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Abstract: Under mixed sparse line-of-sight/non-line-of-sight (LOS/NLOS) conditions, how to quickly
achieve high positioning accuracy is still a challenging task and a critical problem in the last dozen
years. To settle this problem, we propose a constrained L1 norm minimization method which can
reduce the effects of NLOS bias for improve positioning accuracy and speed up calculation via an
iterative method. We can transform the TOA-based positioning problem into a sparse optimization
one under mixed sparse LOS/NLOS conditions if we consider NLOS bias as outliers. Thus, a relatively
good method to deal with sparse localization problem is L1 norm. Compared with some existing
methods, the proposed method not only has the advantages of simple and intuitive principle, but
also can neglect NLOS status and corresponding NLOS errors. Experimental results show that our
algorithm performs well in terms of computational time and positioning accuracy.

Keywords: line-of-sight/non-line-of-sight; source localization; constrained L1-norm minimization
method

1. Introduction

In the last few decades, localization of the mobile station (MS) is a fundamental task for
lots of applications in different kinds of wireless sensor networks. One of them uses MS to
receive time signals from a lot of base stations (BSs) with known coordinates, which can be
transformed into distance data, e.g., time-of-arrival (TOA) measurements [1–6]. According
to these measurements, the coordinates of MS can be estimated in the intersection area of
different circles, whose centers and radius are the coordinates of BSs and corresponding
measurements, respectively. If the intersection area becomes larger, the coordinates of MS
will be difficult to be estimated and the corresponding positioning performance will be
degraded. Additionally, note that Gaussian noise, NLOS error and layout of BSs are the
most important factors that affect the size of the intersection area [7–25]. Among them,
NLOS error may be the most influential factor because it can directly lead to inaccurate mea-
surements, resulting in inaccurate localization results or even divergence [7–31]. Therefore,
it is of great practical significance to study how to improve the positioning performance
and degrade the effects of NLOS errors without requiring the priori information of NLOS
status and NLOS errors. In this paper, we deal with the TOA-based localization problem
by constrained L1-norm minimization technique.

To reduce the effects of NLOS errors and enhance the positioning performance, lots
of methods have been widely studied in [7–31]. In [10], a fast identification of NLOS error
using eigenvector (FINE) algorithm is proposed by using autocorrelation matrix eigenvalues
of residuals to identify the NLOS paths. According to the magnitude of residuals and
eigenvalues, only one NLOS path can be identified at a time. Then, corresponding BS and
observation should be deleted so as to detect the next NLOS path. Only when there is no
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NLOS path can the positioning result be obtained with all the LOS observations. Monte
Carlo simulation results show that FINE method can provide a very fast and simple way
to identify the NLOS status. Nevertheless, it can also detect LOS path as NLOS path and
neglect the contribution of NLOS paths, which ultimately degrades the positioning accuracy.

Furthermore, some convex optimization algorithms in [9], and in [15–22], which
partially mitigate the effects of NLOS errors by using all LOS and NLOS measurements,
perform well in terms of localization performance. In [9], the semi-definite relaxation (SDR)
and second-order cone relaxation (SOCR) technologies are taken by using all measure-
ments. Although they have the ability to overcome some effects of NLOS errors and achieve
good results, there is still a lot of room for improvement in terms of positioning accuracy.
Fortunately, based on a priori knowledge of known NLOS status, Wang et al. [9] presents
another two algorithms, both of which achieve exceedingly high positioning accuracy over
former methods by adding all equality constraints in LOS paths and inequality constraints
in NLOS paths to convex objective function. However, two algorithms are only suitable
for theoretical research and cannot be extended to the industrial market because their as-
sumptions cannot be realized in reality. Recently, a new robust SDP algorithm (RSDP-New)
is presented in [16], which performs well under mixed LOS/NLOS environments and
achieves high-precision positioning by introducing a balance parameter and specifying
the values of NLOS errors in advance. However, its disadvantages, which are that the
constraints are too many and complicated, assumptions are unrealistic, estimated coordi-
nates might divergence and the calculation time is too long, affect the actual application. In
short, it is a very difficult task to find an algorithm that cannot only degrade the effects of
NLOS errors as much as possible but also ensure better positioning accuracy and higher
calculation speed without many assumptions.

