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Abstract: Explaining the prediction of deep neural networks makes the networks more understand-
able and trusted, leading to their use in various mission critical tasks. Recent progress in the learning
capability of networks has primarily been due to the enormous number of model parameters, so that
it is usually hard to interpret their operations, as opposed to classical white-box models. For this
purpose, generating saliency maps is a popular approach to identify the important input features
used for the model prediction. Existing explanation methods typically only use the output of the
last convolution layer of the model to generate a saliency map, lacking the information included in
intermediate layers. Thus, the corresponding explanations are coarse and result in limited accuracy.
Although the accuracy can be improved by iteratively developing a saliency map, this is too time-
consuming and is thus impractical. To address these problems, we proposed a novel approach to
explain the model prediction by developing an attentive surrogate network using the knowledge
distillation. The surrogate network aims to generate a fine-grained saliency map corresponding to the
model prediction using meaningful regional information presented over all network layers. Experi-
ments demonstrated that the saliency maps are the result of spatially attentive features learned from
the distillation. Thus, they are useful for fine-grained classification tasks. Moreover, the proposed
method runs at the rate of 24.3 frames per second, which is much faster than the existing methods by
orders of magnitude.

Keywords: deep neural networks; visual explanation; attention; knowledge distillation; fine-grained
classification

1. Introduction

Recent years have witnessed the evolution of deep learning at an astounding rate.
For instance, in the image classification task, residual networks [1], the winner of the
2015 ImageNet Large Scale Visual Recognition Challenge (ILSVRC), reduced the error
rate from 16.4% in 2012 to 3.6%, outperforming the classification ability of a human. Since
then, many enhanced networks in terms of performance and computational demand have
been proposed [2–5]. Due to the superior performance of deep neural networks, they are
expected to be deployed to aid in decision making in various real-life problems.

However, generating human-understandable explanations of model predictions is
critical for the widespread adoption of deep neural networks. For example, a medical
decision support system based on deep neural networks should be trustworthy and able
to explain its predictions for patients or clinicians in addition to its ability to accurately
diagnose the problem. The excellent performance of deep neural networks is attributed
to the learning capability of the models that typically comprise several billions of train-
able parameters [1,5–7]. Such complexity, however, makes the model’s behavior hard to
understand, rendering itself a black box [8].

A large body of approaches has been proposed to create visual explanations of the
models’ predictions. They provide visual explanation methods that create saliency maps
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representing the importance of input features for classification tasks [9–16]. Among them,
the approaches in [9,10] were proposed to create visual explanations by measuring the
differences in the models’ predictions between normal and occluded inputs. The methods
typically sought after the important regions of the input by generating numerous random
candidates and aggregating them into a single occlusion mask. Although explanations by
these approaches are accurate, a lot of time is required to learn a mask for a given input.

The practical deployment of the explanation methods should satisfy two requirements.
First, the methods should run rapidly (i.e., be capable of processing tens of images per
second). Second, the method should generate saliency maps of high fidelity that only
highlight truly important regions of the image in a fine-grained way [14]. The advantage
of the fine-grained explanation is obvious in the case where the small part of an object
has a great influence on decision-making. Existing explanation methods do not meet these
two requirements. Accurate results of the learning-based approaches come at the cost
of large computation time [9,10,14,17]. In contrast, other approaches based on gradient
quickly generate the saliency map of the input by a single run of feed-forwarding and
back-propagation on the target network. However, their saliency maps are created from
the feature maps of the last convolution layers and are thus diffused [11,16].

In this paper, we propose a novel approach that generates a saliency map to explain the
prediction of the target network by the corresponding surrogate networks (see Figure 1). A
saliency map is the most common form of explanation to represent the important input
pixels (or features) in a human-understandable manner. The surrogate networks have two
network branches: an attentive encoder network that approximates the features of the
target network and extracts layer-wise attention, and an explanation network that takes
the learned features from the encoder network and generates the final saliency map for
the input. We used knowledge distillation (KD) [18] to learn the surrogate networks that
explicitly combine the information obtained from the intermediate layers of the encoder
network where spatially fined-grained and low level feature activation occurs. As a result,
the proposed technique overcomes the previously mentioned limitations of the existing
methods and has contributions as follows.

