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Abstract: It is an essential capability of indoor mobile robots to avoid various kinds of obstacles.
Recently, multimodal deep reinforcement learning (DRL) methods have demonstrated great capability
for learning control policies in robotics by using different sensors. However, due to the complexity
of indoor environment and the heterogeneity of different sensor modalities, it remains an open
challenge to obtain reliable and robust multimodal information for obstacle avoidance. In this work,
we propose a novel multimodal DRL method with auxiliary task (MDRLAT) for obstacle avoidance of
indoor mobile robot. In MDRLAT, a powerful bilinear fusion module is proposed to fully capture the
complementary information from two-dimensional (2D) laser range findings and depth images, and
the generated multimodal representation is subsequently fed into dueling double deep Q-network
to output control commands for mobile robot. In addition, an auxiliary task of velocity estimation
is introduced to further improve representation learning in DRL. Experimental results show that
MDRLAT achieves remarkable performance in terms of average accumulated reward, convergence
speed, and success rate. Moreover, experiments in both virtual and real-world testing environments
further demonstrate the outstanding generalization capability of our method.

Keywords: obstacle avoidance; mobile robot; multimodal deep reinforcement learning; auxiliary task

1. Introduction

Avoiding various kinds of obstacles has been regarded as an essential capability of
mobile robots and plays an important role in various applications such as autonomous
navigation, exploration, and multi-agent coordination. In practice, mobile robots need
to perceive objects in their surrounding environment using different sensors (e.g., two-
dimensional (2D) laser range finder and cameras) for obstacle avoidance. In the past
few years, many works have been proposed to make mobile robots move safely and au-
tonomously in different kinds of unknown environments [1,2]. However, due to the fact
that data coming from different sources are typically in different formats and heteroge-
neous, using multiple sensors to obtain more reliable and robust information for obstacle
avoidance remains an open challenge [3].

2D laser range finders have been widely used in mobile robotics for obstacle avoid-
ance [4,5] since it can provide accurate range measurements of surrounding environment
in a large horizontal field of view at a fast rate [6]. For example, some studies use a 2D
laser range finder to build an occupancy grid map for planning a collision free path [7,8].
Alternatively, Tai et al. propose a deep reinforcement learning (DRL) approach [9], in which
sparse laser range findings from raw laser range findings are sampled between −90 and
90 degrees in a fixed angle distribution, and then used as input for a deep neural network to
generate velocity control commands for a mobile robot. Furthermore, Xie et al. stack dense
2D laser scans across multiple timestamps and use a 1D convolutional neural network
(CNN) to learn efficient features for DRL-based navigation and obstacle avoidance [10].
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Despite these 2D laser-only methods showing promising results, the 2D laser range
finder may not be sufficient to describe the surrounding environment due to its limited
vertical field of view [11], given the fact that the 2D laser range finder cannot detect
obstacles lying below or above its line of scanning [12]. In contrast, depth image provides
more environment information than the 2D laser range finder does [13], and therefore many
researchers attempt to use depth images for obstacle avoidance [13–15]. For example, Tai
et al. use a 2D CNN to directly process raw depth images for learning efficient features for
obstacle avoidance [14]. Similarly, in a DRL-based approach, Wu et al. use stacked depth
images and difference images between successive frames as input and utilize a two-stream
CNN to process two sets of data, then the extracted features are concatenated and mapped
to angular and linear velocities commands for a mobile robot [13]. However, depth image
has a limited horizontal field of view that may affect the performance of obstacle avoidance
in crowd environment [16].

In the past few years, many studies have been proposed to integrate data from different
sensors to obtain more reliable and robust information for obstacle avoidance [17–19]. For
example, Li et al. propose an approach that generates an integrated local map based on
a heuristic fusion method with maps built via 2D laser range findings and depth image
synchronously [17]. Similarly, Orlando et al. obtain point clouds from depth image and
project them onto the two-dimensional plane, which are further combined with laser data
so that the robot could identify obstacles at different heights above the floor [18]. Chavez
et al. instead focus on fusing 2D laser range findings and RGB-D images for obstacle
avoidance, where each sensor grid map is first constructed, and Bayes rule is then used as
a sensor fusion technique to obtain fused occupancy grid map [19]. These studies indicate
that 2D laser range findings and depth images are complementary and can be used together
to improve the performance of obstacle avoidance.