In this paper, a new simple algorithm is proposed to settle above issues, which is
called constrained L1-norm minimization method. Since L1-norm minimization model is
convex function, no matter how far the initial coordinates are from the true position, the
estimated solution can always converge to the true values by iterative method. Therefore,
if the estimated coordinates are close to the real position of MS and when the number of
LOS paths is more than that of NLOS paths, the localization residuals can be composed
of a small number of mixed noises composed of NLOS errors and Gaussian noises and a
large number of Gaussian noises. In other words, their expected values consist of a large
number of Gaussian-noise variances and a small number of non-zeros which are much larger
than the Gaussian-noise variances, which will cause the localization residual to be sparse
vector and the localization condition to be a mixed sparse LOS/NLOS environments [32].
Even if the base station coordinates contain errors, the errors are relatively small due to
the advanced measurement technology. Therefore, its influence on positioning accuracy is
relatively limited, and the proposed method in this paper is still valid. Thus, the TOA-based
localization problem under mixed sparse LOS/NLOS environments can be transformed into
a sparsity vector problem. Based on [32], we develop a constrained L1-norm minimization
method based on sparse vector technology [33–38] to settle the sparsity problem above and
obtain solution quickly and efficiently, which is different from other similar methods based
on low-rank matrix [35] or elastic network [20] technologies in essence. More specifically,
the proposed algorithm can automatically decrease the accuracy loss caused by NLOS errors
to the positioning system with no need to identify the NLOS status and estimate NLOS
errors. Simulation results show superiority of our algorithm in comparison with some
existing methods in terms of positioning accuracy and running time.

2. Problem Statement and Algorithm Development

A two-dimensional (2D) localization scenario will be considered in this section. The
coordinates [x, y]T of unknown MS can be estimated by using TOA measurements, which
represent the distances between MS and N BSs with known locations that are denoted by
[xi, yi]

T , i = 1, . . . , N and contain no other errors except the Gaussian noises and NLOS
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errors we added. After obtaining the observations, the ith measurement equation or the
Euclidean distance between MS and ith BS are modeled as√

(x− xi)
2 + (y− yi)

2 =

{
di − ηi, i ∈ φL
di − ηi − εi, i ∈ φNL

, (1)

where di is observation value between MS and ith BS, ηi is Gaussian noise, φL represents
the sets of LOS paths, φNL denotes the sets of NLOS paths, and εi is NLOS error which is
always bigger than zero and much larger than |ηi|, i.e.,

εi
|ηi|
� 1. (2)

Since model (1) is highly nonlinear, it needs further processing to facilitate the es-
tablishment of the new model. Hence, squaring both sides of (1) and moving d2

i to the
left-hand side, we obtain

x2 + y2 + x2
i + y2

i − 2xix− 2yiy− d2
i

=

{
η2

i − 2diηi, i ∈ φL
η2

i +ε2
i +2εiηi − 2di(ηi + εi), i ∈ φNL

.
(3)

Taking least squares algorithm and introducing four additional variables (i.e., A, x, b
and e), (3) can be equivalently written as

Ax− b = e, (4)

where

A =

 −2x1 −2y1 1
...

...
...

−2xN −2yN 1

, (5)

x =
[

x y x2 + y2 ], (6)

b =

 d2
1 −

(
x2

1 + y2
1
)

...
d2

N −
(
x2

N + y2
N
)
, (7)

and residual vector e =
[

e1 · · · eN
]T is made up of most of ei = η2

i − 2diηi, i ∈ φL
and small part of ei = η2

i +ε2
i +2εiηi − 2di(ηi + εi), i ∈ φNL under mixed sparse LOS/NLOS

conditions. Hence, its expected values are made up of σ2
i , i ∈ φL and non-zeros (i.e.,

ε2
i + σ2

i − 2diεi, i ∈ φNL), with most of them σ2
i .

