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Abstract: The automatic assessment of the aesthetic quality of a photo is a challenging and extensively
studied problem. Most of the existing works focus on the aesthetic quality assessment of photos
regardless of the depicted subject and mainly use features extracted from the entire image. It has
been observed that the performance of generic content aesthetic assessment methods significantly
decreases when it comes to images depicting faces. This paper introduces a method for evaluating the
aesthetic quality of images with faces by encoding both the properties of the entire image and specific
aspects of the face. Three different convolutional neural networks are exploited to encode information
regarding perceptual quality, global image aesthetics, and facial attributes; then, a model is trained to
combine these features to explicitly predict the aesthetics of images containing faces. Experimental
results show that our approach outperforms existing methods for both binary, i.e., low/high, and
continuous aesthetic score prediction on four different image databases in the state-of-the-art.

Keywords: image aesthetics; faces; convolutional neural networks; genetic algorithms

1. Introduction

Image aesthetic quality assessment (IAQA) is an important visual task, which repre-
sents an important criterion for visual content curation and lays the foundation in many
multimedia applications such as image retrieval [1,2], photo enhancement [3], and image
cropping and photo album creation [4–6]. The goal of IAQA is to design algorithms that
automatically predict image aesthetic quality. This is a challenging task due to its fuzzy
definition and its highly subjective nature. The aesthetic score of images relies on several
undetermined factors, such as composition, color distribution, and technical quality. Many
approaches for the aesthetic assessment of images with generic content are present in the
literature [6–8]. However, psychology research [9] shows that certain kinds of content are
more attractive than others. Professional photographers adopt different photographic tech-
niques and have various aesthetic criteria in mind when taking different types of photos;
therefore, it is reasonable to design features specialized in modeling aesthetic quality for
different kinds of photos (e.g., [10–12]).

In this paper, we focus on the aesthetic quality assessment of images containing human
faces. The reasons are twofold: (i) a large percentage of images on social media sites and
media content repositories contains faces and self-portraits, or “selfies” [13,14]; (ii) the
performance of generic content aesthetic assessment methods [7] drops considerably when
dealing with these types of images. The automatic estimation of the overall aesthetics
of images containing faces is fundamental for a wide range of applications, for example
to discriminate professional and amateur portraits on sharing platforms [15], to choose the
most aesthetically pleasing picture for sharing on social media [16], to guide the capturing
process on smart cameras [17], or to handle the automatic creation of photo albums [1].
The prediction of the overall aesthetics of an image containing faces is the result of the
combination of several features encoding relevant information about the global image
aesthetics adapted to facial pictures, as well as information related to facial expressions and
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high-level attributes (e.g., smile, age, gender, hair style). It should be clear that although
facial beauty and face aesthetics are two related concepts, the first reflects the attractiveness
of the subject’s face, while the second represents the attractiveness of the photo containing
the subject’s face (see, for example, Figure 1).

High aesthetic 
quality 

Low aesthetic 
quality 

Facial expressions, Brightness, Contrast

High aesthetic 
quality 

Low aesthetic 
quality 

Brightness, Contrast

Figure 1. Face aesthetics represents the attractiveness of the photo shot. This takes into account
aspects such as: facial expressions, brightness, contrast, etc.

Previously proposed methods for the aesthetic quality assessment of images contain-
ing faces can be grouped into those that treat the problem as a categorization into images
with low or high aesthetic quality [18–20] and those that instead estimate a continuous
score of aesthetic quality [1,17,19].

Males et al. [18] exploited a support vector machine for aesthetic quality categorization
trained on the combination of global (e.g., contrast and hue distribution of the whole image)
and local features (e.g., sharpness and blown-out highlights only of facial region). Their
experiments were carried out on a set of photos collected from Flickr and manually labeled
by five people as being aesthetically appealing or not. In [20], a compositional based
augmentation scheme was used to train a deep convolutional neural network (DCNN) on a
portrait subset of the AVA dataset for binary aesthetic classification. Li et al. [21] evaluated
the performance of several categories of features related to aesthetics such as pose, face
locations, and photo composition on their own dataset of photos with faces. Lienhard et al.
[19,22] proposed a new database, called Human Faces Score (HFS), and developed a method
based on the selection of low-level features extracted from several regions for both aesthetic
quality categorization of portrait images (i.e., low or high) and continuous aesthetic score
prediction. Recently, many works have proposed intelligent capture methods for taking
good selfies based on hand-crafted features and face pose analysis [17,23].

In this paper, we propose a method for the aesthetic assessment of images contain-
ing faces. It involves the use of three convolutional neural networks (CNNs) to encode
information regarding perceptual quality, global image aesthetics, and facial attributes.
A mixed-coded genetic algorithm (GA) is trained to combine these features to explicitly
predict the aesthetics of images containing face. The mixed-GA is built to simultaneously
address: (i) the selection of relevant features and (ii) the optimization of the weights char-
acterizing the linear model, which maps features to an aesthetic prediction. As far as
we know, this is the only approach that, for estimating the aesthetic quality of images
containing faces, takes into account the properties of the entire image, as well as aspects
specific to the face such as demographic attributes (gender, age, and ethnicity), mood (facial
expressions), and visual attributes (e.g., hair style, clothing, face shape).

