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Abstract: This paper presents an underwater high-precision line laser three-dimensional (3D) scan-
ning (LLS) system with rotary scanning mode, which is composed of a low illumination underwater
camera and a green line laser projector. The underwater 3D data acquisition can be realized in the
range of field of view of 50◦ (vertical) × 360◦ (horizontal). We compensate the refraction of the 3D
reconstruction system to reduce the angle error caused by the refraction of light on different media
surfaces and reduce the impact of refraction on the image quality. In order to verify the reconstruction
effect of the 3D reconstruction system and the effectiveness of the refraction compensation algorithm,
we conducted error experiments on a standard sphere. The results show that the system’s underwater
reconstruction error is less than 0.6 mm within the working distance of 140 mm~2500 mm, which
meets the design requirements. It can provide reference for the development of low-cost underwater
3D laser scanning system.

Keywords: 3D reconstruction; underwater laser scanning; laser sensor; high precision

1. Introduction

In recent years, three-dimensional (3D) terrain data and scene reconstruction tech-
nology have been gradually applied to underwater imaging applications. Due to the
disadvantages of traditional acoustic detection, such as it being easily affected by underwa-
ter noise, non-intuitive imaging, and poor visualization effect, optical 3D reconstruction
technology gradually plays its advantages in underwater operations. For example, in terms
of underwater engineering construction [1], laser 3D reconstruction technology can provide
more accurate and visualized 3D site surveys for underwater construction projects, used
to check the structure of subsea instruments and the wear status of pipelines. In military
applications [2], laser 3D reconstruction technology can be used to detect and monitor the
underwater targets, providing real-time data support for underwater military rescue. In
terms of marine scientific research, laser 3D reconstruction technology can explore seabed
resources and map seabed topography [3,4]. In addition, it can also be applied to biological
survey [5,6], archaeology [7–10], sea bottom topography description, etc. [11,12].

Linear laser 3D reconstruction is an active optical measurement technology that be-
longs to structured light 3D reconstruction technology. The basic principle is that the
structured light projector projects a controllable light strip onto the surface of the object
to be measured, the image is obtained by the image sensor (such as camera), and the
3D coordinates of the object are calculated by the triangulation through the geometric
relationship of the system [13]. Also, there are light spot and light beam laser scanning
technology [14]. The light spot type is to scan the object point by point; however, the
disadvantage is that image acquisition and post-processing are time-consuming and diffi-
cult to complete real-time measurement. Light plane type is to project a two-dimensional
plane to an object, and the measurement speed is the fastest. It is usually used to project
grating stripes, which is usually used in the air. The linear laser scanning sensor system is
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composed of a low-light underwater camera, a green line laser projector, and a scanning
turntable. The calibration of the system includes the calibration of camera parameters
and the calibration of system structure parameters. Through calibration, we can obtain
the conversion relationship between the two-dimensional pixel coordinate system and the
three-dimensional camera coordinate system, and then obtain the equation of the laser
stripe on the plane target in the three-dimensional space. A series of solving and fitting
algorithms can finally obtain the plane equation of the light plane in the camera coordinate
system. In the early stage of linear laser sensor calibration, the mechanical method was
proposed first and widely used. Later, the idea based on the cross ratio invariant method
was developed to get rid of the shackles of precision platform in principle. A certain
number of high precision calibration points can be obtained by using the specially designed
stereo target to complete the calibration [15–18]. Other methods, such as hidden point,
three-point perspective model, active vision, and binocular stereo vision, have certain
applications on some specific occasions, greatly enriching the calibration method of the
linear structured light sensor [19–24].