Recently, there has been an increasing interest in multimodal DRL approaches that
integrate multiple sensor modalities for learning control policies and have demonstrated
great capability in robotics [20,21]. For example, Qureshi et al. propose a multimodal
deep Q-network (DQN) model to learn human-like interactions, in which feature repre-
sentations from grayscale images and depth images are extracted by a two-stream CNN
and then passed through deep neural network to obtain multimodal representation [20].
Similarly, Lee et al. first choose domain specific encoders to capture feature representa-
tions from vision and touch and then use a multilayer perceptron to produce multimodal
representation for manipulation tasks [21]. To efficiently integrate heterogeneous sensor
modalities for autonomous driving, Liu et al. design a sensor dropout method that fuses
different features extracted from various sensor modalities using modality-specific feature
extraction modules [22]. The successes achieved by these studies indicate the possibility
of developing multimodal DRL methods for better control policies in obstacle avoidance.
However, due to the complexity of indoor environment, it is still demanding to fully utilize
the complementary information between different sensor modalities [23].

In this work, a novel multimodal DRL method with auxiliary task (MDRLAT) is
proposed for obstacle avoidance using both 2D laser range findings and depth images.
We first use a two-stream CNN to extract feature representations from different sensor
modalities. To effectively fuse the extracted feature representations, a bilinear fusion (BF)
module is designed to generate multimodal representation by fully capturing the comple-
mentary information across different sensor modalities, which is subsequently mapped to
control commands by dueling double deep Q-network (D3QN). In addition, for improving
representation learning in DRL, we introduce an auxiliary task of velocity estimation that
requires the robot to estimate its velocities from the generated multimodal representation.
Specifically, this auxiliary task shares the neural network that the robot uses to act and
therefore introduces extra gradient during back-propagation. By using the jointly learned
multimodal representation, the robot learns to optimize reward faster and achieves better
policies at the end of training. To assess the performance of our method, several different
virtual environments were used for training and testing and the experimental results show
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that MDRLAT achieves remarkable improvements over baseline methods in terms of av-
erage accumulated reward, convergence speed, and success rate. Moreover, experiments
implemented in various real-world scenarios further demonstrate the outstanding general-
ization capability of our proposed method. The code of MDRLAT is available on Github
(https://github.com/hailuoS/MDRLAT (accessed on 6 February 2021)).

2. Materials and Methods
2.1. Problem Definition

We consider the obstacle avoidance problem as a Markov Decision Process (MDP) and
use a tuple M = (S, A, P, R, γ) to define it, in which S, A, P, R, γ ∈ [0, 1] are state space,
action space, transition function (describing the probability of transiting to next state),
reward function, and discount factor (allowing to control the influence of future rewards),
respectively [11,24]. Specifically, at time step t, robot chooses an action at ∈ A based on
current input state st ∈ S, transits to next state st+1 according to transition function P, and
obtains an immediate reward rt = R(st, at) from environment according to reward function
R. In an MDP, a policy π(a|s) is used to map state s to an action a and we can assess the
superiority of a policy π by using an action-value function (Q-value) that is formulated
as below:

Qπ(s, a) = Eπ [
+∞

∑
t=0

γtR(st, at)|s0 = s, a0 = a] (1)

Q-value is the expectation of discounted cumulative rewards when the robot first
chooses an action a at state s and act according to policy π in subsequent time steps [24].
The goal of MDP is finding a policy to maximize the expected discounted cumulative
reward, and Q-learning algorithms are often be utilized to deal with this problem through
the following Bellman equation to approximate the optimal Q-value iteratively:

Q∗(st, at) = R(st, at) + γmax
at+1

Q(st+1, at+1) (2)

Then, an optimal policy can be derived from the optimal Q-value by selecting the
action that has the highest value in each state [25].

In this work, the state st includes the 2D laser range findings lt and depth images dt.
Specifically, lt consists of the measurements of four consecutive frames from a 270-degree
2D laser range finder that produces 512 distance values per scanning (i.e., lt ∈ R4×512), and
dt includes depth images from four consecutive frames obtained by depth camera that are
all resized to 128 × 160 (i.e., dt ∈ R4×128×160). Moreover, as shown in Table 1, the discrete
action space contains a set of control commands, each including both linear and angular
velocity (i.e., at = [vt, ωt]). Apart from state space and action space, a reasonable reward
function is indispensable in reinforcement learning and we carefully design it as below:

rt = (rc)t +
(

rd
)

t
+ (rω)t (3)

Table 1. Action space defined in this work.

