum 

value composite (MVC), which is less sensitive to clouds and other outliers. However, 

there are still many random factors that render the NDVI time series data irregular [43]. 

Thus, the NDVI time series data must be further smoothed to reduce the effects of noise 

and missing values before extracting the phenological crop characteristics. Popular 

smoothing methods include the Savitzky–Golay (SG), Double-logistic, and Whittaker 
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Smoother. Previous studies suggested that the SG algorithm can better characterize the 

temporal signals of corn [44,45]; therefore, we used the SG filter to generate a smooth time 

series of NDVI on a pixel-by-pixel basis. 

Many methods have been proposed to process MODIS data to improve the yield pre-

diction or estimation accuracy [32,41,46–48]. The crop spatial distribution map is a vital 

element of the total crop production, and the ideal approach would be to use it as crop 

specific masks [32,47]. Mkhabela et al. [41] applied a crop land cover mask to satellite data 

to remove the effect of non-agricultural land on the NDVI signals, which improved the 

accuracy of crop yield prediction. We selected the pixels that were dominated by corn (i.e., 

corn planting area accounts for more than 70% of the MODIS-NDVI pixel area) as the corn 

pixels. The percentage of corn planted area in the pixels in each year was calculated using 

the corn planting map of the corresponding year. 

In addition, crop planting dates and phenology vary with the location and external 

environment in every year. Thus, using a fixed calendar date in time series data to build 

remote-sensing-based yield prediction models is not optimal. A previous study showed 

that using the green-up date to adjust the start of the VI time series based on pixels can 

improve the remotely sensed yield prediction of both intra- and inter-annual variability 

in corn and soybeans [28]. Therefore, in this study, we defined the “phenologically ad-

justed” NDVI time series pixel by pixel and year by year (Figure 3). We first derived the 

daily NDVI for each corn pixel based on the 8-day NDVI data using cubic spline interpo-

lation. Then, we defined the date when the NDVI curve began to increase at the bottom 

of the valley before the single NDVI corn peak as the start date (SD) of the corn growing 

season. The date when the NDVI reached the bottom of the valley after the single NDVI 

corn peak was defined as the end date (ED) of the corn growing season. The second de-

rivatives of NDVI at SD and ED were approximately zero. Pixels before SD and after ED 

were excluded from the analysis, and the time series was adjusted based on SD. Thus, we 

created “phenologically adjusted” time series values for NDVI per corn pixel. 

 

Figure 3. Schematic on how to determine the growing season at the pixel level. NDVI values were 

extracted from the start date of the growing season to the end date of the growing season for each 

corn pixel. The “phenologically adjusted” time series values of each corn pixel started with the 

start date. DOY denotes Day of Year. 

(2) Compute county-level NDVI time series 

As the corn yield was recorded at the county level, we aggregated the daily NDVI of 

corn pixels in each county to obtain the daily county-level NDVI. To do this, the selected 

corn pixels were weighted by their contribution, which was the proportion of corn plant-

ing area in each pixel. Then, the NDVI values for each county were calculated by a 

weighted average of these pixels and weights. 
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(3) Calculation of the prediction variables 

Three types of predictors (two phenological metrics [1,2] and one NDVI parameter 

[3]) were calculated using the county-level NDVI time series (step 2) and used as input 

variables to predict the corn yield: 

Ref. [1] Duration (Equation (1)): Growth duration refers to the number of days in a 

given crop GP and is calculated by the day of year (DOY) of the end of the GP minus the 

DOY of its start. 

�������� =  ����� − ������� , (1)

where �������� is the phenological metric of duration; �����  is the DOY of the end of 

the GP; and �������  is the DOY of the start of the GP. 

Ref. [2] Rate (Equation (2)): The rate (slope) of NDVI in a given GP refers to the 

change rate in the NDVI values throughout the GP. 

���� =
������(���)�������(�����)

��������
, (2)

where ���� is the phenological metric of rate; ������(���) is the NDVI value at �����; 

������(�����) is the NDVI value at ������� ; and �������� is the phenological metric of 

duration. 