Michael Bleier et al. developed a laser scanning system with the wavelength of
525 nm to scan the objects in the water tank statically and dynamically. From the obtained
point cloud data, the reconstruction errors of the two state systems are less than 5 cm [25].
Jules S. Jaffe [26] invented a line laser scanning imaging system for underwater robots,
which effectively reduces backscatter and volume scattering by using large-scale camera
splitting, scanning, or pulse systems. Yang Yu et al. [27] studied a multi-channel RGB laser
scanning system and proposed a high-resolution underwater true-color three-dimensional
reconstruction method with three primary color lasers as the active light source, which can
target objects including human faces. Scanning and reconstruction of the millimeter level
are performed while restoring the true color texture information of the target. Xu Wangbo
et al. [28] designed and implemented an underwater object measurement system based on
multi-line structured light. When the measurement distance is 2.45 m, the average error
reaches 1.6443 mm, which has high measurement accuracy. At present, many research
institutions have done a lot of work on image, point cloud processing, and water scattering
correction, and good experimental results have been obtained. However, in the process of
underwater experiments, the influence of refraction caused by different media surfaces on
the viewing angle error and imaging quality still needs more attention [29].

In order to realize the high-precision 3D reconstruction of underwater target and better
utilize the advantages of the optical 3D reconstruction system in underwater operations,
this paper designs and develops an underwater high-precision 3D reconstruction system
based on rotary scanning, and proposes a refraction compensation method for the system.
This article will describe in detail the calibration principle and system structure involved
in the reconstruction process in the second and third sections. The specific experimental
process will be introduced in Section 4. Then, we will perform error analysis on the
standard sphere with known radius, compare the reconstruction errors of the system in
two different environments of air and water, and calculate the reconstruction accuracy of
underwater objects before and after using the algorithm. The specific work contents are
as follows.

2. Determination of System Parameters and Establishment of Light Plane

In the reconstruction of laser three-dimensional scanning, the conversion of the coor-
dinate system and a series of calibration algorithms are involved, including the calibration
of the internal and external parameters of the camera, and the determination of the laser
plane equation of the system. Through calibration, the two-dimensional pixel coordinates
obtained by the camera can be converted into three-dimensional point cloud coordinates.
In the process of obtaining the point cloud, we added the refraction correction algorithm of
the waterproof device to improve the system reconstruction accuracy.
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2.1. Coordinate System Conversion

The calibration process of the system involves the conversion between image coordi-
nate system (including pixel coordinate system and physical coordinate system), camera
coordinate system, and world coordinate system. As shown in Figure 1, plane ABC is
the laser plane, and f is the camera focal length. We set OW − XWYW ZW as the world
coordinate system, OC − XCYCZC as the camera coordinate system, Ou − uv as the pixel
coordinate system, and O− xy as the physical coordinate system.

Figure 1. Geometric relations in coordinate system transformation.

The relationship between a point P1 in the world coordinate system and a point P2 in
the camera coordinate system is as follows: XC

YC
ZC

 = R

 XW
YW
ZW

+ T, (1)

where R and T are the rotation matrix and translation matrix of the camera coordinate
system relative to the world coordinate system.

According to the triangle similarity principle, the relationship between the point P2 in
the camera coordinate system and P3 in the image coordinate system can be obtained

ZC

 x
y
1

 =

 f 0 0 0
0 f 0 0
0 0 1 0
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The conversion relationship between the point in the image coordinate system and
the point in the camera coordinate system is shown in the following formula: u

v
1

 =


1

dx
0 u0

0 1
dy

v0

0 0 1


 x

y
1

 (3)

where dx and dy represent the physical size of unit pixel in x-axis and y-axis, respectively.
To sum up, the conversion relationship of points from the pixel coordinate system to the
world coordinate system can be obtained:

ZC

 u
v
1




1
dx
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0 1
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0 0 1
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0 1

]
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0 1

]
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(4)

2.2. Camera Calibration

Camera calibration can be divided into traditional camera calibration method and
camera self-calibration method [30,31]. The methods that are commonly used include the
traditional Tsai calibration method and Zhang Zhengyou calibration method, which is
between traditional and self-calibration methods. In this paper, the method we used is the
Zhang Zhengyou calibration method. By taking photos of the calibration plate in different
directions, two groups of parameters of the camera are directly obtained, which are the
external parameters of spatial transformation and the internal parameters of the camera
itself. Using the external and internal parameters, the corresponding relationship between
the pixel coordinates of the image and the three-dimensional coordinates in the space
can be established, that is, the three-dimensional space information can be obtained from
the two-dimensional image [32,33]. The Zhang Zhengyou calibration method does not
need to know the movement mode of the calibration plate, which avoids high equipment
demand and complicated operation, and has higher accuracy and better robustness than
the self-calibration method [34,35].