The idea underlying this method was presented in [24]. In this paper, we revise this
idea, and in particular, we perform a deeper investigation concerning the fitness functions
to be used for the optimization of the genetic algorithm. We also exploit a richer set of
evaluation metrics to more comprehensively assess the aesthetics models. Moreover, a new
set of experiments assessing the generalization ability of the best method is carried out.

The rest of the article is organized as follows: Section 2 details the proposed method;
in Section 3, we present the experimental protocol and the considered metrics; Section
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4 reports the results and the analysis of the performance achieved; and conclusions and
comments are made in Section 5.

2. Facial Image Aesthetic Estimation

In this section, we describe the proposed method for the aesthetic quality assessment
of images with faces. The proposed method is depicted in Figure 2: given a photo, first,
the largest face is detected, then features are extracted from the whole image and the face
region, and finally, the trained model is applied for the aesthetic quality estimation of the
photo.

Facial features
modeling

Perceptual quality
modeling

Global image 
aesthetics modelingFeature extraction

Learning/
Inference

Face detection

Input image

Face detector

Perceptual features

Mixed-coded
GA

Linear modelModel parameters

Image aesthetic
quality

Figure 2. Overview of the proposed method. Given an image containing faces, the largest face is detected and cropped.
Perceptual features are extracted from the whole image, while facial features are computed on the crop of the face.
A mixed-coded genetic algorithm (GA) is used for estimating the parameters of a linear model, which predicts the image’s
aesthetic quality.

2.1. Face Detection

Faces are detected in the input image using the RetinaFace detector [25] with the
ResNet-50 backbone. RetinaFace is a robust single-stage face detector capable of simultane-
ously locating the face region, predicting the coordinates of five landmarks for the eyes,
nose, and mouth, and estimating the pixel-wise 3D shape face information. The size of
the detected bounding box is increased by 10% to also include a portion of the shoulders;
the facial region is then cropped from the entire image, and no alignment is adopted. In the
presence of multiple faces within an image, the largest one is considered.

2.2. Feature Extraction

The aesthetic quality of photos with generic content, as well as the aesthetics of photos
with faces depend on several perceptual properties. Furthermore, face attributes provide
fundamental information for the aesthetic evaluation of this specific category of photos.
In this paper, we use state-of-the-art CNNs for encoding both perceptual image-related
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and face properties. As highlighted in many previous works, aesthetic quality is strongly
influenced by several dimensions such as composition, colorfulness, spatial organization,
emphasis, and depth. We consider two pre-trained CNNs for image quality assessment and
generic content aesthetic assessment, proposed in the authors’ previous works, in order to
encode such information about the whole image (face and background).

For encoding perceptual quality metrics such as noise, exposure, quality, JPEG quality,
and sharpness, we use the DeepBIQ model [26] (IQ for short), which is one of the state-
of-the-art methods for blind image quality assessment [27]. It involves a feature extractor,
consisting of CaffeNet (see the architecture in Figure 3a) trained to classify images into five
image quality grades, followed by a support vector regressor (SVR) to map the feature
vector into a quality score. Given an input image with a variable resolution, it is divided
into a grid of 227× 227 overlapping sub-regions (see Figure 4a). For each sub-region,
the CNN then performs all the multi-layered operations, and the corresponding feature
vector is obtained by removing the last fully-connected layer. The 4096-dimensional
feature vectors of all the sub-regions are fed into the SVR, which predicts a region-level
quality score. The quality score for the whole image is computed by average pooling the
scores predicted on all the sub-regions of the original image (see Figure 4b). In this work,
the feature vectors of each sub-region are averaged to obtain a representation of the whole
image. The obtained feature vector has 4096 elements.

To extract features related to global image aesthetic concepts, such as brightness,
contrast, and color, we exploit the DeepIA model [7] (IA in short), which is a CNN trained
for generic content aesthetic assessment. It consists of a CaffeNet model (see Figure
3a) trained on the AVA dataset [28] to predict the aesthetic score of RGB images of size
227× 227. The 4096-dimensional feature vector for this model is extracted by removing the
last fully-connected layer.