Ref. [3] Maximum correlation NDVI (Max-R2): The Max-R2 [29] is the original NDVI 

value that has the most significant correlation with corn yield in the NDVI time series. The 

NDVI time series used to extract Max-R2 started with the SD. 

To extract the above two phenological metrics, four corn GPs were examined (Figure 

4): the first phase (GP1) was from V1 to V6, the second phase (GP2) was from V6 to VT; 

the third phase (GP3) was from VT to R4, and the fourth phase (GP4) was from R4 to R6. 

The following V1, V6, VT, R4, and R6 refer to the start dates of the emergence, jointing, 

tasseling, dough, and maturity stages, respectively. The dates of V1, VT, and R4 were ex-

tracted using the dynamic threshold method [49]. During the rising phase of the daily corn 

NDVI time series curve, the points in time where the values increased by a certain value 

were defined as the date for V1 and VT. Setting to 10% of the distance between the mini-

mum (value at SD) and the maximum is V1 and 90% of the distance between the minimum 

and maximum is VT, above the minimum. The date of R4 was defined from the descend-

ing phase of the corn NDVI time series curve as the point in time at which the value in-

creased by a certain value, currently set to 10% of the distance between the maximum and 

minimum (value at ED), below the maximum. The date of V6 was defined as when the 

curvature reaches its local maximum value in the rising curve, where the stalk grows rap-

idly. The date of R6 occurred in the middle of the senescence phase [39] and was defined 

as when the curvature reaches its local maximum value in the descending curve. To obtain 

V6 and R6, the NDVI time series at the county level was fit by a piecewise logistic function 

[38], resulting in two functions for the rising and descending curves. Then, taking the der-

ivation of the logistic functions, the maximum values of the two derivative functions were 

denoted as V6 and R6, respectively. 
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Figure 4. Schematic of the four growth phases for the county-level corn NDVI time series values of 

the growing season. SD denotes the start date of the corn-growing season. 

The first growth phase, second growth phase, third growth phase, and fourth growth 

phase were abbreviated as GP1, GP2, GP3, and GP4, respectively. To facilitate the descrip-

tion of these phenological metrics predictor variables, we defined GP1 duration, GP1 rate, 

GP2 duration, GP2 rate, GP3 duration, GP3 rate, GP4 duration, and GP4 rate as GP1D, 

GP1R, GP2D, GP2R, GP3D, GP3R, GP4D, and GP4R, respectively. 

(4) Yield regression model 

We built three groups of yield regression models for three regions: whole (semi-arid 

and non-semi-arid), semi-arid, and non-semi-arid. In the first group, we constructed uni-

variate yield regression models for each predictor variable calculated in step 3 using dif-

ferent functions (linear, quadratic, logarithmic, etc.), by which we evaluated the relation-

ship between each predictor variable and corn yield. In the second group, we constructed 

multivariate yield regression models using phenological metrics and assessed the perfor-

mance of phenological metrics with respect to the yield prediction. In the third group, we 

constructed multivariate yield regression models using phenological metrics combined 

with Max-R2 to evaluate the capability of combining phenological metrics with other types 

of NDVI remote sensing parameters for yield prediction. Both the second and third group 

models were built using a stepwise regression method, which can select significant varia-

bles into the regression equation and reduce collinearity. The standardized regression co-

efficients in the regression equation were used to compare the importance of different 

predictor variables on the dependent variable (corn yield). 

2.4. Model Evaluation 

To evaluate the performances of the prediction models in the second group, we used 

leave-one-year-out cross-validation [3], in which the model was iteratively trained on 10 

years of data and then used to predict yield in the held-out year [28] from 2008 to 2018. 