In the process of camera calibration, it is necessary to extract the corner coordinates
of the checkerboard plane target. The most commonly used feature detection algorithms
in the field of computer vision are Harris, SIFT, SURF, FAST, BRIEF, ORB, etc. The SIFT
(Scale Invariant Feature Transform) algorithm proposed by David G. Lowe is based on the
feature point extraction of the DoG (Difference of Gaussian) pyramid scale space [36]. The
advantages are stable features and rotation invariance and the disadvantage is that the
ability to extract feature points for smooth-edge targets is weak. The SURF (Speeded Up
Robust Feature) algorithm is an improvement of the SIFT algorithm proposed by David
Lowe in 1999 [37], which improves the execution efficiency of the algorithm and provides
the possibility for the application of the algorithm in real-time computer vision systems.
ORB (Oriented FAST and Rotated BRIEF) is a fast algorithm for feature point extraction
and description [38,39]. It was written by Ethan Rublee, Vincent Rabaud, et al. in 2011
entitled “ORB: An Efficient Alternative to SIFT or SURF;” they proposed using the FAST
algorithm for feature point extraction, and using the BRIEF algorithm to describe feature
points. By combining the advantages of the FAST [40,41] and BRIEF algorithm [42,43] for
fast feature point detection and simple description, and improving on them, it solves the
complexity of SIFT calculation and the lack of rotation invariance, scale invariance, noise
sensitivity, and other shortcomings.
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This paper uses the classic Harris corner detection algorithm, which has the advantage
of simple calculation and can easily recognize the gray level changes and translational
rotation changes of flat images. Experimental verification shows that the Harris algorithm
is suitable for the underwater rotating scanning system proposed in this paper, and can
extract limited feature points on a planar target. In addition, corner points can also be
accurately detected under noise interference, which has high stability and robustness.
The basic idea is that the recognition of the human eye corner is usually completed in a
local small area or small window [44]. If the small window with this feature is moved
in all directions, the gray level of the area in the window changes greatly, and then it is
considered that the corner is encountered in the window. The general steps are as follows:

Firstly, calculate the image matrix M, and each pixel of the image is filtered by using
the horizontal and numerical difference operators to get the values of Ix and Iy, and then
the four elements in M are obtained:

M =

[
I2
x Ix Iy

Ix Iy I2
y

]
(5)

Then, the four elements of M are filtered by Gaussian smoothing to get a new M The
discrete two-dimensional mean Gaussian function is:

Gauss = exp

(
−
(
x2 + y2)

2σ2

)
(6)

Use M to calculate the amount of corners corresponding to each pixel Cim:

Cim =
I2
x ∗ I2

y −
(

Ix Iy
)2

I2
x + I2

y
(7)

When a point satisfies that Cim is greater than the threshold and is a local maximum
in a neighborhood, it can be considered as a corner.

Some of the extraction results are shown in Figure 2, and the pixel coordinates of some
corner points of the calibration board are shown in Table 1.

Figure 2. Some corners extracted by Harris algorithm.
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Table 1. Pixel coordinates of some corners of calibration board.

Index u(pix.) v(pix.)

1 1148.465576 1012.713867
2 800.38644746 1893.737305
3 497.802887 1882.058228
4 193.6052246 1868.337646
5 497.802887 1882.058228
6 264.0452271 363.3004456

2.3. Calibration of System Structure Parameters

The calibration of sensor structure parameters is the position equation of the laser
plane relative to camera. The main calibration methods include the mechanical adjustment
method [45], filament scattering method [46,47], and cross ratio invariant method [48].
From the angle of target, it can be divided into the three-dimensional target, plane target,
one-dimensional target, and no target [49–52]. In this paper, a new method of line laser
calibration is used. By combining the linear equation formed by the optical center and
the point on the light strip and the plane equation of the target in the camera coordinate
system, the equation of the line in the camera coordinate system can be obtained. Finally,
an equation that describes the plane in the camera coordinate system can be obtained by
using the least square method. Let the plane equation be Ax + By + Cz = 0. The specific
algorithm flow is shown in Figure 3.