For each Monte Carlo simulation experiment, variable pi is introduced to represent
the ratio relationship between NLOS error εi and Gaussian noise ηi. Thus, we have

pi =
εi
|ηi|
� 1, i = 1, 2, . . . , N. (8)

In order to apply the method proposed in this paper to mitigate the effects of NLOS
errors as much as possible, we must guarantee that vector e has the sparse character. To
prove that vector e is sparse, two prerequisites based on the definition of sparse vector
in [33,34] need to be guaranteed: (1) Most of the members of vector e are ei, i ∈ φL; (2) The
ratio fi of the NLOS elements (i.e., ei, i ∈ φNL) of vector e to absolute residual of LOS
elements (i.e., ei, i ∈ φL) needs to be much greater than 1. Based on the definition of mixed
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sparse LOS/NLOS conditions in Section 1, the first condition is obviously satisfied. For the
second condition, following expressions will be given to derive the ratio fi (i.e., ei ,i∈φNL

ei ,i∈φL
).

fi =

∣∣η2
i +ε2

i +2εiηi−2di(ηi + εi)
∣∣∣∣η2

i −2diηi
∣∣ . (9)

Since the magnitude of ηi is very small, η2
i can be ignored. Note that εi is much larger

than ηi and is less than di. So (9) can be equivalently written as

fi =
2di(|ηi |+εi)−ε2

i−2εi |ηi |
2di |ηi |

= 1 + εi
|ηi |
− εi

2|ηi |
· εi

di
− εi

di

� pi

(
1− 1

2 ·
εi
di

)
.

(10)

Based on (10), two cases need to be analyzed. If εi � di, fi � pi � 1 can be obtained
and the second condition is strongly satisfied. If εi ≈ di and εi ≺ di, fi � 1

2 pi � 1 can be
acquired and the second condition can be considered to be satisfied to some extent just for
pi � 1. Therefore, we can infer that vector e is sparse and the proposed algorithm can be
used in sparse optimization problem.

Combined with the above reasonable analysis, a good way to solve the TOA-based
localization problem under mixed sparse LOS/NLOS conditions is constraint L1-norm,
which is the difference with the model of [32] and can be modeled as

min
x
‖Ax− b‖1

s.t. xTPx + qTx = 0,
(11)

where P = diag([1, 1, 0]), q = [0, 0,−1]T , and ‖·‖1 stands for L1-norm minimization crite-

rion defined as ‖z‖1 =
(

∑i |zi|1
)

. By introducing a new vector z, (9) can be equivalently
rewritten as

min
x
‖z‖1

s.t. z = Ax− b,
xTPx + qTx = 0.

(12)

Using augmented Lagrangian, (12) can be further represented as

min
x
‖z‖1 −wT(Ax− b− z) + ρ

2‖Ax− b− z‖2
2

s.t. xTPx + qTx = 0,
(13)

which can be simplified as

min
x
‖z‖1 +

ρ
2

∥∥∥Ax− b− z− w
ρ

∥∥∥2

2
s.t. xTPx + qTx = 0.

(14)

To settle problem (14) quickly and effectively, we divide the solution process into
two steps. Firstly, taking alternating direction method of multipliers (ADMM) [35–37] to
deal with the object function of (14) and ignoring the constraint, vector z, w and x can
be obtained.

zk+1 = S1/ρ(g). (15)

wk+1 = wk − ρ(Ax− b− z). (16)

xk+1 =
(

ATA
)−1

AT
(

b + r +
w
ρ

)
. (17)
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where
g = Ax− b− r− w

ρ
, (18)

and w is lagrange multiplier, ρ is penalty parameter, S1/ρ(g) is an operator, whose specific
calculation process is detailed in [36–38] and can be written as

S1/ρ(gi) = sign(gi) ·max
{
|gi| −

1
ρ

, 0
}

, (19)

where

sign(gi) =


1, gi > 0
0, gi = 0
−1, gi < 0

. (20)

Next, considering the constraint of (14) and using Lagrangian, (14) can be denoted as

L(z, x, w, v) =

‖z‖1 +
ρ
2

∥∥∥Ax− b− z− w
ρ

∥∥∥2

2
+ v
(
xTPx + qTx

)
.