• We propose a knowledge distillation method that transforms the black-box target
model into the corresponding surrogate network. The proposed knowledge distillation
provides enriched information at various levels to be integrated into a saliency map
for the model prediction.

• As a result, the proposed method creates a fine-grained saliency map compared to
those of the existing methods. Experiments demonstrate that fusing the multi-level
information is beneficial, especially in a fined-grained classification task.

• The proposed method requires no individual learning for the input once the corre-
sponding surrogate networks are trained using the knowledge distillation. Generating
a saliency map is done at the inference speed of the surrogate networks, which is
significantly faster than the learning-based methods while providing comparable
explanations both quantitatively and qualitatively.

(a) (b)

Input Ours Grad-CAM RISE LIME

Figure 1. Saliency maps of four explanation methods, the proposed method, Grad-CAM [11], RISE [9],
and LIME [10]: (a) an input image labeled goldfish, (b) explanations that are represented by the
pixel-wise multiplication of the input and the saliency maps. The saliency map developed by the
proposed method highlights almost all the fishes in the image, whereas the saliency maps of other
methods are either blurred or indicate only some of the fishes.
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2. Related Work

In this section, we briefly review recent work on explaining deep neural networks to
highlight the advantages of the proposed method.

2.1. Learning-by-Perturbation Methods

Methods that belong to this category aim to learn the optimal explanation for a given
input by gradually improving a randomly initialized saliency map (i.e., mask) with random
perturbations of the input. Perturbing the input image and measuring the corresponding
sensitivity of the model prediction is a popular approach to estimate the importance
of the input features. Occlusions or masks (as perturbations) are queried to the image
repeatedly to determine the optimal saliency map. In particular, this approach measures
the prediction difference between the input image and its perturbation assuming that
if the important regions of the input are perturbed, the model output (i.e., a confidence
score in a classification task) will degrade, compared to that for the original input. These
methods learn the feature importance of an input at the pixel-level [14] or at the regional
basis [9,17,19].

The method proposed in [9] uses arbitrary input sampling to create a random mask
in which each pixel value preserves or perturbs the corresponding part of the input. A
method that seeks a locally interpretable model-agnostic explanation was proposed in [10],
where an input image is transformed into a group of super pixels and is perturbed by
randomly deleting several super pixels.

These methodologies learn to generate a visual explanation by aggregating the model
outputs from the perturbations of the input. The resulting saliency maps identify the
informative regions representing the object. Furthermore, it is possible to create a fine-
grained visual explanation when the perturbation is made at the pixel-level. However,
saliency maps generated by those methods are non-deterministic due to the randomized
input perturbation. Another disadvantage is that creating a visual explanation in such
a way is time-consuming because of numerous inferences for random samples from the
input perturbation. For instance, in our experiments, the representative perturbation-based
methods (RISE [9] and LIME [10]) processed images in the validation set of ImageNet at
the rates of 0.125 and 0.18 fps (frames per second), respectively.

An approach proposed in [17] learns a perturbation mask that captures important
regions of the input image as in RISE [9] and LIME [10]. An objective function used in
this approach considers finding the smallest part of an image that is sufficient to retain
the model output score. Additionally, the need for regularization was also considered to
prevent the creation of adversarial evidences when generating a mask.

Wangner et al. [14] used an objective function, similar to [17], to achieve a fine-grained
visual explanation by learning pixel-level masks for each of the color channels in the image.
Although this method generated fined-grained saliency maps, it requires modification of
the nonlinear activation of the original model to avoid generating adversarial saliency
maps, whereas the proposed method is non-intrusive.