Figure 3. Flow chart of laser plane equation calibration.

2.4. Refraction Compensation of Underwater 3D Reconstruction System

When working underwater, the instruments are sealed in a waterproof device, so the
underwater target and the laser scanning system are separated in media with different
refractive indices. When the camera photographs the underwater object, the light passes
through the interface of the water-plane glass waterproof cover and the glass waterproof
cover-air. After being refracted twice, the object is finally being imaged on the image
surface of the camera. According to the points on the image plane of the camera, we
perform reverse calculations on the refraction light path to find the intersection point. This
intersection point is the actual image point of the measured object after removing the effect
of refraction [53–56]. Since the light is refracted twice at the waterproof cover, and the
thickness of the waterproof cover is thin (negligible), the imaging process in the water is
simplified as shown in Figure 4, where the plane of the waterproof cover is parallel to the
imaging plane of the camera.
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Figure 4. Refraction caused by watertight devices.

In view of the above situation, this section will compensate the system from two
aspects. They are the offset compensation of the imaging point on the CCD object surface
and the laser plane at the sealing glass.

2.4.1. Refraction Compensation of Light Plane

As shown in Figure 4, the light plane A in the air is refracted by the glass surface to
obtain the underwater light plane B. θ1 is the laser projection angle, θ2 is the angle between
the light plane A and the normal, θ3 is the is the angle between the normal to A and the
normal to C, the θ4 is the angle between the light plane B and the normal C, and θ5 is the
angle between the normal B and the normal C.

Suppose the normal vector of the refractive surface is (0, 0, 1), the normal vector of
the light plane A is (A, B, C), the normal vector of the light plane B is

(
A′, B′, C′

)
, and the

relative refractive index of water and air is n′. From the law of refraction, we can get that:

n′ =
n1

n3
=

sin θ1

sin θ3
=

cos θ3

cos θ5
(8)

where n1 is the refractive index of air and n3 is the refractive index of water.

C√
A2 + B2 + C2

= n′
C√

A′2 + B′2 + C′2
(9)

Since the normal vector of the light plane B is a unit vector, then:√
A′2 + B′2 + C′2 = 1 (10)

According to (6), it can be concluded that:

C′ =
C

n′
√

A2 + B2 + C2
(11)

 A
B
C

T

= x

 A′

B′

C′

T

+ y

 0
0
1

T

(12)
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According to the simultaneous Formulas (11) and (12), it can be concluded that: A′ =
√

A2n′2(A2+B2+C2)−A2C2

n′2(A2+B2+C2)(A2+B2)

B′ = A′B
A

(13)

The coordinates of intersection point D between light plane A and light plane B and
glass surface are(0, H tan θ1, H), where H is the distance from camera optical center to glass
surface, and the equation of light plane B is as follows:

A′x + B′y + C′z + D′ = 0 (14)

Substituting the coordinate of point d into (11), we can get the following results:{
B′H tan θ + C′H + D′ = 0
BH tan θ + CH + D = 0

(15)

After simplification, we can get the following conclusions:

D′ = −(B′ tan θ + C′H) = B′
CH + D′

B
− C′H (16)

In conclusion, the laser plane equation after refraction can be calculated:

A’x + B’y + C’z + D’ = 0. (17)

2.4.2. CCD Image Coordinate Refraction Compensation

It can be seen from the Figure 4 that the imaging point of the underwater target Pw on
the image plane is P(u, v). If it is in the air, the direct imaging point is P′(u′, v′). There is a
relationship between P and P′: (

u′, v′
)
= η(u, v) (18)

For each measured point, refraction correction can be realized as long as it is obtained.

η =
tan θ7

tan θ6
=

(EF tan θ8 + GF)/OCF
I J/OC J

(19)

and because:
I J =

√
u2 + v2 (20)

OC J = f (21)

where f is the focal length of the camera, point P′(xc, yc, zc) is known; when a condition is
satisfied ZW � H, the results are as follows:

η =

(
1− H

ZC

)
tan θ8 +

H
ZC

tan θ6
√

u2 + v2/ f
≈ tan θ8√

u2 + v2/ f
(22)

Substituting the results of refraction compensation into the camera calibration program
and coordinate conversion formula, the compensated three-dimensional coordinates can
be obtained.