layer name output size CaffeNet

conv1 55 × 55 11 × 11, 96, stride 4

pool1 27 × 27 3 × 3 max pool, stride 2
conv2 27 × 27 5 × 5, 256

pool2 13 × 13 3 × 3 max pool, stride 2
conv3 13 × 13 3 × 3, 384
conv4 13 × 13 3 × 3, 384
conv5 13 × 13 3 × 3, 256

pool3 6 × 6 3 × 3 max pool, stride 2

fc6 1 × 1 4096-d fc
fc7 1 × 1 4096-d fc
fc8 1 × 1 1-d fc

(a)

layer name output size ResNet-50

conv1 112 × 112 7 × 7, 64, stride 2

conv2_x 56 × 56

3 × 3 max pool, stride 2 1 × 1, 64
3 × 3, 64

1 × 1, 256

 × 3

conv3_x 28 × 28

 1 × 1, 128
3 × 3, 128
1 × 1, 512

 × 4

conv4_x 14 × 14

 1 × 1, 256
3 × 3, 256
1 × 1, 1024

 × 6

conv5_x 7 × 7

 1 × 1, 512
3 × 3, 512
1 × 1, 2048

 × 3

1 × 1 average pool, 40-d fc

(b)

Figure 3. The CNN architectures of the feature extractors. (a) CaffeNet architecture used for DeepIA [7] and DeepBIQ [26].
(b) ResNet-50 architecture used in Alignment-Free Facial Attribute Classification Technique (AFFACT) [29].
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extractor

(227×227 pixels)
•••
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(a)

SVR Average
Pooling

1×1

1×1

1×1

1×4096

1×4096

1×4096

Features

1
2
N

1×1

Score

(b)

Figure 4. The main components of the DeepBIQ model. (a) The sub-region extractor, which divides an image of variable
resolution into a grid of overlapping sub-regions of size 227× 227 pixels. (b) The feature vectors extracted from the CNN
for each sub-region are fed into the SVR, which predicts a quality score for each of them. The quality score for the entire
image is calculated by average pooling the predicted scores on all the sub-regions of the original image.

In photos containing faces, observers mainly focus on face regions. Intuitively, face
attributes such as facial expressions, the presence of makeup, or the presence of accessories
are closely related to the aesthetics of this specific category of photos. Therefore, we
consider a set of features able to accurately describe the face. To this aim, we use the
Alignment-Free Facial Attribute Classification Technique (AFFACT) [29] (FA in short),
a CNN model (see the architecture in Figure 3b) trained for the estimation of 40 facial
attributes (see Figure 5) given an RGB image of 224× 224 pixels. The 2048-dimensional
vector corresponding to the activations of the fully-connected layer before the classification
layer is used as the features.

Arched Eyebrows
Bushy Eyebrows

Narrow Eye
Eyeglasses

Bags Under Eyes

Black Hair
Blond Hair
Brown Hair
Gray Hair
Straight Hair
Wavy Hair

Bangs
Bald
Receding Hairline

Wearing Hat

Big Nose
Pointy Nose

Attractive
Blurry
Chubby
Oval Face
Sideburns
Rosy Cheeks
High Cheekbones
Pale Skin
Heavy Makeup
Wearing Earrings

Wearing Necklace
Wearing Necktie

Big Lips
Mouth Slightly Open
Smiling
Wearing Lipstick

5 o’clock Shadow
Double Chin
No Beard
Goatee
Mustache

Figure 5. A graphical representation of the 40 attributes used to describe faces.

2.3. Feature Fusion and Learning Procedure

As previously stated, the overall aesthetics of an image containing faces results from
the combination of several characteristics that encode global image attributes concerning
quality and aesthetics and information related to facial attributes [24]. However, we do not
know which of these features are relevant, how they are interlaced, or how they change
based on how the photo was taken. We let these relationships be learned and modeled
directly on the data using the genetic algorithm (GA). To do this, the previously extracted
features are fused using linear concatenation, then exploited for the GA based learning
procedure. Since the resulting feature vectors have a high number of features (10,240 when
all features are chained), some of which might be redundant, the proposed strategy also
includes a feature selection step. Feature selection refers to the task of identifying relevant
features useful for fitting accurate models. In this work, we propose a GA method to
jointly identify a subset of relevant features from the whole feature vector and optimize
the parameters of a prediction model. The rationale behind using the GA to handle both
problems, i.e., feature selection and learning of prediction model parameters, is that the
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choice of the prediction model parameters is influenced by the feature subset taken into
account and vice versa. Therefore, using a single optimization process allows automatically
identifying relevant features and their relationship to the parameters of the inferential
method directly from the data.

The GA is built to solve a mixed integer problem where some variables are restricted
to take only integer values. Real-valued variables are the weights (W) and the bias (b) of
the linear model, which maps features to an aesthetic prediction, while the Boolean-valued
variables (S) discriminate relevant features from the non-relevant ones. Given j ∈ [1, N f ]
and N f the total number of features, a chromosome is then represented as θ = {S, W, b},
where: S = {s0, sj, . . . , sN f } with sj ⇒ {x ∈ Z : 0 ≤ x ≤ 1} are binary values coordinating
feature selection; W = {w0, wj, . . . , wN f } with wj ∈ R are the weights of the linear model;
b ∈ R is a scalar value indicating the bias term of the linear model that offsets all predictions
for a better fit. Figure 6 shows the mixed-coding scheme used for the GA chromosomes.