2.2. Activation Map-Based Methods

The activation (i.e., feature) maps of a convolutional neural network (ConvNet) have
the regional information. Zeiler and Fergus [15] proposed a method to visualize the role
of each layer in a ConvNet using the activation maps of convolutional layers and their
counterpart transposed layers. Zhou et al. [16] proposed a technique called class activation
mapping (CAM). The method generates a saliency map by linearly combining the weights
of fully connected (FC) layers of a ConvNet. Global average pooling (GAP) is applied to
the activation maps of the last convolutional layer in the model to calculate the weights of
the maps.
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2.3. Gradient-Based Methods

A gradient represents the amount of change in the output score of the model corre-
sponding to a small change of each dimension of the input. As a result, the gradient can be
viewed as a measure of pixel importance to represent how much the pixel contributes to
the model prediction. Simonyan et al. [13] proposed a method to extract a class saliency
map by accumulating the gradients of the output of the model with respect to the input
containing the object class category. The attribution of the class score was evaluated at the
pixel-level, and thus resulted in a fined-grained saliency map. Gradient, however, does not
directly represent the importance of input features for model prediction. Moreover, the
saliency map is often noisy and incorrect compared to the perturbation-based methods.

Selvaraju et al. [11] generalized the CAM by eliminating the need to use GAP and
FC in the model. Instead, this method, which is known as Grad-CAM, uses gradients to
weigh the activation maps. As both CAM and Grad-CAM use the activation maps of the
lowest resolution from the last convolutional layer, their explanations are usually diffused.
Although such coarse feature maps are appropriate for general classification or localization
tasks, they are not suitable for fine-grained classification tasks wherein each of the classes
should be distinguished from the appearance of the target object (even in terms of subtle
difference).

3. Proposed Method

Section 3.1 formulates the problem by defining objective functions to be solved by the
proposed method. Then, Section 3.2 describes the knowledge distillation technique [18]
that is used to train surrogate networks in the proposed method and the details of the
surrogate networks are given in Sections 3.3 and 3.4.

3.1. Problem Formulation and Overview

For a given image x0 ∈ Rd as a d-dimensional vector and a target network (T ) with
parameters θT , let YθT (x0) = {y1

θT
(x0), y2

θT
(x0), ..., yC

θT
(x0)} be the output of T (i.e., the

softmax scores) where yc
θT
(x0) ∈ [0, 1] is the score of class c and C denotes the number of

classes. Let y∗θT (x0) ∈ YθT (x0) be the score of the target class for x0 such that y∗θT (x0) =

max yi
θT
(x0) where yi

θT
(x0) ∈ YθT (x0) for given parameters θT . Note the explanation

method just calculates a saliency map corresponding to the predicted class whether or not
the prediction is true. Then, the goal of the proposed method is to determine a saliency map
Hx0 ∈ [0, 1]d to explain the model prediction of the target network T , which is given by

Hx0 = arg max
hx0

y∗θT (hx0 � x0) (1)

where � is an element-wise production. A saliency can be viewed as a 1-channel image
with the resolution identical to that of x0. We define by explanation x̂0 the multiplication of
x0 and its corresponding saliency map Hx0 , x̂0 = x0 � Hx0 .

The outstanding prediction capability of deep neural networks is largely due to the
hierarchical feature learning through inner layers in the model. This motivates us to com-
bine the operations of intermediate features to draw human-understandable explanations.
Unfortunately, the structure of the target network is arbitrary with a huge number of
parameters and thus it is often difficult to identify which features should be used to create
a meaningful saliency map. We address this concern by considering surrogate networks
for the target network that allow the proposed method to explicitly extract the meaningful
features for the model prediction.

For this purpose, we use knowledge distillation [18] to implant the knowledge of the
target model to the surrogate networks that effectively reveal meaningful information of the
target model. Originally, knowledge distillation aims to transfer the prediction capability
of the large target network, called the teacher network, to the small network, called the
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student network, by distilling the concise knowledge representation of the teacher network
into the student network.

The surrogate networks of the proposed method comprise two network branches to
solve Equation (1): an attentive student network (S) with parameters θS and an explanation
network (E ) with parameters θE as shown in Figure 2. S encodes the knowledge of T using
attention to better learn the features of T . We train S using the knowledge distillation. An-
other branch E generates a saliency map Hx0 by exploiting the attentive features transferred
from S . The attention modules in S enable S to learn the meaningful intermediate features
of T that are expected to contribute to the output score of T , whereas irrelevant or negative
features are likely to be suppressed. E takes the information of T that are learned by S as
the input and generates the final saliency map. In such a way, the surrogate networks can
be viewed as an autoencoder, where T and E are an encoder and a decoder, respectively.