3. Rotary Scanning System

Linear laser 3D rotation system mainly includes optical system and mechanical struc-
ture. The optical system is composed of laser, camera, and LED, as it shown in Figure 5.
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Figure 5. Mechanical model of the rotating scanning system. (a) Optical system; (b) System mechanical structure with
variable included angle; (c) Rotating stage; (d) The overall model of the system.

The distance between the camera and the laser is 250 mm, and they are, respectively,
installed in two independent watertight chambers, fixed on both sides of the support frame
to maintain their relative position. The turntable is controlled by the host computer, and
the system can scan at a fixed position within the range of 50◦ × 360◦. The specific model
of the system is in Figure 5. Some parameters of camera, laser and system performance are
shown in Table 2:

Table 2. Mechanical model of rotary scanning system.

Performance

Measuring Method Triangulation
Scan Range Minimum: 0.14 m | Maximum: 2.5 m

Field of View 360◦Pan 90◦Tilt
Operating Temperature -10°C–40°C
Pan and Roll Accuracy 0.1◦

Pitch and Roll Accuracy ±0.25◦

Laser

Wavelength 520 nm
Electric Current ≤300 mA
Power Supply 50 mW

Camera

Model WP-UT530M
Pixel Size 4.8×4.8 µm

Resolution 2592×2048
Frame Rate 60 FPS

Exposure Time 16 µs–1 s
Spectral Range 380–650 nm
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4. Performance Tests
4.1. Three-Dimensional Reconstruction in Air

We choose a checkerboard with a side length of 25 mm as the calibration target. By
changing the angle of the rotation and tilt of the target, 12 pictures of the checkerboard
in different poses under the camera coordinate system can be obtained. Through Zhang
Zhengyou’s calibration method, the camera’s internal parameters and calibration results
include external parameters and distortion coefficients. The whole calibration process
includes the original image acquisition, chessboard corner extraction, reprojection error,
and other steps. The result is shown in Figure 6.

Figure 6. Camera calibration process in the air and some corner points extraction results. (a) Twelve Calibration boards
with different attitude; (b) Corner extraction results of image.

We put the fixture in the air for a scanning experiment. Through the coordinate
transformation and the solution of the light plane equation, we can finally get the three-
dimensional point cloud coordinates of the fixture. After noise reduction, the final three-
dimensional point cloud of the fixture is shown in the Figure 7b.

Figure 7. Three-dimensional (3D) reconstruction point cloud in air. (a) Measured object in the air; (b) Point cloud of object.
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4.2. 3D Reconstruction of Underwater Target

From the above experimental results, the system can complete the 3D point cloud
coordinate extraction of the water target, and reconstruct the characteristics of the object,
which verifies the feasibility of the system in the air. The next step is to put the scanning
system in water and calibrate it again. It is known that light will refract on passing through
different media, and underwater calibration can better reduce the influence of laser light
refraction on the reconstruction accuracy, and can better scan the conch in the water to
verify the reconstruction effect of the underwater system. First, we calibrate the chessboard
target underwater, as shown in Figure 8.

Figure 8. Underwater chessboard calibration. (a) Checkerboard calibration; (b) Corner extraction of underwater chessboard.

After calibration, the internal parameter matrix of the camera is as follows:

Intrinsic Matrix =

 12329 0 0
0 12290 0

1314 748 1

 (23)

Other related parameters include camera focal length, principal point, image size,
radial distortion, and tangential distortion, as shown in the Table 3 below:

Table 3. Some parameters of the system.

Parameter Result (Pix.)