1 0 1 1… 0 0 1 1…1 1 0 1…

1 NfBoolean-valued
Selected features

Real-valued
Linear model weights

1: represents a relevant feature
0: represents a non-relevant feature

1 Nf

S W b

Figure 6. Mixed-coded chromosome used for mapping deep features into an aesthetic prediction. It consists of a Boolean-
valued part, S, for feature selection, W where the elements are encoded by real-valued representation, and b is the bias. S
and W have a number of elements corresponding to N f , namely the number of features.

Given a feature vector x and the best fit chromosome θ = {S, W, b}, the aesthetic
quality is predicted through the following equation:

p =

N f

∑
j=1

xj(sjwj) + b. (1)

Fitness Function

Aesthetic evaluation can be treated as a binary classification problem to discriminate
high or low aesthetic quality, or as a regression problem to estimate an aesthetic quality
score. For a comprehensive evaluation of the proposed framework, we address both
problems, namely two-class categorization and regression. Therefore, for the optimization
of the genetic algorithm, we select different fitness functions depending on whether it is a
classification or a regression problem.

Classification Fitness

The fitness function used for the classification tries to minimize the hinge loss. This
loss was primarily developed for Support Vector Machine (SVM) models. It encourages
samples to have the correct sign by assigning a larger error when there is a sign difference
between the actual and expected class values. It is computed as follows:

Lhinge =
1
N

N

∑
i=1

∑
j 6=gi

max(0, 1− (pj − pgi )), (2)

where g and p are the ground-truth and the predicted scores, respectively.



Sensors 2021, 21, 1307 7 of 17

Regression Fitness

Three different fitness functions are considered for regression, namely the smooth-L1,
the norm-in-norm [30], and the ranking hinge loss. The smooth-L1 loss is widely used for
regression tasks because of its robustness to outliers. Given (gi, pi), the pair of ground-truth
and predicted scores for the i-th sample, and N, the number of samples, the smooth-L1 loss
(Lsmooth1) is computed as:

Lsmooth1 =
1
N

N

∑
i=1

di, where di =

{
0.5(gi − pi)

2, if |gi − pi| < 1
|gi − pi| − 0.5, otherwise

(3)

The recent norm-in-norm loss [30] facilitates faster convergence for training a CNN
based (Image Quality Assessment) IQA model and also leads to better prediction perfor-
mance than the mean absolute error (MAE) and mean squared error (MSE) losses. Its
estimation is based on three steps: the computation of statistics, normalization based on
the statistics, and loss as the norm of the differences between normalized values. Figure 7
shows each step required to calculate the loss.

!",$%!
& = 1, … , *

", %!
& = 1, … , *

+, = m(!")

01 =
!" − +,
03

03 = !" − +, " , = m(")

1 = " − ,
3

3 = " − , "

4#!# =
01 − 1 $
5

Figure 7. Illustration of the forward pass of the norm-in-norm loss [30]. Q and Q̂ are the Mean
Opinion Score (MOS) and the predicted quality score vectors, respectively. m(·) denotes the mean
function. c is a normalization term equal to 2N

1
2 .

The learning-to-rank framework has shown advantages in several computer vision
problems over common regression losses [31,32]. Therefore, another fitness function that is
used to optimize the genetic algorithm is the ranking hinge loss according to:

Lrank = max(0,−g(pi − pj)), (4)

where pi and pj are the predicted scores for two images i and j and g is the label assuming
a value of one or −1. If g = 1, then it assumes the input i should be ranked before the input
j, and vice versa for g = 0.

3. Experiments

In this section, the evaluation protocol, the considered databases, and the experimental
setup are detailed.

3.1. Evaluation Protocol

For the experiments, the same evaluation procedure adopted in [19] was followed.
More in detail, for each experiment, ten-fold cross-validation was performed by randomly
dividing the dataset into ten disjoint subsets and repeating the experiment ten times, each
time selecting a different subset of tests and the remaining nine for training. The division
into ten disjoint sets was repeated 10 times to avoid sampling bias.

Classification performance was evaluated in terms of the Good Classification Rate
(GCR) and F1 score. The GCR measures the ratio between the number of images correctly
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classified and the number of test images and is defined as GCR = CCE(0)/Nt. The cross-
category error (CCE) can be computed as follows:

CCE(k) =
1
N

N

∑
n=1

χ(gi − pi = k), (5)

where N is the number of samples, gi is the ground-truth class, and pi is the predicted class
for the i-th image. χ(x) = 1 if x is true, χ(x) = 0 otherwise. The F1 score corresponds to:

F1 =
2× precision× recall

precision + recall
, (6)

precision =
TP

TP + FP
, recall =

TP
TP + FN

, (7)

where TP is the number of true positives, FP stands for the number of false positives,
and FN is the number of false negatives, respectively.