The metrics used were the coefficient of determination (R2) and the root-mean-square er-

ror (RMSE). The R2 was the predictive model R2, and the RMSE was calculated between 

the actual and predicted yields. For the models in the first and third groups, we only used 

R2 to evaluate the performances. We also used the variance inflation factor (VIF) (Equation 

(3)) to measure collinearity for the variables in the regression prediction model. In general, 

a VIF value of less than four indicates non-collinearity [50]. 

���� =
�

����
�  (3)
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where R� is multiple correlation coefficient between the i-th variable, ��, and all other 

variables, �� (� = 1, 2, … , �; � ≠ �), and the multiple correlation coefficient is the arithmetic 

square root of the coefficient of determination R�. 

3. Results 

3.1. MODIS-Derived Phenological Dates 

MODIS-derived corn emergence and mature values were compared with the 50% 

corn emerged and mature dates from Crop Progress Reports (CPR) (2008–2018) (Figure 5) 

at the state level. The county sample numbers in Indiana and North Dakota were small, 

and these counties only covered a small part of the state’s spatial range. Therefore, we 

only compared the results of Illinois, Iowa, Nebraska, and Wisconsin. The R2 was 0.50 and 

0.65 for the corn emerged and mature, respectively. The corresponding RMSE values were 

4.90 and 0.65 days, respectively. The results fell neatly around the 1:1 line. 

 

Figure 5. Comparison of the Moderate Resolution Imaging Spectroradiometer (MODIS)-derived 

emergence date (V1) values, mature date (R6) values, and the United States Department of Agri-

culture (USDA) Crop Progress Reports (CPR) survey data of 50% corn emerged, mature dates at 

the state level: (A) V1 estimation; (B) R6 estimation. 

3.2. Relationship between Predictor Variables and Yield 

For each predictor variable, we established a set of univariate regression models with 

different functions, such as linear, quadratic, and logarithmic, and obtained the R2 of each 

model. The largest R2 values in the multiple univariate models are listed in Table 1. Most 

phenological metrics had a statistically significant relationship with the yield (at the p < 

0.05 level) in the whole, semi-arid, and non-semi-arid regions, except for the GP2 duration 

and the GP3 rate. The GP1 rate, GP2 rate, GP3 duration, and GP4 rate could be used as 

yield prediction parameters with relatively large R2 values (>0.20). 

Increasing the growth rate in GP1 and GP2, extending the growth duration in GP3, 

and increasing the senescence rate in GP4 are beneficial for increasing the yield (Figure 6). 

GP1 is in the early stage within the whole growing season, where faster growth is better 

for the corn. GP2 includes the jointing stage, which is important for crop growth, and the 

interpretation power of it is stronger than GP1. GP3 is at growth peak; extending the time 

that the crop remains green helps the crop accumulate more nutrients. Increasing the se-

nescence rate in GP4 ensures that more nutrients are transferred to the grain within a cer-

tain time. In addition, the R2 values of all phenology metrics were similar in the whole 

region, semi-arid region, and non-semi-arid region, which indicated that the relationship 

strength between these metrics and corn yield was similar in different regions. 
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Table 1. R2 between the duration (days), rate (∆NDVI/days), and Max-R2 and yield (kg/ha). The 

whole region contains all counties located in the semi-arid and non-semi-arid regions; semi-arid 

refers to the counties in the semi-arid region and non-semi-arid refers to the counties in the non-

semi-arid region. 

Phenological  

Predictor Variable. 
Whole Region Semi-Arid Region 

Non-Semi-Arid  

Region 

GP1 duration 0.04 * 0.14 * 0.02 * 

GP1 rate 0.25 * 0.35 * 0.23 * 

GP2 duration 0.18 * 0.40 * 0.19 * 

GP2 rate 0.32 * 0.44 * 0.30 * 

GP3 duration 0.27 * 0.43 * 0.25 * 

GP3 rate 0.01 0.01 0.01 

GP4 duration 0.05 * 0.33 * 0.02 

GP4 rate 0.37 * 0.35 * 0.38 * 

Max-R2 0.61 * 0.66 * 0.62 * 

* Significant at p < 0.05. 