Action 0 1 2 3 4 5 6 7 8 9

v(m/s) 0.5 0.5 0.5 0.2 0.2 0.2 0.2 0.2 0 0
ω(rad/s) −π/12 0 π/12 −π/6 −π/12 0 π/12 π/6 −π/3 π/3

Inspired by Wu et al. [11], (rc)t is given as:

(rc)t =

{
−10 i f dmin < 0.2

λcv2
t cos(vtωt) otherwise

(4)

where dmin is the minimum value of 2D laser range findings. In general, the robot will get
a large penalty if a collision occurs, otherwise it is expected to move forward rapidly in the

https://github.com/hailuoS/MDRLAT
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environment and only turn when it is necessary to avoid obstacles. In addition, a penalty
for moving too close to an obstacle is given by:(

rd
)

t
= λd(0.4/dmin) i f 0.2 < dmin < 0.4 (5)

Moreover, in order to make robot move smoothly, a small penalty to mitigate the
left-right swing behavior is given as:

(rω)t = λω(|ωt −ωt−1|) i f ωt ∗ωt−1 < 0 (6)

In above equations, the constants λc, λd, and λω are weighting factors and we set
λc = 2, λd = −0.05, and λω = −0.05 respectively in the training procedure.

2.2. Network Architecture

In this section, we describe the network architecture of our proposed MDRLAT, which
consists of a two-stream CNN and a BF module to generate multimodal representation
from different sensor modalities, a D3QN to obtain control commands from the multimodal
representation, and an auxiliary task module for improving representation learning in DRL.
The overall network architecture is shown in Figure 1 and following subsections describe
each part of MDRLAT in detail.

Figure 1. Network architecture of the proposed MDRLAT.

2.2.1. Network Architecture for Multimodal Representation

The proposed MDRLAT adopts a two-stream CNN to extract feature representations
from different sensor modalities and a BF module is proposed to effectively fuse the
extracted feature representations and generate multimodal representation. Specifically,
the two-stream CNN consists of multiple 2D and 1D convolutional layers to process dt
and lt, respectively. For one stream of CNNs, the first convolutional layer converts dt to
feature maps through 16 filters with kernel size 10 × 14 and stride 8. Then, the second
convolutional layer processes the feature maps through 32 filters with kernel size 4 × 4
and stride 2 and the final convolutional layer subsequently produces 32 8 × 10 feature
maps by using filters with kernel size 3 × 3 and stride 1. For the other stream of CNNs,
the first convolutional layer processes lt via 16 filters with kernel size 5 and stride 4. The
second convolutional layer contains 32 filters with a kernel size of 3 and stride 2, and the
third convolutional layer generates 32 32 × 1 feature maps using 32 filters with kernel size
3 and stride 2. In practice, all the convolutional layers are followed by the rectified linear
unit (ReLU) activation function [26]. Finally, the output from each stream is flattened and
regarded as the feature representation of the corresponding sensor modality.
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In order to effectively fuse the feature representations extracted by the two-stream
CNN, we design a BF module to fully capture the complementary information across
different sensor modalities. Firstly, by using fully connected layers, the extracted features
of 2D laser range findings and depth images are embedded into feature vectors denoted as
l ∈ RLl×1 and d ∈ RLd×1, respectively. Then, we adopt a bilinear function to fuse l and d,
which can be formulated as:

f b
k = ReLU

(
Wkvec

(
dlT
)
+ bk

)
(7)

where f b
k is the k-th value of f b ∈ RK×1, vec(·) is the operation to unfold a matrix to a

vector, Wk and bk are learnable weight matrix and bias term, respectively. Specifically,
Equation (7) can be written by the general form of bilinear model [27]:

f b
k = ReLU(

Ld

∑
i=1

Ll

∑
j=1

wijkdilj + bk) (8)

where wijk is the entry of Wk, and di and lj are the i-th, j-th value of d and l, respectively.
In this work, Ld, Ll , and K are set to 128, 64, and 512, respectively. Finally, f b is concate-
nated with feature representations of 2D laser range findings and depth images to obtain
multimodal representation as the input of D3QN.