Attention based

Student Network
Teacher network
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… … …

!!"# !$%

Saliency 
map

Attention
Module

The student network training
The explanation network training

Explanation 
Network

Explanation Input

Surrogate networks

Figure 2. The overall procedure of the proposed explanation method. The black arrows correspond to
learning the student network branch, T , of the surrogate networks using the knowledge distillation.
The green arrows show the process of training the second branch of the surrogate networks, the
explanation network E , to produce a saliency map. LEXP and LKD are loss functions for each training
process, which are explained in Sections 3.2 and 3.4, respectively.

As a result, the proposed method aims to address two sub-problems to achieve the
goal specified in Equation (1) as follows: (1) training the student network S to learn the
internal behavior of the target network T , so that the explanation network E approximates
T in terms of the network output, and (2) explanation x̂0 should contain meaningful
information on the target network prediction for x0. In other words, the outputs of T for x0
and x̂0 should be similar. Thus, the first sub-problem can be described as learning S using
the knowledge distillation, which is given by

θ∗S = arg min
θS

JKD(X, θT , θS ) (2)

where JKD(X, θT , θS ) is a cost function for measuring how well the knowledge of T is
transferred to Sfor a given training dataset X. In other words, Equation (2) aims to ensure
that the output of S is identical to that of T , so that S is an approximate function for T .

The second sub-problem corresponds to the explanation network E . A good explana-
tion method should preserve the important parts of the image by ensuring the correspond-
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ing pixels in a saliency map to be close to one, whereas uninformative parts are suppressed,
leading to a value of zero. Thus, E aims to generate a faithful explanation for the prediction
of T , so that the explanation retrieves the original score of the target class as follows.

θ∗E = arg min
θE

JEXP(X, θT , θE ) (3)

where JKD(X, θT , θS ) is a cost function that evaluates saliency maps for X that were gener-
ated by E in terms of retrieving the target class scores from the corresponding explanations.

3.2. An Attentive Surrogate Network Learning Using Knowledge Distillation

Training a classifier based on neural networks typically uses only a one-hot-encoded
hard label for a given image. However, the image may contain both the information that
corresponds to the ground-truth label and that of other recognizable objects in the image.
Further, the target object corresponding to the label may have information on other objects
with different labels, and thus the model prediction usually results in a soft label. This
observation encourages the student network to learn the soft labels instead of the hard
ones, which improves the network generalizations.

We applied this technique for leaning the surrogate network in the proposed method.
In particular, the target model to be explained is the teacher network to use the knowledge
distillation, where the softmax output of the target model can be represented as the soft
labels. Unlike the typical setting of the knowledge distillation that uses a small student
network, the student network in the proposed method has a number of model parameters
similar to T without loosing the prediction capability of T . The proposed method has two
advantages related to the use of knowledge distillation. First, any classification network
can be the teacher network because the knowledge distillation only requires the output of
the last layers of the teacher network. Second, the teacher and the student networks are
decoupled, so that a student network can be independently be designed to explaining the
model prediction.

Then, the cost function for the knowledge distillation in Equation (2) is written as

JKD(X, θT , θS ) = ∑
x∈X
LKD(x) = ∑

x∈X
αLso f t(x) + (1− α)Lhard(x). (4)

where α ∈ [0, 1] is a coefficient to weight two losses Lso f t(·) and Lhard(·). For a given image
x, let zc

T (x) ∈ R be the pre-softmax output of T for class c. Thus we have

yc
θT
(x) =

exp
(
zc
T (x)

)
∑j exp

(
zj
T (x)

) . (5)

Similarly, we define zc
S (x) ∈ R for S . Then, Lso f t(·) is a loss corresponding to soft

labels, which is

Lso f t(x) = t2 · DKL

 exp
(

zc
T (x)

t

)
∑j exp

(
zj
T (x)

t

) ,
exp

(
zc
S (x)

t

)
∑j exp

(
zj
S (x)

t

)
 (6)

where DKL(·, ·) is the Kullback–Leibler divergence and t is a parameter called temperature.
On the other hand, Lhard(·) is a loss corresponding to hard labels as