Regression performance was evaluated in terms of Pearson’s Linear Correlation Coef-
ficient (PLCC) and Spearman’s Rank-Order Correlation Coefficient (SROCC). The PLCC
measures the linear correlation between the actual and the predicted scores, and it is
defined as follows:

PLCC =
∑N

i (xi − x̄)(yi − ȳ)√
∑N

i (xi − x̄)2
√

∑N
i (yi − ȳ)2

, (8)

where N is the number of samples, xi and yi are the sample points indexed with i, and
finally, x̄ and ȳ are the means of each sample distribution. Instead, the SROCC estimates
the monotonic relationship between the actual and the predicted scores, and it is calculated
as follows:

SROCC = 1−
6 ∑N

i d2
i

N(N2 − 1)
, (9)

N is the number of samples, and di = (rank(xi)− rank(yi)) is the difference between the
two ranks of each sample. The average of the considered metrics across the 10 rounds is
reported.

3.2. Portrait Image Databases

In this section, the publicly available databases for the aesthetic assessment of images
with faces are described. The databases consist of images containing people or groups
of people gathered from online photo databases or photo sharing websites (e.g., Flickr,
DPChallenge). Given that these photos were collected in real scenarios, they present a wide
range of subjects, facial appearances, illumination, and imaging conditions.

The CUHKPQ [15] is a manually annotated database for image aesthetics’ catego-
rization (respectively high and low). It consists of 17,673 images organized into seven
different categories. In this work, only images belonging to the “human” category are
considered. There are 3148 photos of different sizes. The size of the faces instead varies
between 180× 269 pixels and 1357× 900 pixels. Some example images are shown in Fig-
ure 8a. Figure 8b shows that most of the sample images were annotated as being of low
aesthetic quality.

The Human Faces Score (HFS) [22] database contains 250 photos of faces in the same
pose with the same width of 240 pixels and a variable height. Specifically, seven images
of 20 different people and 110 additional portrait images were collected. The face images
of one subject are given in Figure 9a. The annotation of each image was obtained by
having 25 human observers rate the image on a scale with values between 1 and 6 (the
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highest aesthetic quality), then calculating the Mean Opinion Score (MOS). In Figure 9b,
the histogram of the MOSs for the database is shown.

The Face Aesthetics Visual Analysis (FAVA) database is a subset of the large-scale AVA
dataset [28] containing various images with faces. The latter are portrayed in near-frontal
positions. The smallest face in the database has a size of 198× 212 pixels, while the largest
has a size of 1462× 1568 pixels. Each picture is associated with a value between 1 and
10 (the highest quality) corresponding to the average of around 210 collected individual
scores (Figure 10b displays the histogram of the MOSs). Samples are shown in Figure 10a.

The Flickr database was gathered from Flickr for general aesthetic assessment [1]. It
consists of 500 images associated with a ground-truth score between 0 and 10, where 10
means high quality. Photos have the longest side corresponding to 1600 pixels and show
a single face or a group of faces. The size of the smallest face in the database is 72× 72
pixels, while the largest face almost completely covers the surface of the image with a size
of 1462× 1568 pixels. According to [19], only the biggest detected face is considered in
each picture. Figure 11a shows samples from the database, while the distribution of the
scores is reported in Figure 11b.

(a) low high
0

500

1000

1500

2000

(b)
Figure 8. Sample images and number of samples per category for the CUHKPQ database. (a) Sample images in the top
row were annotated as low aesthetic quality, while samples in the bottom row show high aesthetic quality images. (b)
Annotation distribution for the low-/high- quality classes.

(a) 1 1.4 1.8 2.3 2.7 3.1 3.5 3.9 4.3 4.8 5.2 5.6 6
0

5

10

15

20

25

30

(b)
Figure 9. Sample images and distribution of scores for the Human Faces Score (HFS) database. (a) Samples are sorted by
their aesthetic score (increasing from top left to bottom right). (b) Distribution of ground-truth scores.
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(b)
Figure 10. Sample images and distribution of scores for the Face Aesthetics Visual Analysis (FAVA) database. (a) Samples
are sorted from by their aesthetic score (increasing from top left to bottom right). (b) Distribution of ground-truth scores.

(a)
0 0.8 1.7 2.5 3.3 4.2 5 5.8 6.7 7.5 8.3 9.2 10
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35
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(b)
Figure 11. Sample images and distribution of scores for the Flickr database. (a) Samples are sorted by their aesthetic score
(increasing from top left to bottom right). (b) Distribution of ground-truth scores.

3.3. Experimental Setup

Binary aesthetic classification and aesthetic score regression were performed for each
dataset presented previously.

For binary classification, the goal was to discriminate images into low-quality and
high-quality aesthetics. To get the ground-truth for the databases that provide the MOSs
(all except CUHKPQ, which already provides the low-/high-quality aesthetic labels), we
followed the same protocol as in [19]. In this protocol, the datasets were first sorted by the
Mean Opinion Score (MOS) values, then separated into two sets having the same number
of samples to contain the images with the lowest and highest aesthetic scores, respectively.