2.2.2. Dueling Double Deep Q-Network

In order to generate control commands for the mobile robot from the obtained mul-
timodal representation, we select the widely used D3QN that is an extension of DQN by
leveraging the techniques of double Q-learning [25] and dueling architecture [28]. Specifi-
cally, DQN includes two deep neural networks with same architecture, one is an online
network with parameter θ for selecting action and the other is a target network with
parameter θ− for generating target Q-value yt:

yt = rt + γmax
at+1

Q
(
st+1,at+1; θ−

)
(9)

It is noteworthy that the maximum operation in Equation (9) leads to overestimation
of Q-values. In order to alleviate this problem, Van et al. [25] propose double DQN that
decouples action selection from action evaluation and yt can be rewritten as:

yt = rt + γQ(st+1, argmax
at+1

Q(st+1, at+1; θ); θ−) (10)

To further promote the performance of double DQN, D3QN uses a dueling architecture
that decomposes Q-value into state value and action advantages. As shown in Figure 1,
the state value function and action advantage function are separately estimated by using a
dueling architecture with two streams of fully connected layers. Then, the Q-value of each
action is generated by combining the obtained state value and action advantages, which
can be formulated as:

Q(s, a) = V(s) + (A(s, a)− 1
|A|∑a′

A(s, a)) (11)

where V(s) represents state value function, A(s, a) is action advantage function, and |A| is
the size of action space.

2.2.3. Auxiliary Task Module

A common problem in DRL is sample inefficiency that means the agent (i.e., robot)
often requires a prohibitively large number of samples to learn a policy. Recently, some
researchers showed that augmenting the RL agent with auxiliary tasks can improve repre-
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sentation learning and alleviate the sample inefficiency problem [29,30]. Inspired by these
works, we introduced an auxiliary task of velocity estimation that requires the robot to
estimate its real-valued velocities from the generated multimodal representation. Specifi-
cally, we define vt and ωt as the ground truth linear and angular velocity of robot obtained
from training environment at time step t, respectively. In practice, since the input state st
includes four consecutive frames from time step t− 3 to t, we leverage a neural network
to estimate the velocities at times t− 2, t− 1, and t from the generated multimodal rep-
resentation, as illustrated in Figure 1. Accordingly, we formulate the loss function of the
auxiliary task, LAT , by using mean squared error between the estimated velocities and
ground truth as follows:

LAT =
t

∑
i=t−2

(
(vi − ṽi)

2 + (ωi − ω̃i)
2
)

(12)

where ṽ and ω̃ are the estimated linear and angular velocity, respectively. During the
training process, this auxiliary task module shares the multimodal deep neural network
with D3QN and therefore introduces extra gradient for improving representation learning
in DRL.

2.3. Training Framework

The training framework of MDRLAT is shown in Figure 2 and the pseudo-code is
described in Algorithm 1. The online network and the target network are used to select
action and generate target Q-value, respectively. At each time step, the mobile robot
implements the control command determined by online network based on current state,
transits to next state, and gets a reward from the environment. In the meantime, we
store this interaction in an experience replay buffer that is updated continuously with a
maximum capacity of 20,000.

Figure 2. Training framework of the proposed MDRLAT.

In the beginning of training, we initialize the parameters of online network randomly
and duplicate them to the target network. After that, at each training step, the parameters
of online network are updated by using a batch of interactions that are sampled randomly
from experience replay buffer. Specifically, online network outputs a vector Q(st; θ) that
contains Q-values of each action based on current input state st. Then, the action at to be
executed is determined by ε-greedy strategy [31] and its Q-value Q(st, at; θ) is also obtained
accordingly. At the same time, the next state st+1 is passed through the online network to
determine optimal action at+1 and also fed into the target network to compute target Q-



Sensors 2021, 21, 1363 7 of 16

value yt of the determined action at by using Equation (10). Based on the Q-values obtained
by online network and target network, we define the loss function of DRL as below:

LDRL = (yt −Q(st, at; θ))2 (13)

In addition, the online network is also used for the proposed auxiliary task by using
Equation (12). Therefore, the parameters of the multimodal representation in the online
network are updated simultaneously by two-part back-propagation error and two Adam
optimizers [32] are used with a same learning rate of 0.0001. On the other hand, the target
network is not trainable, and we therefore synchronize its parameters with those of the
online network every 1000 steps.