Lhard(x) = CE
(
YθT (x), Yx

)
(7)

where CE(·, ·) is a cross entropy and Yx is an one-hot vector to represent the ground-truth
hard label of x.
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3.3. Attention-Based Student Network

In this section, we describe the structure of the student network (i.e., the first branch
of the surrogate networks) with an emphasis on attention. Attention is a method that
aims to obtain information on which part a neural network considers important for the
prediction; this originated from a machine translation task in the field of natural language
processing [20]. Recently, an approach that only used attention and fully connected layers
has achieved the-state-of-the-art performance by outperforming almost all existing natural
language processing models [21]. Attention is also popular in vision tasks because it is easy
to use and scalable when applying to existing networks [2,4,22,23].

The student network is based on ResNet-50 [1] and thus has four residual blocks,
the last three of which contain 3–6 attention modules. Each residual block has a pooling
layer that halves the dimensions of the last convolutional features of the block, and the
number of the feature maps is doubled. Figure 3 shows the attention module in the
student network that delivers the attentive features to the explanation network. For an
attention module, we used a combination of two branches, channel and spatial attentions,
as proposed in [4], which are implemented using lightweight convolutional layers and
linear transformations. An attention module can be plugged into an existing network easily
to amplify the meaningful regions of the input features to the block.

𝑓𝑜

መ𝑓𝑜

Conv-BN-ReLU

Conv-BN-ReLU

Conv-BN

ReLU

Attention
module

Channel
attention

𝑓𝑖

∆𝑓𝑜

Residual
block

𝑎𝑡𝑡

Spatial
attention

Explanation 
Network

Figure 3. The structure of the attentive student network that consists of multiple residual blocks.
Conv, BN, and ReLU stand for a convolution layer, a batch normalization layer, and a rectified linear
unit, respectively. An attention module is plugged into a residual block to deliver the attentive
features,4 fo = f̂o − fo, for the target network prediction to the explanation network.

In particular, a set of features fi is fed into the attention module that is a simple
network module with a convolution layer and a fully connected layer for the spatial and
channel attention, respectively [4]. Then the features are translated into fo, from which we
create an attention map att = [0, 1]dim( f0) as illustrated in Figure 3, where dim( f0) is the
dimension of fo. The output of the attention module f̂o is then calculated by multiplying the
attention map att with the features fo. Finally, we take the difference of the features maps,
4 fo, before and after the attention module (i.e.,4 fo = f̂o − fo), which effectively reveals
the import part of the features fi and is given as the input of the explanation network.
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3.4. Explanation Network

As explained earlier, the student network provides the explanation network with
information on the attentive features that are taken from the three layers at different scales,
as shown in Figure 4. The student and the explanation networks can be viewed as an
encoder and a decoder of an autoencoder, respectively. Although the connections between
these two networks resemble the skip connections in U-Net [24], their goals are different.
In particular, the proposed method delivers the attention features through the connections
to identify the influential regions corresponding to the classification. In contrast, U-Net
directly concatenates the features maps from the encoder to those of the decoder, with the
goal of obtaining better segmentation. The explanation network has three main blocks,
called upsample, each of which consists of convolutional and interpolation layers, as shown
on the right of Figure 4. In this way, the dimensions of the features in the explanation
network grow toward those of the input.

Explanation netStudent net

ResBlock w/
attention module

Layers

Layers

Layers

Layers

Upsample

Interpolation

Conv-BN-ReLU

Upsample

Upsample

Upsample

ResBlock w/o 
attention module

Conv

Sigmoid

InterpolationConv-BN-ReLU

Max Pooling

Fully connected

GAP

∆"!

Saliency 
mapInput

Figure 4. The entire organization of the surrogate networks. The student network creates the mul-
tiple features created by the attention modules at the difference scales and transfers them to the
explanation network.