  

  

Figure 6. Relationship between yield and GP1 rate, GP2 rate, GP3 duration, and GP4 rate in the 

whole region. The four phenological predictor variables have the best explanatory power (R2 > 

0.20) for corn yield among the eight variables. 

3.3. Yield Prediction with Phenological Metrics 

The prediction models built with phenological metrics obtained the results with R2 = 

0.64, 0.72, and 0.64 in the whole region, semi-arid region, and non-semi-arid region (Table 

2). More than 60% of the yield was explained by the combination of growth duration and 

rate. The best yield prediction with a maximum R2 value (0.72) was in the semi-arid region. 

Prediction models did not have the problem of multi-collinearity with VIF values for all 

metrics < 4. 

  



Sensors 2021, 21, 1406 11 of 17 
 

 

Table 2. Results from stepwise multiple linear regression between phenological metrics during all 

phenological phases and yield with data from 2008 to 2018. 

Region Equation R2 VIFs 

Whole region 

Y = −10,084.25 + 360.58GP2D + 953,476.78GP2R 

+ 97.00GP3D – 102,453.38GP4R a 0.64 X < 3.10 

Y = 0.52GP2D + 0.70GP2R + 0.32GP3D − 0.08GP4R b 

Semi-arid region 

Y = −4716.91 + 155.34GP2D + 483,419.05GP2R 

+ 110.04GP3D + 94.97GP4D a 0.72 X < 1.63 

Y = 0.24GP2D + 0.35GP2R + 0.36GP3D + 0.23GP4D b 

Non-Semi-arid region 

Y = −13918.97 + 448.02GP2D + 1,084,391.95GP2R 

+ 107.47GP3D – 127,325.54GP4R a 0.67 X < 3.01 

Y = 0.60GP2D + 0.74GP2R + 0.35GP3D − 0.09GP4R b 
a: unstandardized; b: standardized. 

The four most essential metrics were selected by stepwise regression from eight met-

rics to build the models. For the whole region and non-semi-arid region, the GP2R pre-

sented the highest values for the standardized coefficient (0.70–0.74), followed by GP2D 

(0.52–0.60), GP3D, and GP4R. The GP2 belongs to the vegetative stage when the stems and 

leaves grow vigorously and continuously accumulate nitrogen. Crops will provide more 

nutrients to the ear during the reproductive stage with a longer time or a faster rate to 

store nitrogen in the vegetative stage [51]. GP3 contains the NDVI time series peak, and 

there is a positive correlation between leaf area duration (LAD) and corn yield during GP3 

[19]. The GP4R had the smallest impact on yield among the four most essential metrics. 

The GP1R, which had a relatively large explanatory ability for the yield in Table 1, was 

not selected in the models, indicating there was collinearity among all phenological met-

rics. For the semi-arid region, beside GP2D, GP2R, and GP3D, GP4D was also a critical 

impact factor, which indicated that in the semi-arid region, the longer the fourth stage, the 

higher the crop yield. 

Figure 7 shows the leave-one-year-out cross-validation results of the phenological 

yield prediction models constructed with the four most significant metrics (Table 2) in the 

three regions from 2008 to 2018. The medians of the R2 values were 0.6–0.8, and the medi-

ans of the RMSE values were 900–1200 kg ha−1. Results from the semi-arid region pre-

sented the highest R2 and lowest RMSE, followed by the non-semi-arid region, and the 

results in the whole region presented the worst R2 and RMSE. In addition, the results for 

2012 were different from those of other years in the whole and non-semi-arid regions with 

the lowest R2 values (Figure 7A). 

 

Figure 7. Boxplot of phenological yield prediction model performance for (A) R2 and (B) RMSE in 

the whole region, semi-arid region, and non-semi-arid region. The models were built with the four 

most significant phenological metrics using leave-one-year-out cross-validation from 2008 to 2018. 
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3.4. Yield Prediction with Phenological Metrics and NDVI 

The combination of three phenological metrics variables (GP1D, GP3D, and GP4D or 

GP1R, GP3D, and GP4R) and Max-R2 improved the performance of the Max-R2 yield pre-

diction models (Table 1), with a higher R2 value of 0.65, 0.73, and 0.68 (Table 3) in the 

whole region, semi-arid region, and non-semi-arid region, respectively. The prediction 

models in Table 3 did not have the problem of multi-collinearity with VIF values for all 

metrics < 4. 