Algorithm 1: MDRLAT

1: Initialize experience replay buffer D to capacity N, parameters of online network θ, parameters
of target network θ− = θ, frequency Nt to update target network
2: for t = 1, 2, . . . , T do
3: Obtain sk = [lk, dk] from the environment, with probability ε select a random action ak,
otherwise select ak = argmax

a
Q(sk, a; θ)

4: Execute action ak, transit to next state sk+1 and receive a reward rk
5: Store transition (sk, ak, rk, sk+1) in D
6: Randomly sample a batch of NB transition (st, at, rt, st+1) from D
7: if episode terminates at step t + 1 then
8: Set yt = rt
9: else
10: Set yt = rt + γQ(st+1, argmax

at+1

Q(st+1, at+1; θ); θ−)

11: end if
12: Compute loss LDRL = (yt −Q(st, at; θ))2

13: Feed st into the online network to get estimated velocity ṽ, ω̃

14: Compute loss LAT =
t

∑
i=t−2

(
(vi − ṽi)

2 + (ωi − ω̃i)
2
)

15: Update the parameters of the online network θ

16: if t mod Nt = 0 then
17: Update the parameters of the target network θ− ← θ

18: end if
19: end for

3. Results
3.1. Experiments in Virtual Environments

In this section, we evaluate the performance of MDRLAT in a variety of virtual
environments. As shown in Figure 3, we created a 6 m× 10 m virtual training environment
containing different static and dynamic obstacles in Gazebo [33] and used a simulated
turtlebot2 robot to interact with environment. The proposed method was implemented
with Tensorflow [34] and trained on a computer with Intel(R) Xeon(R) E5-2630 2.30GHz
CPU, 64GB RAM, and NVIDIA GeForce GTX 1080 Ti GPU. During training and testing, the
2D laser range findings and depth images were captured by a simulated Hokuyo 2D laser
range finder and Kinect, respectively, and the output control commands are transmitted to
mobile robot via robot operating system (ROS) messages. In addition, we calculate reward
function and the loss function of auxiliary task by using the subscribed odometry message
in training process.
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Figure 3. The virtual training environment.

In order to illustrate the effectiveness of the proposed method, we compared MDRLAT
with a series of baseline methods: (1) Laser-only: in this case, we directly feed the feature
representation extracted from 2D laser range findings into D3QN, (2) Depth-only: in this
case, we directly feed the feature representation extracted from depth images into D3QN,
(3) Multi: in this case, we directly concatenate the feature representations extracted from
different sensor modalities, (4) Multi-AT: in this case, we adopt the auxiliary task module
in the multi method, (5) Multi-BF: in this case, we adopt the BF module in the multi
method. All methods were trained for 4e5 steps from scratch and we set batch size and
discount factor to 32 and 0.99, respectively. In addition, ε-greedy strategy was used to
determine action and ε was initialized to 0.1 and decayed linearly to 0.0001 within the first
20,000 training steps. In addition, we set the maximum steps of an episode to 500, which
means an episode is terminated if no collision occurs after 500 steps.

During the training process, we first calculated the accumulation of immediate re-
wards after every 5000 training steps, and the accumulated reward averaged by five
episodes is used to evaluate each method. The smoothed training curves of average ac-
cumulated rewards obtained by all methods are shown in Figure 4. We can see that the
laser-only method obtained the lowest average accumulated reward during the training
while the depth-only method achieved better performance. One possible reason for this
phenomenon is that the 2D laser range finder cannot detect the obstacle lying below its
scanning field [12]. Compared to these methods, the multi method leads to a higher aver-
age accumulated reward by using multiple sensors that can obtain more information of
surrounding environment. More importantly, the multi-BF method outperformed the multi
method with a remarkable improvement on average accumulated reward throughout the
training, indicating that the BF module can further improve the performance of obstacle
avoidance by fully capturing the complementary information across different sensor modal-
ities. Moreover, the introduction of the auxiliary task module boosted the performance
of both multi method and multi-BF method, making MDRLAT converge much faster and
achieve higher average accumulated reward throughout the training. Taken together, the
proposed MDRLAT exhibits the most prominent performance during the training process
among all the methods investigated in this work.

Apart from average accumulated reward, we also compare the success rate of each
method in this work. By following previous work [13], an episode is considered to be
successful if no collision occurs within 300 steps and the success rate represents the ratio
of successful episodes in 50 episodes. In order to assess the generalization capability, we
tested all methods in three different kinds of virtual environments directly without any
fine-tuning. As shown in Figure 5, the first one is an office environment containing many
corridors and narrow rooms. The second one is a more realistic environment with a lot of
unseen furniture created by [35] and the last one is a dynamic environment with a number
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of pedestrians. In short, these testing environments are more different and complicated
compared to the training environment.