(21)

To get the iterative solution v, we introduce a new vector m and set the derivative of
Formula (18) with respect to x equal 0. Thus, we have

∂L
∂x

= ρAT
(

Ax− b− z− w
ρ

)
+ 2vPx + vq = 0. (22)

m = −ρAT
(

Ax− b− z− w
ρ

)/
(2Px + q). (23)

v =
3

∑
i=1

mi

/
3. (24)

By substituting (24) into (21), the positioning solution of the current cycle is

x̃k+1 =
(

HTH
)−1

HT
(

ρAT
(

b + z +
w
ρ

)
− vq

)
. (25)

where H = ρATA + 2vP.
The approximate calculation process of our method can be summarized as follows:

(1) Firstly, we set w0 = 1N×1, ρ0 = 0.01 and x0 = [1, 1, 2]T as the initial iteration value
of method ADMM. It should be noted that since the constrained L1-norm model is
convex function, any value of x0 can be used to obtain the convergence solution via
ADMM algorithm.

(2) Then, recycle computing Formula (13) to (20) until both Ax− b and xTPx + qTx
are smaller than the threshold, and output the final positioning solution under the
current Monte Carlo simulation experiment.

Special attention should be paid to consult [36] to obtain the adaptive iteration process
of ρ for speeding up the convergence speed of algorithm.

3. Simulation Results

This section gives six examples to test the positioning accuracy and calculation speed of
the proposed algorithm (i.e., CL1). In order to highlight the advantages of our algorithm, we
consider SDP [9], SOCR [9] and constrained weighted least squares (CWLS) [2] algorithms
as comparison algorithms for research. Additionally, the localization system is made up
of eight sensors, which are located at (0, 0), (10, 0), (10, 10), (0, 10), (15, 5), (5,−5), (5, 15)
and (−5, 5), and their layout is show in Figure 1. Assuming that Gaussian noise ηi with
mean zero and variance σ2

i and NLOS error εi with with randomly generated between
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6 ∗max(|ηi|), i = 1, 2, . . . , N and 12 ∗max(|ηi|), i = 1, 2, . . . , N are the basic conditions for
the following six experiments. Furthermore, root mean square error (RMSE), denoted by

RMSE =
√

1
M ∑M

i=1 (x̃i − xi)
2, with x̃i and xi being the estimated position and true position

of MS, can be used as an indicator to evaluate the precision performance and the number
of simulation times is M = 300 for each noise variance or BSs layout. In all experiments,
coordinates of MS are randomly generated within the area surrounded by BSs.

X/m

−5 0 5 10 15

Y
/m

−5

0

5

10

15
X: 5

Y: 15

X: 0

Y: 10

X: -5

Y: 5

X: 0

Y: 0

X: 5

Y: -5

X: 10

Y: 0

X: 15

Y: 5

X: 10

Y: 10

Figure 1. Coordinate diagram of base stations.

Example 1. In this example, we randomly select six BSs from eight BSs and fix the number of
NLOS paths as one to test the localization accuracy of different methods. Corresponding positioning
performance of four algorithms are shown in Figure 2, from which we see that the CL1 method is
significantly superior to SDR, CWLS and SOCR methods, indicating that L1-norm can also be
applied to the localization problem in a simple and direct way. Since L2 norm is mainly applicable
to Gaussian white noise environment and L1 norm is applicable to sparse environment, it is normal
that SDR, SOCR and CWLS methods, which based on L2 norm, have poor performance.

Example 2. In this example, we set the number of NLOS paths and BSs as one and seven,
respectively. Corresponding simulation results are shown in Figure 3. Obviously, CL1 method still
performs better than the other three algorithms. Since sparse method has great advantages in sparse
environment, it is normal that our method based on sparse technology has good advantages.

Example 3. To test the positioning performance of the proposed method when BSs contain errors,
we add Gaussian white noise with mean 0 and variance 0.02 to the BSs based on Example 2.
Corresponding localization results are shoun in Figure 4. Obviously, both Figures 3 and 4 are
basically consistent in terms of curve values and trends, indicating that BSs with noise have little
influence on our method.

Example 4. In this test, we set the number of BSs as eight and fix the number of NLOS paths as
one to further test the performance of CL1 method. Corresponding simulation results are shown in
Figure 5 and corresponding conclusions are consistent with Example 1, Example 2 and Example 3.