After adding the maximum correlation NDVI (Max-R2), the phenological metric var-

iables used to construct the multivariate regression model changed compared with phe-

nological metric models (Table 2). For the semi-arid region, the variables changed from 

the combination of GP2D, GP2R, GP3D, and GP4R to that of GP1R, GP3D, and GP4R. 

Combining the growth state, time, and rate, the yield prediction model will have more 

biophysical significance and better results in the semi-arid region. For the non-semi-arid 

region, the variables changed from the combination of GP2D, GP2R, GP3D, and GP4R to 

that of GP1D, GP3D, and GP4D. The Max-R2 replaced all rate variables indicating that 

crop growth state and time are more important than the growth rate in a relatively humid 

environment. The whole region contains more counties located in the non-semi-arid re-

gion, and its model variables are the same as that in the non-semi-arid region. 

Table 3. Results for stepwise multiple regression between Max-R2 with rate and duration and 

yield. Dates from 2008 to 2018. 

Region Equation R2 VIFs 

Whole region 
Y = −11,872.08−56.01GP1D + 45.88GP3D 

+ 56.74GP4D + 27,674.64Max-R2 
0.65 X < 1.60 

Semi-arid region 
Y = −12,081.43 + 46,3358.80GP1R + 56.88GP3D 

+ 545,886.68GP4R + 28,890.95Max-R2 
0.73 X < 2.61 

Non-Semi-arid region 
Y = −15530.44−77.19GP1D + 56.39GP3D 

+ 72.03GP4D + 31,959.49Max-R2 
0.68 X < 1.46 

4. Discussion 

4.1. Contributions of This Study 

First, this study demonstrated the feasibility of phenological metrics derived from 

satellite remote sensing data for crop yield prediction. The first group showed that some 

phenological metrics (durations and rates) have interpretation ability to the corn yields 

(R2 ranged from 0.18 to 0.44 in Table 1) in the three regions, but the ability was limited 

(maximum R2 = 0.44). Compared with this condition, the multivariate regression models 

built with some phenological metrics in the second group improved the yield prediction 

accuracy. The multivariate phenological metrics models’ stability and validity were 

proved through leave-one-year-out cross-validation, and these models can explain 60–

80% of the yields. It indicated that phenological metrics from emergence to maturity were 

meaningful for crops and could be used as input variables to predict yield. Multivariate 

regression models in the third group built with some phenological metrics and NDVI ob-

tained better yield prediction results than the NDVI univariate regression models in the 

first group. This indicates that phenological metrics derived from the NDVI time series 

could be incorporated with other parameters to improve yield prediction in large-scale. 

Besides, our result is a useful supplement to phenological variables. Previous studies 

[14] had proven that phenological variables (phenological date) were closely correlated 

with crop yields. Phenological date variables can, directly and indirectly, influence the 

photosynthesis and respiration, which will change the accumulation of effective dry mat-

ter. The accumulation of effective dry matter is also affected by the time and rate of pho-

tosynthesis and respiration. We used statistic methods to investigate the impacts of phe-

nological metrics (duration and rate) on corn yields. Some phenological metrics can 
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achieve yield prediction, which had the interpretation ability of 60–80% in this paper. We 

recommend adopting combined phenological date and metrics variables in the future ap-

plications related to agricultural yield predictions. Besides, relationships between the phe-

nological metrics derived from MODIS data at a large scale and yield were consistent with 

the actual growth characteristics of crops in the field. The relationships help the manage-

ment department make agricultural production decisions in a unified manner. For exam-

ple, fertilizing before and after the jointing stage increases the growth rate of corn. 