Figure 4. Smoothed training curves of average accumulated rewards obtained by each method
at different training steps. Laser-only, directly feed the feature representation extracted from two-
dimensional (2D) laser range findings into dueling double deep Q-network (D3QN); depth-only,
directly feed the feature representation extracted from depth images into D3QN; multi, directly
concatenate the feature representations extracted from different sensor modalities; multi-AT, adopt
the auxiliary task module in the multi method; multi-BF, adopt bilinear fusion (BF) module in the
multi method; MDRLAT, our proposed method.

Figure 5. The virtual testing environments used in this work.

We tested all methods five times in each environment and the average and standard
deviation of success rate are shown in Table 2. It can be observed that all methods using
multiple sensors produced higher performance than the laser-only method and depth-only
method, which indicates that 2D laser range findings and depth images are complementary
and can be used together to improve the performance of obstacle avoidance. Furthermore,
we find that the multi-BF method consistently performs better than multi method. For
example, the average success rates of multi-BF method were 89.6% and 79.6% in the
first and third environments respectively, which have 12.8% and 8.8% improvement over
multi method, respectively. These results suggest the great strength of the BF module in
capturing the complementary information across different sensor modalities for obstacle
avoidance. Meanwhile, we also find the multi-AT method can obtain higher average
success rate than the multi method. For example, the average success rates achieved by the
multi-AT method reach 86.0% and 78.8% in the first and second environment, respectively,
compared with 76.8% and 73.6% obtained by the multi method, which demonstrates the
outstanding effectiveness of auxiliary task module for improving representation learning
in DRL. Moreover, by integrating both the BF module and the auxiliary task module,
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MDRLAT achieves the best performance across all three environments with remarkable
improvements on average success rate. Take the first environment as an example, MDRLAT
manages to obtain an average success rate of 94.4%, which achieves an improvement of
17.6%, 8.4%, and 4.8% over the multi method, multi-AT method, and multi-BF method,
respectively. In conclusion, compared with other methods, the proposed MDRLAT exhibits
superior generalization capability of obstacle avoidance.

Table 2. Average success rate (%) and standard deviation obtained by different methods in three
testing environments.

Env Laser-Only Depth-Only Multi Multi-AT Multi-BF MDRLAT

Env1 67.6 ± 4.8 69.2 ± 3.5 76.8 ± 4.1 86.0 ± 4.2 89.6 ± 1.5 94.4 ± 2.3
Env2 61.6 ± 4.6 55.2 ± 4.8 73.6 ± 5.3 78.8 ± 2.7 81.2 ± 3.0 87.2 ± 2.4
Env3 64.8 ± 3.2 63.2 ± 2.7 70.8 ± 4.1 78.4 ± 5.0 79.6 ± 3.4 83.6 ± 3.2

Laser-only, directly feed the feature representation extracted from 2D laser range findings into D3QN; depth-only,
directly feed the feature representation extracted from depth images into D3QN; multi, directly concatenate the
feature representations extracted from different sensor modalities; multi-AT, adopt the auxiliary task module in
the multi method; multi-BF, adopt BF module in the multi method; MDRLAT, our proposed method.

To intuitively illustrate the performance of the proposed method, two examples of con-
trol commands produced by MDRLAT in different scenarios are shown in Figures 6 and 7.
For the convenience of description, the top view of six intermediate time steps is presented
and the sub-caption indicates the corresponding linear and angular velocity commands in
each example. Meanwhile, angular velocity commands in all time steps are provided at the
bottom. As shown in Figure 6, in the beginning, the robot executes a large linear velocity
command to pass through the door. Subsequently, the robot turns left to prevent from
bumping into the wall and enters the narrow room. Later on, a zero linear velocity and a
large angular velocity are derived so that robot can drive itself out of a dead end without
any collision. Another example is shown in Figure 7, after passing through the table, the
robot is controlled to make a left turn to avoid collision with the person. Subsequently, the
robot moves forward rapidly and then changes its orientation to avoid the desk and office
box. Taken together, these examples demonstrate the ability of our proposed method to
deal with dead ends and different kinds of obstacles in virtual testing environments.

(a) 0.5 m/s, 0 rad/s             (b) 0.2 m/s, 6/ߨ rad/s          (c) 0.5 m/s, 12/ߨ rad/s

a b             c             d             e          f

(d) 0 m/s, 3/ߨ rad/s             (e) 0.5 m/s, 0 rad/s              (f) 0.5 m/s, −12/ߨ rad/s

Figure 6. An example of dealing with dead end in virtual testing
environment. The subfigures show the top view of six intermediate
time steps and the sub-captions indicate the corresponding linear and
angular velocity commands. Angular velocity commands in all time
steps are provided at the bottom.