Focal Length [1.2329× 104 1.229× 104]
Principal Point [1.3135× 103 7.4849× 102]

Image Size [2048 2592]
Radial Distortion [−0.1380 15.7017]

Tangential Distortion [0 0]

After getting the calibration results of the system structure parameters, we fit the laser
plane projected by the laser. Finally, the laser plane equation is obtained as follows:

Z = 1498.888393 + 0.019092x + 0.1281023y (24)

The parameters corresponding to the light plane equation Ax + By + Cz = 0 in
Section 2.3 are: A = 0.019092; B = 0.128103; C = 1; D = 1498.888393.
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We selected the conch as the scanning object, as shown in the Figure 9a. The 3D
point cloud information of a single frame image can be obtained by converting the two-
dimensional image data into three-dimensional point cloud coordinates through system pa-
rameter calibration. According to the motion mode of the turntable, the three-dimensional
point cloud data can be spliced. Finally, the laser scanning results are obtained. The
three-dimensional point cloud image of conch is as follows:

Figure 9. 3D reconstruction results of underwater conch. (a) Conch placed in the water; (b) 3D point cloud of conch.

4.3. Error Analysis

In order to measure the accuracy of the system, a standard ball with a radius of
20.01 mm is scanned and reconstructed in the range of 500 mm to 1200 mm. The two-
dimensional coordinates of the scanned object surface are obtained by using the laser stripe
center extraction algorithm, and then the three-dimensional point cloud coordinates of
the standard sphere are obtained by using the coordinate transformation formula. The
standard sphere radius can be obtained by calculation, and the fringe extraction result is
shown in Figure 10.

The reconstruction results in air and underwater are shown in Figure 11. The average
measurement error of the standard sphere in the air is less than 0.16 mm, and the average
error after refraction corrected in water is less than 0.6 mm. In addition, we can also
conclude that as the measurement distance increases, the error gradually increases.

In order to verify the effectiveness of the underwater refraction correction algorithm,
we use different methods to carry out underwater measurement experiments, for example,
we select a standard ball with a radius of 20.01 mm as the measured object, select 12
different positions in the field of view for measurement, and calculate the measurement
radius of the standard ball without refraction correction algorithm and with refraction
correction algorithm, respectively. R is the underwater measurement radius without the
refraction correction algorithm, and Rc is the measurement radius with the refraction
correction. The detailed measurement results are shown in Table 4:
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Figure 11. Relationship between the measured value of standard error sphere radius and the measured distance. (a)
Reconstruction error results in water and air; (b) Reconstruction of standard ball diameter at different distances.
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Table 4. Measurement result and error of standard ball.

Distance(mm) R(mm) Error(mm) RC(mm) Errorc(mm)

500 24.541 4.531 20.117 0.107
550 24.995 4.985 20.091 0.081
600 25.336 5.326 20.195 0.185
650 25.365 5.355 20.233 0.223
700 24.379 4.369 20.295 0.285
750 25.52 5.51 19.742 0.268
800 25.993 5.983 20.347 0.337
850 26.238 6.228 19.646 0.364
900 26.862 6.852 20.468 0.458
950 25.999 5.989 20.503 0.493

1000 27.109 7.099 20.583 0.573
1200 27.022 7.012 19.414 0.596

Average 25.780 5.770 20.136 0.331
Max 27.109 7.099 20.583 0.596

It can be seen from Table 4 that the measurement error of standard ball is within
7.1 mm without refraction correction, and the maximum measurement error is 7.099 mm.
The average radius of standard sphere is 25.780 mm. After adding refraction correction,
the maximum error of reconstructed standard sphere radius is 0.596 mm, and the error
range is within 0.6 mm. It can be seen that the reconstruction accuracy of the system has
been significantly improved after adding the refraction correction algorithm. It is proved
that the algorithm proposed in this paper is accurate and effective.

5. Conclusions

In this paper, an underwater laser 3D scanning system based on rotation scanning
is proposed, which is composed of line laser, underwater camera and turntable, realizing
rotation scanning in the range of 50 ◦ (vertical) × 360 ◦ (horizontal). In order to achieve
high-precision and high-resolution reconstruction results, this paper proposes a refraction
correction algorithm for watertight devices, carries out three-dimensional reconstruction
experiments on underwater targets, and obtains three-dimensional point clouds. Finally, in
order to verify the feasibility of the system and the effectiveness of the algorithm, we use a
standard ball with a radius of 20.01 mm for error analysis, showing that the underwater
3D reconstruction error of the system is less than 0.6 mm, which further proves that the
line laser scanning system with low cost and simple structure can replace the expensive
professional optical depth sensor and provide a new reference for underwater 3D laser
reconstruction technology.
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