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Biosensors and systems in the form of wearables and “nearables” (i.e., everyday
sensorized objects with transmitting capabilities such as smartphones) are rapidly evolving
for use in healthcare. Unlike conventional approaches, these technologies can enable
seamless or on-demand physiological monitoring anytime and anywhere. Such monitoring
can be beneficial in various ways. Most notably, it can help transform healthcare from the
current reactive, one-size-fits-all, hospital-centered, and volume-based system into a future
proactive, personalized, decentralized, and valued-based system. This new system and
other benefits of the technology hold great promise for longer and healthier living.

Wearable and nearable biosensors and systems have been made possible through
integrated innovations in sensor design, electronics, data transmission, power management,
and signal processing. Examples of measurements offered by these technologies include
biopotentials, body motion, pressure, blood volume, temperature, and biochemical markers.
Although much progress has been made in this field, many open challenges for the scientific
community remain, especially for those applications requiring high accuracy.

The aim of this Special Issue of Sensors is to provide an open collection of state-of-
the-art investigations on wearable and nearable biosensors and systems in order to foster
further technological advances and the use of the technology to benefit healthcare. The
12 papers that constitute this Special Issue offer both depth and breadth pertaining to wear-
able and nearable technology [1–12]. Depth is afforded through a critical mass of studies
on accelerometers [3–5,7,9,10], signal processing [1,2,4,5,7,10,11], and cardiovascular moni-
toring applications [2,5–7,9,10,12], whereas breadth is given through new biosensors [12]
and data transmission [9], other clinical applications including surgical training [8] and
brain-computer interfaces [1], and validation of commercial devices [6], which is crucial
for adoption. We provide a flavor of each contribution below in order of appearance in
this issue.

Majidov et al. [1] developed a machine learning technique to analyze EEG signals from
a wearable electrode cap for brain–computer interface (BCI) applications. The technique
was developed using a formal BCI competition dataset in which 18 subjects performed
an imaginary movement of hands and feet, and comprised a number of analytical tools
including online deep learning with data augmentation. They showed that the technique
was able to increase the classification accuracy compared to earlier techniques.

Huysmans et al. [2] developed a machine learning technique to analyze a bed-based
ballistocardiography (BCG) signal (i.e., a measure of the whole-body movement induced
by the heartbeat) for sleep apnea screening and sleep monitoring. The fully automatic
technique employed unsupervised, k-means clustering to reveal artifact (apnea) versus
clean signals. They showed that the technique can detect subjects with significant ap-
nea while also revealing how the bed pressure sensor should be used to enable future
supervised learning.

Bolus et al. [3] developed a glove with a fingertip mounted accelerometer for moni-
toring the health of joints via acoustic emissions. The new form factor for measuring joint
sounds eliminates the need for consumables like tape and associated interface noise. They
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showed that the device can yield reliable measurements under constant fingertip contact
force in subjects during an intervention to alter the knee joint sound.

Del Rosario et al. [4] developed a machine learning technique to determine body
position from a smartphone inertial measurement unit (IMU) placed at an arbitrary orien-
tation for various applications including fall detection. The technique uses hand-crafted
instead of deep-learning-based IMU features learned during walking periods as a refer-
ence for upright body posture. They showed that this technique can separate standing
versus sedentary periods using only one smartphone IMU in the pocket of younger and
older subjects.

Yao et al. [5] developed a wearable system for cuff-less tracking of blood pressure
changes. The system measures a BCG signal via an armband accelerometer and a photo-
plethysmography (PPG) signal via a finger clip, extracts data-driven features including the
time delay between the signals (pulse transit time), and performs cuff calibration to map the
features to blood pressure. They showed that this system as well as a BCG–PPG weighing
scale system could track blood pressure changes during interventions in healthy subjects.

Passier et al. [6] performed a validation study to compare two commercial in-ear
PPG sensor devices for detecting heart rate during intense physical activity. The study
is unique in terms of assessing external auditory canal PPG sensor devices and included
20 subjects during graded cycling. Both devices attained acceptable mean absolute heart
rate errors compared to the reference ECG over a wide heart rate range but were not
particularly precise.

Landreani et al. [7] developed a signal processing technique to quantify ultra-short-
term heart rate variability via a smartphone accelerometer for stress detection. The tech-
nique involves placing the smartphone on the abdomen and detecting each heartbeat from
the resulting BCG signal via cross correlation with a template. They showed the efficacy of
the technique in detecting vagal withdrawal during mental arithmetic in healthy subjects.

de Mathelin et al. [8] developed a glove for establishing objective criteria of the
expertise needed for surgeons to operate a transluminal robotic assistance system. The
glove includes 12 wireless force sensitive resistors for measuring hand grip forces under
visual feedback from the system. They revealed important differences in the handgrip
forces of an expert versus a novice in performing an exemplary pick and drop task.

Di Rienzo et al. [9] developed a wearable acquisition platform for the monitoring
of various cardiovascular features including pulse transit time and cardiac contractility.
The platform is capable of measuring 36 signals from 12 wireless nodes, including ECG,
seismocardiography (SCG, i.e., accelerometer-based measure of chest vibrations caused
by the heartbeat), and PPG sensors. Field tests showed that the system can acquire good
quality data in real life with a synchronization error between nodes lower than 1ms.

Yu et al. [10] developed a signal processing technique to remove the common motion
artifact in the SCG signal. Since the artifact is typically mixed with the heartbeat in time
and frequency, the technique is based on adaptive recursive least squares. They showed
that the technique could extract a clear signal without further processing from only one
accelerometer and detect the heart rate with high accuracy in healthy subjects.

Asci et al. [11] developed a machine learning technique to analyze smartphone voice
signals for assessing physiological aging. The technique extracts thousands of signal
features, performs feature reduction, and then applies a support vector machine to classify
age and gender. They notably showed the efficacy of the technique in subjects in a free-
living scenario to eliminate potential voice changes in supervised conditions.

Farooq et al. [12] developed a thin-filmed flexible wireless pressure sensor for inter-
face pressure monitoring during leg compression treatment of venous insufficiency. The
sensor is based on a pressure-dependent capacitance and inductive coil to allow passive
and wireless measurement. Through analytical and experimental testing, they showed
that the sensor offers sensitivity that is competitive with existing technology but with
lower-cost fabrication.
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We hope that this editorial serves as a useful guide to this collection of papers and
that the Special Issue does end up inspiring future efforts to bring an array of wearable
and nearable biosensors and systems to healthcare practices.
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