Editable versionFigure 6. An example of dealing with dead end in virtual testing environment. The subfigures
show the top view of six intermediate time steps and the sub-captions indicate the corresponding
linear and angular velocity commands. Angular velocity commands in all time steps are provided at
the bottom.
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(a) 0.5 m/s, −12/ߨ rad/s       (b) 0.5 m/s, 12/ߨ rad/s          (c) 0.5 m/s, 12/ߨ rad/s

a                   b      c                 d          e          f

(d) 0 m/s, −3/ߨ rad/s          (e) 0.5 m/s, 12/ߨ rad/s         (f) 0.5 m/s, −12/ߨ rad/s

Figure 7. An example of dealing with different kinds of obstacles in
virtual testing environment. The sub-figures show the top view of six
intermediate time steps and the sub-captions indicate the
corresponding linear and angular velocity commands. Angular
velocity commands in all time steps are provided at the bottom.

Editable versionFigure 7. An example of dealing with different kinds of obstacles in virtual testing environment.
The subfigures show the top view of six intermediate time steps and the sub-captions indicate the
corresponding linear and angular velocity commands. Angular velocity commands in all time steps
are provided at the bottom.

Although we focus on obstacle avoidance task in this work, the proposed MDRLAT
can be extended for navigation task by adding goal information (e.g., the coordinate of goal
in the robot’s local coordinate frame). Here, we conducted a simple experiment by con-
catenating the goal information and the multimodal representation and using the reward
function designed by Xie et al. [10]. The training and testing environments for MDRLAT
are shown in Figure 8. During testing, a widely used motion planner Move_Base [36] was
used for comparison and the global map of testing environment was built for Move_Base
to calculate the path. The generated trajectories of both methods are illustrated in Figure 9.
We found that although the trajectory generated by MDRLAT was more tortuous than
Move_Base, the robot could safely reach all goals without a global map in a previous
unseen environment, which demonstrates the potential of MDRLAT for navigation task.

Figure 8. The training and testing environments for navigation task. (a) training environment (b)
testing environment.
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Figure 9. The trajectories generated by Move_Base and MDRLAT. (a) Move_Base (b) MDRLAT.

3.2. Experiments in Real-World Environments

In this section, a variety of experiments were implemented in real-world scenarios
to further assess the performance of the proposed MDRLAT. As shown in Figure 10, we
used an NVIDIA Jetson TX2 as computing platform and an open source hardware platform
turtlebot2 [37] equipped with a RPLIDAR 2D laser range finder and a Microsoft Kinect v1
camera for experiments. The control commands determined by MDRLAT were transmitted
to the robot through ROS messages. Firstly, we tested our proposed method in an office
environment, the third-person view of intermediate time steps is presented in Figure 11
and the sub-caption indicates the corresponding linear and angular velocity commands.
In the beginning, the robot was running into a dead end and then it changed direction to
the left to prevent from bumping into the office cubicle. Subsequently, when a previously
unseen obstacle (office chair) was detected, a large angular velocity was selected for the
robot to turn right to avoid collision. Then, the robot executed a small angular velocity
to adjust its orientation so that it can pass through between office chair and office cubicle
without any collision. After that, the robot moved forward with a small linear velocity in
the constrained space and then made a right turn with a large angular velocity to avoid
another office chair. This suggests that by following the control commands determined by
MDRLAT, the robot can move safely in cluttered office environment with objects absent in
the training environment.

Figure 10. A turtlebot2 used for experiments in real-world environments.

In addition, our MDRLAT was evaluated in a meeting room as well. As depicted in
Figure 12, in the beginning, the robot executed a small angular velocity and turned left to
prevent from bumping into the cabinet. Subsequently, the robot travelled forward with
maximum linear velocity until a right turn was needed to avoid colliding with chairs on the
left. Later on, a left turn command was derived to adjust the orientation of the robot so that
it could move safely in the narrow space between two rows of chairs. Finally, an example
of dealing with dynamic obstacle is illustrated in Figure 13. It can be observed that the
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robot moved forward with the maximum linear velocity and a zero angular velocity when
the pedestrian was far away. However, as the pedestrian kept moving ahead, the robot
received a large angular velocity command and turns left rapidly to avoid the pedestrian.
After that, the robot continued to travel forward with the maximum linear velocity and
then turned right to avoid chairs. Later on, a decreased linear velocity was derived to
control the robot to pass through between chairs and lecture table safely. Taken together,
these experiments validate the outstanding performance of the proposed MDRLAT, which
can enable a mobile robot to avoid various obstacles in different complicated real-world
environments.