Training the explanation network aims to generate a faithful saliency map for a given
input in terms of retrieving the class score on the target network. Then, the cost function
for training the explanation network in Equation (3) is given as

JEXP(X, θT , θE ) = ∑
x∈X
LEXP(x) + λ||Hx||1 (8)

where λ is a coefficient to weight the `1-norm of a saliency map Hx. The `1 regularization
effectively avoids a trivial solution of Hx = {1}d, and thus, x̂ = x. We note that this regular-
ization coincides with previous work that generated perceptually improved images [25–27].
As a result, such a benefit also applies to the proposed method.

We formulate LEXP(x) as in Lso f t(x) in Equation (6) by letting t = 1, which is given by

LEXP(x) = DKL

 exp
(
zc
T (x)

)
∑j exp

(
zj
T (x)

) ,
exp

(
zc
S (x)

)
∑j exp

(
zj
S (x)

)
 (9)

where c is the target class of x. The proposed method is end-to-end trainable by combining
Equations (2) and (3) as follows:
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{θ∗S , θ∗E} = arg min
θS ,θE

J (X, θT , θS , θE ) (10)

J (X, θT , θS , θE ) = ∑
x∈X
L(x) = ∑

x∈X
LKD(x) + LEXP(x) + λ‖Hx‖1 (11)

where L(·) is an aggregated loss function for the end-to-end training.

4. Experiments

We conducted a set of experiments to evaluate the proposed method. The goal of the
evaluations was to answer the following questions:

• How do saliency maps generated by the proposed method retrieve the class score that
is predicted by the target network for a given input?

• How is the proposed method advantageous over existing explanation methods?
In other words, how fast does the proposed method process images? Additionally,
are there any downstream tasks that the proposed method performs favorably as
compared to the previous methods?

4.1. Experimental Setups

Dataset. We used four datasets for the experiments: ImageNet [28], CUB-200 [29],
Cars [30], and FGVC-Aircraft [31]. ImageNet is a popular large-scale dataset for evaluating
generic classification models, whereas CUB200, Cars, and FGVC-Aircraft are datasets that
are tailored for fine-grained classification as a downstream task. In particular, CUB-200 is an
image dataset that contains 200 bird species that are annotated with bounding box, rough
segmentation, and attributes. The Cars dataset contains 196 classes of cars. FGVC-Aircraft
is a dataset for the fine grained visual categorization of aircraft by the variant, family, and
manufacturer.

Table 1 summarizes the details of these datasets. As images in the test set of ImageNet
do not have labels, we used the validation set for evaluating the proposed method. On the
other hand, the CUB-200 and Cars datasets have no validation set. Therefore, we used the
test set for both validating and testing our model during training as in the case of ImageNet.
When training our model using the FGVC-Aircraft dataset, we merged the training and the
validation sets into a bigger single training set and used the test set for both validating and
testing our model, aiming to achieve better classification performance. As a result, a single
entry of each training, validation, and test set is present in Table 1.

Table 1. Summary of the datasets used in the experiments. We excluded images that are identified
to be in the black list of ImageNet. The aircraft dataset used images of three training and three
verification sets as training sets corresponding to the three subcategories.

Dataset # Classes # ImagesTraining Set Validation Set Test Set

ImageNet [28] 1000 1,281,167 48,238 -
CUB-200 2011 [29] 200 5994 - 5794

Cars [30] 196 8144 - 8041
Aircraft variant [31] 100
Aircraft family [31] 70 3334 3333 3333

Aircraft manufacturer [31] 30

Implementation Details. We used ResNet-50 that was pretrained on ImageNet as the
target network T . We set α in Equation (4) and λ in Equation (8) to 0.5 and 10−5, respectively.
We set the temperature parameter t to 1 in Equation (6) for knowledge distillation. The
surrogate networks in the proposed method were trained using the Nesterov accelerated
stochastic gradient method [32] with a momentum of 0.9. When training the student
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network S , we set a learning rate to 0.1 for the initial 100 epochs, and then we reduced
the learning rate at a scale of 0.1 three times every 30 epochs. The explanation network E
was trained as in the case of S but with the different intervals to adjust the learning rate,
which were 10 epochs for the initial training and 2 epochs of the duration to reduce the
learning rate, respectively. When using the datasets for the fine-grained classifications, we
fine-tuned T by using the SGD optimizer with a momentum of 0.9 and an initial learning
rate of 0.01. We trained the model for 100 epochs with the learning rate halved every
20 epochs.