In all the experiments, the GA was trained with a population of 100 individuals ini-
tialized by using the parameters (weights and bias) and their perturbed versions of a linear
support vector machine (SVM) previously trained for aesthetic prediction. The learning
parameters were empirically setup differently for classification and regression. More pre-
cisely, for classification, the number of generations was 200, the probability of crossover
80%, and the elitism (the percentage of individuals in the current generation who will
survive for the next generation) 7%. For regression, the number of generation was 250,
the crossover probability 85%, and finally the elitism 10%.

4. Results

In this section, we report the results achieved by our method on the four considered
datasets separately in two different setups, then we compare our method’s performance
with the ones of previous methods. Furthermore, we conduct a performance evaluation



Sensors 2021, 21, 1307 11 of 17

of the generalization ability of our method in a cross-database scenario. We ran all of our
experiments on a desktop computer with an Intel Core i7-7700 CPU@3.60 GHz, 16 GB
DDR4 RAM 2400 MHz, and NVIDIA Titan X Pascal with 3840 CUDA cores. The training
time per experiment considering the 10 rounds of 10-fold cross-validation was 15 h on
average. The inference time per image running the three CNN based feature extractors in
parallel on the GPU was 0.08 s on average.

4.1. Performance on Single Databases

We performed two sets of experiments to evaluate how the context (background)
influences the aesthetic judgment of images with faces. In the first set, the perceptual
features were extracted from the entire image and the facial features from the face region
only, as described in Section 2.2. In the second set, on the other hand, both the perceptual
and facial features were extracted considering only the facial region. Additionally, we
created a baseline exploiting a linear SVM instead of the GA for aesthetic quality estimation.
This baseline highlights that the method benefits from the combination of features and the
use of GA rather than a linear classifier. We employed a linear SVM for binary classification,
while a linear SVR machine was used for continuous aesthetic score prediction. We report
the performance obtained by considering a single feature vector at a time and then by all of
their possible combinations.

4.1.1. Experiments Considering the Whole Image

Table 1 reports the results for binary aesthetic classification in terms of GCR and
F1-score. The best results for both metrics were achieved from the fusion of all the features.
The performance on CUHKPQ was higher than that on the other two databases. This is
because the CUHKPQ database is not very challenging. Although the images were taken
from the “human” category, many of the low aesthetic quality images in the database have
faces in random positions, which often do not look into the camera or are not present at all
(see, for example, Figure 12).

Figure 12. Low aesthetic quality samples from the CUHKPQ database in which the face is not present.

Table 2 depicts the results for the continuous aesthetic score in terms of the PLCC and
the SROCC. The mixed-coded GA trained using norm-in-norm fitness outperformed all
the other solutions for both metrics on FAVA and Flickr. In general, the GA based results
were better than those obtained using SVR. Only the ranking based GA solution resulted
in bad correlations probably because it needed more than 200 generations to converge
to the optimum. Figure 13 shows the scatter plots of the predicted scores with respect
to the MOS for both FAVA and Flickr in the 10 iterations. A linear regression function is
drawn to highlight the silhouette of the fit. We can observe that both distributions were
well fit. Figure 14 shows some examples of the predictions obtained by the GA optimized
using norm-in-norm. The first two images were incorrectly evaluated; in fact, the predicted
scores were higher than the MOS. The other two examples depict correctly rated images
(MOS and predicted scores are equal). This may be due to the fact that the method does
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not penalize when face illumination is not homogeneous; instead, it is strongly influenced
by positive facial expressions.

From the previous results, we can draw several conclusions. First, the combination of
all the considered features achieved the best results for all the databases, and in most cases,
the fusion of one of the perceptual features (quality or general aesthetics) with the facial
features obtained better results than the combination of the perceptual features. Therefore,
facial features are effective to model the aesthetics of images containing faces. Second,
the performance results by the mixed-coded GA were close to those obtained by the SVM,
but uses a lower feature set.

Table 1. Results for the aesthetic quality categorization for each database by extracting perceptual
features from the whole image. FA, AFFACT; GCR, good classification rate.

IQ IA FA # of Features GA
GCR (%) F1-Score

CUHKPQ FAVA Flickr CUHKPQ FAVA Flickr

X 4096 93.2 63.6 64.3 0.86 0.63 0.63
X 4096 97.2 67.4 71.6 0.94 0.68 0.72

X 2048 97.0 70.0 66.2 0.94 0.70 0.66
X X 6144 97.3 70.0 67.6 0.94 0.70 0.67
X X 8192 97.4 67.0 73.3 0.95 0.68 0.73

X X 6144 98.2 71.2 73.6 0.96 0.71 0.73
X X X 10,240 98.2 71.2 74.0 0.96 0.71 0.73
X X X 8300 X 97.5 70.7 73.9 0.95 0.71 0.73

Table 2. The Pearson linear correlation coefficient (PLCC) and the Spearman rank-order correlation
coefficient (SROCC) of the aesthetic quality prediction for each database by extracting perceptual
features from the whole image.