Example 5. To further verify the localization performance of the CL1 algorithm, we set the number
of NLOS paths as two and other conditions are consistent with Example 4. The simulation results
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are shown in Figure 6, from which we see that the performance of CL1 method is superior to SDR,
CWLS and SOCR methods in low-noise scenario, and the performance of four algorithms is almost
the same in the high-noise condiiton.

Example 6. To test the calculation speed of the four algorithms above, we characterize it by
calculating the time consumed by each algorithm in the process of running each program 400 times.
Based on the conditions of example 3, we set σ2

i = 0.1 and then the result of each computation
time will be shown in the Table 1. We see that the algorithm with the shortest time is CL1 method,
followed CWLS and SOCR methods, and finally SDR method. There will be some differences
between above four algorithms running on different computers, different software, and different
environments, but the ratio of computational time between algorithms will not change. Additionally,
our algorithm needs to iterate 70 times to reach the convergence solution on average.

σ
2

0.01 0.04 0.07 0.1 0.3 0.6 1

lo
g

(R
M

S
E

)

−4

−3

−2

−1

0

1

2

SDR

SOCR

CL1

CWLS

Figure 2. RMSE comparison of four methods under the conditions of six BSs and one NLOS.

σ
2

0.01 0.04 0.07 0.1 0.3 0.6 1
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g

(R
M

S
E

)

−5

−4

−3

−2

−1

0

1

2

SDR

SOCR

CL1

CWLS

Figure 3. RMSE comparison of four methods under the conditions of seven BSs and one NLOS.
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σ
2

0.01 0.04 0.07 0.1 0.3 0.6 1

lo
g

(R
M

S
E

)

−5

−4

−3

−2

−1

0

1

2

SDR

SOCR

CL1

CWLS

Figure 4. RMSE comparison of four methods under the conditions of seven BSs with noises and
one NLOS.
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0.01 0.04 0.07 0.1 0.3 0.6 1
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M
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E
)
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−2
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0

1

2

SDR

SOCR

CL1

CWLS

Figure 5. RMSE comparison of four methods under the conditions of eight BSs and one NLOS.
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σ
2

0.01 0.04 0.07 0.1 0.3 0.6 1

lo
g
(R

M
S

E
)

−3

−2

−1

0

1

SDR

SOCR

CL1

CWLS

Figure 6. RMSE comparison of four methods under the conditions of eight BSs and two NLOS.

Consequently, considering the experimental test results shown in Figures 2–6 and
Table 1, we can draw the following conclusions:

(1) The proposed algorithm has great advantages in positioning accuracy and has some
advantages in computational speed.

(2) Even if the base station contains noise, its influence on the positioning performance
of the proposed algorithm is limited.

(3) When the number of BSs increases while the number of NLOS paths remains
constant, the positioning performance of the proposed method will be improved
due to the increase of sparsity. On the contrary, the BSs remains unchanged, and
when the number of NLOS paths increases, the localization performance of our
method will be reduced due to the decrease of sparsity.

Table 1. Average computation time (in seconds) of four algorithms.

Method Average Time

SDR 1.43

SOCR 0.91

CL1 0.009

CWLS 0.53

Although our algorithm is currently only applicable to the mixed sparse LOS/NLOS
environments, it is still of reference value to the academic community. In the future, we
will devote ourselves to the study of high-precision positioning algorithms in non-sparse
environment or NLOS condition.

4. Conclusions

In this paper, we propose a constrained L1-norm minimization method, simple and
efficient, to improve the positioning accuracy and speed up calculation under mixed
sparse LOS/NLOS conditions. Based on the conditions that the magnitudes of NLOS
errors are much larger than the Gaussian noises and the number of LOS paths is larger
than that of NLOS paths, the residuals can form a sparse vector which fully guarantees
that our algorithm is innovative and feasible in principle. Meanwhile, experimental
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simulation results also confirm that the proposed algorithm not only has the advantage of
fast computation speed, but also can achieve a high positioning accuracy with no need to
identify NLOS status and estimate NLOS errors.
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