We used PyTorch 3.6 [33] to implement the proposed method, and trained the networks
using an NVIDIA Titan XP GPU. Table 2 shows the training results of the student network
in terms of the top-1 accuracy on each of the datasets. The top-1 accuracy, acc(θψ, X), of
model ψ with parameters θψ on the test dataset X is given as follows.

acc(θψ, X) =
∑x∈X I(cpred,x = cT,x)

|X| (12)

where cT,x is the true class of x and cpred,x = arg maxi yi
θψ
(x) for the given softmax scores

of x ∈ X, Yθψ
(x) = {yi

θψ
(x)}.

Table 2. Top-1 accuracy of the student network S that is trained with knowledge distillation, compared to T for each of the
datasets. For the column ImageNet, we used the non-blacklist images of the ImageNet validation set. We separated the
FGVC-Aircraft dataset according to vendor, family, and manufacturer, which are denoted by Aircraft V, Aircraft F, and
Aircraft M, respectively.

Dataset ImageNet CUB-200 Cars Aircraft V Aircraft F Aircraft M

Target network (T ) 0.7615 0.8172 0.8956 0.8402 0.9200 0.9394
Student network (S) 0.7371 0.84 0.8834 0.8483 0.9600 0.9512

4.2. Quantitative Evaluations
4.2.1. Evaluation Methods

Quantitative Metrics. Although it is difficult to quantify the fidelity of a saliency map
in general, we used two metrics to evaluate the pixel-level relevancy of a given saliency
map: deletion and insertion [9]. This quantitative evaluation corresponds to the answer
to the first question raised in the beginning of this section. The deletion quantifies the
accuracy of finding the smallest susceptive region of an image that is the minimum area to
change the model’s prediction when the region is altered. On the other hand, the insertion
corresponds to the smallest evidential region that is the part of an image to be preserved to
maintain the model prediction. The sole use of deletion is discouraged because, for instance,
two extreme cases of the accurate and completely wrong smallest susceptive regions may
have an identical deletion score. We therefore used the deletion and insertion metrics to
evaluate saliency maps. A higher score results in better insertion, whereas a lower score is
preferred for better deletion. In particular, the deletion score prefers a sharp drop when
we consider the probability using a function of portion of removed pixels [9], whereas
the insertion score is a complementary approach. Figure 5 shows illustrative examples of
calculating the metrics.

Goldfish Insertion Deletion White wolf Insertion Deletion

AUC=0.116AUC=0.723 AUC= 0.058AUC= 0.965

Saliency mapSaliency map

Figure 5. Two illustrative examples of calculating insertion and deletion scores in terms area under
curve (AUC), each of which consists of an input (leftmost), a saliency map, and insertion and
deletion curves.
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Both evaluation methods operate by gradually erasing or preserving the input image
depending on the importance of pixels in terms of the target class score and measuring
the response of the neural network according to the perturbations. This allows us to
quantitatively evaluate whether the visual explanation has found an important part of the
object that we want to describe in the image. See Algorithms A1 and A2 in the Appendix A
for the details on the insertion and deletion metrics, respectively.

Insertion and Deletion. We compared the proposed method to three recent meth-
ods: RISE [9] and LIME [10], which are representative of the learning-by-perturbation
approaches; and Grad-CAM [11], representative of the gradient-based approaches. Besides
the settings explained in the previous subsection, we considered another variant of the
proposed method by letting λ = 10−4 in Equation (3) to demonstrate the effects of the `1
regularization, which was the initial value of λ in the hyperparameter search when training
the explanation network.