Finally, this study provides a method reference for establishing the yield prediction 

model of other crops. The R2 between the yield and NDVI rate of GP1, GP2, and GP4 

ranged from 0.27 to 0.44, indicating that it may be more beneficial to organize time series 

data parameters based on the GP [25] and provide support for dynamic yield predictions 

with the growth stages as a time unit [26]. The combination of the duration and rate in 

each GP can simply simulate the crop growth process. Each crop has its growth charac-

teristics at different growth stages, and the characteristics of each growth stage can be 

described by the growth duration time and rate. Thus, the models constructed with phe-

nological metrics are based on the inherent growth and development of crops, and the 

yield prediction method is applicable to other crops (e.g., soybean and wheat). 

4.2. Factors Affecting Model Accuracy 

Our proposed yield prediction method may be affected by the following factors. First, 

the spatial resolution of the NDVI time series has an impact on our method. The models’ 

explanatory power in the second group was relatively weak compared with the pheno-

logical yield prediction models based on the NDVI time series derived from ground-based 

sensors [36]. This situation is understandable because there is a gap between the county-

level NDVI obtained with 250-m resolution pixels and the NDVI obtained from the 

ground-based sensors. The commonly used MODIS-based 250-m products are suitable for 

many regions, such as the Great Plains of the US, which have large field sizes (mean field 

size of 19.3 ha [42]), and countries in Europe [4,47,52], which have small field sizes (two-

thirds of Europeans fields are less than 5 ha [53]). Many methods (pixel-based crop plant-

ing ratio, phenological information, among others) have been proposed to improve the 

accuracy of MODIS in agricultural applications [28,41,46,52,54], such as crop map masks 

and phenological information adjustment used in this study. The NDVI is the most com-

monly used vegetation index, calculated from the two bands of the MODIS 250-m reflec-

tivity products. Crop-specific NDVI selected by the crop mask [2,46] contains signals from 

all land surface types; therefore, it is still a mixture of the signals, which partially affects 

the accuracy of the phenology extraction and yield prediction. 

Second, the NDVI time series need be collected from years with different climate 

condition (such as wet years and dry years). The yield prediction method using pheno-

logical metrics works best in the semi-arid region (Table 2, Figure 7). The United States 

suffered a drought in 2012, resulting in severe crop yield losses [55]. For the whole and 

non-semi-arid region, the explanatory power (R2) for models constructed with data in-

cluding 2012 (average R2 = 0.64, 0.67) was higher than that of models built without 2012 

data (R2 = 0.59, 0.59). It indicates that phenological metrics can respond to disasters, and 

datasets containing disaster information can describe more environmental characteristics. 

Thus, the model constructed using the datasets of 2012 can provide more yield infor-

mation. Models constructed with data that did not include disaster information had 

higher RMSEs when predicting the yield in 2012 (Figure 7B—whole region/non-semi-arid 

region). However, the semi-arid region did not indicate the above situation. Irrigated corn 

was mainly planted in semi-arid regions [56], and farmers focused more on agricultural 

water management to alleviate the impacts of the drought. 

Third, the determination of the phenology stage dates has potential impacts on our 

results. We divided the whole corn growing season into four relatively large GPs based 

on the MODIS-NDVI time series and corn growth characteristics. The phenological dates 

determine each GP, and the smoothing methods and phenology extraction methods 
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based-on VI time series jointly determine the extraction of phenological dates. Besides, 

NDVI is sensitive to high-density vegetation and has a saturation phenomenon [57]. The 

NDVI saturation occurs in the curve peak of time series, which also influences the phe-

nology stage dates and further affects the GP2, GP3, and GP4. Because there are generally 

two types of peaks, i.e., steep [54] and steady [58], this was consistent with the peaks ob-

tained in this study. The peak’s steepness refers to two phenological dates in the GP3 and 

one phenological date in the GP2 (GP4) determined by the phenological extraction 

method. However, the effect of smoothing (phenology extraction) methods and NDVI sat-

uration are relatively minor. The R2 was 0.50 and 0.65 for corn emerged and mature, re-

spectively. The corresponding RMSE values were 4.90 and 0.65 days. The phenological 

metrics models’ interpretation ability is more than 60%. Based on the above-mentioned 

phenology dates and yield models accuracy, we proved the feasibility of our method and 

showed that the phenological information metrics obtained from remote sensing data 

could be used to predict large-scale yield. 