IQ IA FA # of FeaturesGA Fitness
PLCC SROCC

FAVA Flickr FAVA Flickr

X 4096 0.38 0.36 0.38 0.37
X 4096 0.51 0.57 0.49 0.59

X 2048 0.55 0.48 0.53 0.47
X X 6144 0.57 0.51 0.56 0.51
X X 8192 0.36 0.56 0.51 0.58

X X 6144 0.62 0.62 0.60 0.63
X X X 10,240 0.61 0.61 0.60 0.63
X X X 10,229 X Smooth-L1 0.62 0.61 0.61 0.63
X X X 10,233 X Norm-in-Norm 0.64 0.63 0.64 0.64
X X X 10,242 X Ranking 0.58 0.60 0.60 0.61
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Figure 13. Scatter plots of predicted scores versus MOS for the databases (a) FAVA and (b) Flickr,
using perceptual features extracted from the whole image.
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MOS: 3.23
Predicted score: 5.31

MOS: 5.35
Predicted score: 5.35

MOS: 0.10
Predicted score: 5.42

MOS: 6.88
Predicted score: 6.88

Figure 14. Images erroneously and correctly rated by our method GAwNorm-in-Norm trained on the whole image.

4.1.2. Experiments Considering Only the Face Region

Results for binary aesthetic classification are reported in Table 3. As seen in the
previous results, by fusing all the features, the best results were obtained. The performance
for the FAVA dataset was higher than the one obtained by extracting features from the
whole image. The reason might be that many images contain a small portion of background.

Performance results (in Table 4) for the continuous aesthetic score confirmed that the
fusion of all the features was optimal and that the GA based solution obtained better results
by using a smaller amount of features. In this set of experiments as well, ranking based GA
performed worse than both smooth-L1 and norm-in-norm. The latter’s fitness allowed GA
to achieve the best correlation for all the considered databases.

Figure 15 depicts the scatter plots of predicted against MOS scores for FAVA, Flickr,
and HFS. We used a linear regression function to highlight how the distributions were
well fit.
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Figure 15. Scatter plots of predicted scores versus the MOS for the databases: (a) FAVA, (b) Flickr, (c), and HFS using
perceptual features extracted from the face region.
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Table 3. Results for the aesthetic quality categorization for each database by extracting perceptual features from the
face region.

IQ IA FA # of FeaturesGA
GCR (%) F1-Score

CUHKPQ HFS FAVA Flickr CUHKPQ HFS FAVA Flickr

X 4096 92.0 72.4 63.3 59.1 0.84 0.71 0.63 0.60
X 4096 95.0 73.8 66.5 64.5 0.89 0.73 0.68 0.63

X 2048 97.0 71.0 70.0 66.2 0.94 0.72 0.69 0.65
X X 6144 97.0 76.8 70.8 67.2 0.94 0.77 0.70 0.67
X X 8192 95.4 75.1 65.6 65.0 0.90 0.74 0.67 0.64

X X 6144 97.1 78.0 71.7 65.4 0.94 0.78 0.72 0.64
X X X 10,240 97.0 79.0 71.8 65.6 0.94 0.79 0.72 0.64
X X X 8283 X 96.1 79.0 71.1 66.5 0.92 0.79 0.71 0.64

Table 4. PLCC and SROCC of the aesthetic quality prediction for each database by extracting perceptual features from the
face region.

IQ IA FA # of Features GA Fitness
PLCC SROCC

HFS FAVA Flickr HFS FAVA Flickr

X 4096 0.59 0.39 0.32 0.60 0.41 0.31
X 4096 0.66 0.50 0.48 0.66 0.49 0.47

X 2048 0.67 0.55 0.48 0.63 0.53 0.47
X X 6144 0.71 0.56 0.49 0.70 0.56 0.48
X X 8192 0.68 0.51 0.47 0.67 0.50 0.45

X X 6144 0.74 0.62 0.51 0.71 0.61 0.50
X X X 10,240 0.74 0.61 0.51 0.73 0.60 0.50
X X X 10,087 X Smooth-L1 0.76 0.61 0.51 0.74 0.60 0.49
X X X 10,075 X Norm-in-Norm 0.80 0.62 0.52 0.75 0.62 0.51
X X X 10,080 X Ranking 0.73 0.58 0.47 0.74 0.60 0.47

The evaluation protocol we used (the same as [19]) for the HFS did not take into
account whether images of the same subject were present in both training and testing;
therefore, it was a person-dependent experiment. To assess the generalization ability of
the proposed method, we performed a series of experiments in which we measured the
performance of the best version of the proposed method (i.e., GAwNorm-in-Norm) by
adopting person-independent cross-validation, where all the images of a subject must be in
the training or the test set. In the latter experiments, the performance achieved for aesthetic
classification degraded by 3% in terms of accuracy and by 0.04 in terms of PLCC between
the MOS and the predicted scores.