(a) 0.2 m/s, −12/ߨ rad/s           (b) 0 m/s, 3/ߨ rad/s             (c) 0 m/s, −3/ߨ rad/s

a        b              c      d                                    e  f
(d) 0.2 m/s, 6/ߨ rad/s           (e) 0 m/s, −3/ߨ rad/s           (f) 0.2 m/s, 12/ߨ rad/s

Figure 11. An example of dealing with obstacles in a real-world office
environment. The subfigures show the third-person view of six
intermediate time steps and the sub-captions indicate the
corresponding linear and angular velocity commands. Angular
velocity commands in all time steps are provided at the bottom.

Editable versionFigure 11. An example of dealing with obstacles in a real-world office environment. The subfigures
show the third-person view of six intermediate time steps and the sub-captions indicate the corre-
sponding linear and angular velocity commands. Angular velocity commands in all time steps are
provided at the bottom.

(a) 0.2 m/s, 6/ߨ rad/s              (b) 0.5 m/s, 0 rad/s             (c) 0 m/s, −3/ߨ rad/s

a            b    c    d     e                                    f
(d) 0 m/s, 3/ߨ rad/s              (e) 0.5 m/s, 12/ߨ rad/s            (f) 0.2 m/s, 0 rad/s

Figure 12. An example of passing through narrow space in a real-
world meeting room between two rows of chairs. The subfigures show
the third-person view of six intermediate time steps and the sub-
captions indicate the corresponding linear and angular velocity
commands. Angular velocity commands in all time steps are provided
at the bottom.

Editable versionFigure 12. An example of passing through narrow space in a real-world meeting room between two
rows of chairs. The subfigures show the third-person view of six intermediate time steps and the
sub-captions indicate the corresponding linear and angular velocity commands. Angular velocity
commands in all time steps are provided at the bottom.
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(a) 0.5 m/s, 0 rad/s             (b) 0 m/s, 3/ߨ rad/s            (c) 0.5 m/s, −12/ߨ rad/s

a    b       c               d                         e              f
(d) 0.2 m/s, −12/ߨ rad/s      (e) 0.2 m/s, −12/ߨ rad/s          (f) 0.2 m/s, 6/ߨ rad/s

Figure 13. An example of dealing with dynamic obstacle in a real-
world meeting room. The sub-figures show the third-person view of
six intermediate time steps and the sub-captions indicate the
corresponding linear and angular velocity commands. Angular
velocity commands in all time steps are provided at the bottom.

Editable versionFigure 13. An example of dealing with dynamic obstacle in a real-world meeting room. The
subfigures show the third-person view of six intermediate time steps and the sub-captions indicate
the corresponding linear and angular velocity commands. Angular velocity commands in all time
steps are provided at the bottom.

4. Conclusions

In this work, we propose a novel multimodal DRL method, MDRLAT, for obstacle
avoidance of indoor mobile robot. Specifically, in MDRLAT a powerful BF module is
proposed to fully capture the complementary information from 2D laser range findings and
depth images, and the generated multimodal representation is subsequently fed into D3QN
to output control commands for mobile robot. In addition, an auxiliary task of velocity
estimation is introduced to further improve representation learning in DRL. We carefully
assess the performance of the proposed method in various virtual environments and the
experimental results show the remarkable performance of MDRLAT in terms of average
accumulated reward, convergence speed, and success rate. Moreover, experiments in both
virtual and real-world testing environments further demonstrate the outstanding gener-
alization capability of our method. Despite the promising results achieved by MDRLAT,
there is still room for further improvements. Firstly, some other information (e.g., optical
flow) is also useful for obstacle avoidance task [38], which could be combined with 2D laser
range findings and depth images to further enhance the performance. Secondly, although
we use multiple sensors to obtain information of surrounding environment, the input
information may still be insufficient since only four consecutive frames of 2D laser range
findings and depth images are fed into deep neural network, which could be alleviated
by taking more past memories into consideration. Finally, we will extend this work to
deal with more complicated tasks like multi-robot obstacle avoidance by using multi-agent
DRL [39].
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