4.3. Direction of Future Improvement 

The ability to predict yield using phenological metrics can be further improved. Fur-

ther research should attempt to select pixels with a higher crop planting proportion to 

weaken the effect of sub-pixel mixtures. It also can use other indices, such as the enhanced 

vegetation index (EVI) and wide dynamic range vegetation index (WDRVI) [25,39], to ob-

tain phenological information to avoid the impact that high-density vegetation cover has 

on NDVI saturation. Some remote sensing-based indices can also attempt to extract phe-

nological information, such as the solar induced florescence (SIF), thermal decay rate, and 

vegetation optical depth (VOP), given that they have all become available at higher spatial 

resolutions. The SIF can capture vegetation’s photosynthesis process, the thermal decay 

rate monitors vegetation through diurnal temperature variations [59], and the VOP is 

highly sensitive to the water content and above-ground biomass of vegetation. 

We used stepwise regression models to prove that the selected phenological metrics 

can be used to predict crop yield. Generally speaking, the use of more parameters can 

more comprehensively describe the crop growth environment conditions and growth sta-

tus, which is conducive to better prediction of yield. In the future, we can combine phe-

nological metrics with other parameters, such as the climate and vegetation index, as in-

put to machine learning or deep learning which can effectively solve collinearity and ex-

tensively investigate the data features to predict the yield. These climate and vegetation 

index parameters also can take the phenological stage as the time unit, and combining 

phenology, climate, and vegetation index data to explore the ability to dynamically pre-

dict yield in the continuous phenological stages. 

5. Conclusions 

We used the MODIS MOD09Q1 product to calculate the corn NDVI time series and 

then divided it into four GPs. The phenological information metrics (duration and rate 

information) obtained in each GP were used to analyze the relationships between them 

and the corn yield and combine with the maximum correlation NDVI to build yield pre-

diction models. 

We obtained two main conclusions from the results of this study. First, most pheno-

logical metrics (duration and rate in different phases) extracted from the MODIS-NDVI 

time series strongly correlate with corn yield. Some phenological metrics can be combined 

to predict corn yield with relatively good results at a large scale. As a result of the inter-

action between crops and the environment, phenological information is a comprehensive 

and indirect crop yield indicator. It can be applied to yield predictions or estimations for 

other crop types (e.g., soybeans, wheat, cotton, and rice) and other regions. Second, phe-

nological metrics can also be combined with other types of parameters, such as the maxi-

mum correlation NDVI, to improve the yield prediction or estimation accuracy. 
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The yield is the comprehensive performance of crop growth conditions throughout 

the season. Dividing the season into multiple phases and using duration and rate ex-

tracted from NDVI to describe crop growth duration and rate in different phases can sim-

ulate the crop growth. Crops require different environmental conditions and have differ-

ent growth characteristics at different GPs. The NDVI rate based on GP shows a strong 

relationship with the yield. Therefore, for other yield predictions or estimation parame-

ters, using the GP as the time scale to avoid geospatial data heterogeneity may be more 

reasonable, as the crop phenology varies by location and changes from one year to the 

next. A limitation of this study is that it did not clarify the effect of the time series smooth-

ing methods, phenology extraction methods, and GP division method on the establish-

ment of yield models. Moreover, there is no comparison among the performances of the 

different vegetation indices in this yield prediction method. In the future, these two as-

pects can be further analyzed to broaden the applicability of the current study to include 

more crop and vegetation indices’ diversity characteristics and to understand any limita-

tions that may be present in the method. 
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