4.1.3. Comparison to Other Methods

A small number of methods have been developed and evaluated on the four databases
considered. Furthermore, none of these methods has released the source code or executable
program. Therefore, we compared our performance with that reported in the original paper
only for the methods that adopted the same evaluation protocol used in this paper.

Baseline: The baseline is DeepIA, which was the method proposed by the authors for
the aesthetic assessment of images with generic content.

Lienhard et al. [19]: Each face image was divided into four regions, namely the entire
face, the face area, the eyes’ area, and the mouth area. These regions are described by
60 values (15 features in each of the four regions). Features correspond to sharpness, illu-
mination, contrast, and color distribution measures. The late score fusion of the predicted
scores from four classifiers was then performed to obtain the image aesthetic prediction.
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Kairanbay et al. [20]: It consisted of a CNN trained using an augmentation scheme
based on compositional photographic rules for low/high aesthetic quality classification of
portrait images.

The previous methods were compared with our two best methods: the one proposed
in [24], which we named GAwSmooth-L1, involving the use of GA optimized with smooth-
L1, and its new version involving GA trained with norm-in-norm, which we named
GAwNorm-in-Norm. Both methods exploit the combination of all the considered features
extracted from the whole image.

Table 5 shows the comparison in terms of the GCR and PLCC. As is possible to see,
on average, both GAwSmooth-L1 and GAwNorm-in-Norm improved the GCR by more
than 3% with respect to the previous methods for binary aesthetic classification. GAwNorm-
in-Norm outperformed the second method, which is our GAwSmooth-L1, by more than
2% on average in terms of PLCC.

Table 5. Comparison with state-of-the-art methods for both aesthetic categorization and score prediction for all the
considered databases. For CUHKPQ, only the binary ground-truth (low-/high- aesthetics) is provided; therefore, the PLCC
cannot be estimated.

Methods
CUHKPQ HFS FAVA Flickr
GCR (%) GCR (%) PLCC GCR (%) PLCC GCR (%) PLCC

Baseline 77.1 64.8 0.69 67.4 0.50 65.6 0.47
Lienhard et al. [19] 94.8 79.3 0.73 67.1 0.51 69.3 0.49
Kairanbay et al. [20] – – – 65.3 – – –
Bianco et al. [24] (GAwSmooth-L1) 98.2 79.0 0.76 71.2 0.61 74.0 0.61
Proposed (GAwNorm-in-Norm) 98.2 79.0 0.80 71.2 0.64 74.0 0.63

4.2. Performance across Databases

In this section, we present the results of a set of experiments for evaluating the
robustness and the generalization skills of our method in a cross-database scenario. In each
case, one of the three regression databases was used for training, and the learned models
were tested on the other two databases. We compared the SROCC obtained by our two
methods GAwSmooth-L1 and GAwNorm-in-Norm. The results are reported in Table
6. It may be observed that the correlation on the test databases was not very high. This
result could have been expected because the images of the databases are very different
and probably also the criterion with which the ground truth was collected is not entirely
consistent. The model trained on the Flickr database generalized better than the others.
On the other hand, the model trained on FAVA did not estimate scores that correlated
well with the MOS of the other testing databases; this was probably due to the fact that
the MOS distribution of FAVA was very spiked on the average value of the MOS. Finally,
GAwNorm-in-Norm was very effective for the aesthetic evaluation of faces; in fact, it
generalized better than GAwSmooth-L1.

Table 6. Cross-database performance in terms of SROCC. Each entire database was used for both
training and testing.

Training HFS FAVA Flickr
Testing FAVA Flickr HFS Flickr HFS FAVA

Bianco et al. [24]
(GAwSmooth-L1)

0.32 0.41 0.33 0.40 0.44 0.38

GAwNorm-in-Norm 0.37 0.45 0.36 0.42 0.46 0.41
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5. Conclusions

In this work, we propose a framework for the automatic estimation of the aesthetic
quality of images containing faces. We exploit three different CNNs to encode global image
aesthetics, perceptual quality, and facial attributes. A novel learning procedure based
on mixed-coded genetic algorithms (GAs) is then applied for the combination of CNN
features and image aesthetic prediction. We compare three different fitness functions for
the optimization of the GA to predict the aesthetic score. Experiments on four benchmark
datasets in both binary and continuous aesthetic score prediction tasks demonstrate the
effectiveness of the proposed method. Furthermore, experimental results show that the
fusion of perceptual features extracted from the entire image and facial features is more
effective than modeling just the face region. The mixed-coded GA optimized using a
recently proposed regression loss performs better than both using other fitness functions
and using an SVM for aesthetics’ prediction. Finally, the performance evaluation in the
cross-database setup is conducted to point out the robustness and generalization skills
of our final method in comparison to other algorithms in the literature. Based on the
experimental results, the robustness of the proposed method needs to be improved. To this
end, we plan to extend our framework to include new features to characterize aspects of the
image that are not taken into account at the moment, such as geometric composition and
memorability, and let the genetic algorithm learn which features are relevant and which
are not.
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