Speed and Saliency Map Complexity. In addition, we considered two additional
metrics: the speed for generating a saliency map and the complexity of a saliency map.
We measured the speed as CPU time taken for a single run of the inference on the target
network, which corresponds to the row named Normal inference in Table 3. We excluded
LIME in this evaluation due to its excessively long computational time. We measured the
complexity of a saliency map as its average pixel intensity, considering that less complexity
corresponds to effectively indicating the important region of the input image. For a given
dataset X = {x}, the pixel intensity is given as Ex∼X [‖Hx‖1].

Table 3. Comparisons of the speed and the pixel intensity of saliency maps of the explanation
methods. We measured the speed of processing images taken from ImageNet for each method in
frames per second. Normal inference represents a single run of the inference on ResNet-50.

Speed (fps) Mean Pixel Intensity of a Saliency Map

Normal inference 83.3 1.0
Ours 24.4 0.189

RISE [9] 0.03 0.347
Grad-CAM [11] 34.8 0.421

4.2.2. Evaluation Results

Insertion and Deletion. Table 4 depicts the deletion and the insertion scores of the
methods on the four datasets. The results indicate that while RISE performed the best
in both scores, our method is comparable to that of RISE. Note that the optimization of
λ in the proposed method leads to the non-trivial performance gains of up to 7.5% and
12.3% in the deletion and the insertion scores, respectively. The favorable performance
of RISE is probably due to the optimization of a saliency map of an input image at the
cost of lengthy computational time. To summarize, the accuracy of the proposed method
indicates that it efficiently generates saliency maps of high fidelity as compared to the
learning-based methods.

Speed and Saliency Map Complexity. We provide the results of the speed and com-
plexity evaluations in Table 3. First, the proposed method runs 814× faster than RISE,
and is comparable to Grad-CAM, about 39 fps. This is because the proposed method only
requires two individual feed-forward operations on each of the student and the explanation
networks, whereas RISE should perform the iterative optimization to create a saliency
map as discussed above. Although Grad-CAM is also faster than the proposed method,
it lags behind other methods in terms of the fidelity of saliency maps. Moreover, an addi-
tional benefit of the proposed method is that the resulting saliency maps are fine-grained,
which we quantify as the average pixel intensity of saliency maps in Table 3. The average
intensity of the proposed method is only 54% of that of RIME, leading to much sparser
saliency maps.
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Table 4. Comparisons of the deletion (del) and the insertion (ins) scores of the methods on the datasets. Higher is better for the insertion
score, whereas lower is better for the deletion score. Oursunopt denotes the unoptimized variant of the proposed method with λ = 10−4.
For each dataset, the best and second results are highlighted in red and blue, respectively.

ImageNet CUB-200 Cars Aircraft V Aircraft F Aircraft M

Ours ins 0.7049 0.7136 0.7260 0.6910 0.7808 0.8240
del 0.1211 0.0757 0.0699 0.0746 0.1045 0.1635

Oursunopt
ins 0.6517 0.6895 0.7152 0.6894 0.7726 0.8145
del 0.1211 0.0659 0.0780 0.0714 0.0978 0.1704

RISE [9] ins 0.7335 0.7461 0.7720 0.7248 0.8026 0.8475
del 0.1077 0.0588 0.0658 0.0569 0.0762 0.1383

LIME [10] ins 0.6940 0.6531 0.6447 0.5647 0.6532 0.7091
del 0.1217 0.1287 0.1345 0.1508 0.1935 0.3009

Grad-CAM [11] ins 0.6785 0.6982 0.7197 0.6742 0.7480 0.8011
del 0.1253 0.0805 0.0798 0.0740 0.1049 0.1735

Discussion. The better classification accuracy of RISE can be seen in its diffused
saliency maps compared to those of our method. This means that the saliency maps from
RISE are more likely to cover input features important for the classification better than our
method, which we already showed in the experiments in terms of the insertion and deletion
scores. Probably, there exists a trade-off between increasing sparsity and classification
accuracy when generating saliency maps. While saliency maps of the previous methods
faithfully indicate the important input features for the classification, to the best of our
knowledge, the analysis that combines the sparsity and the accuracy of saliency maps has
hardly been addressed. Additionally, this analysis is worth investigating when we consider
a fine-grained classification as a downstream task of a generic classification. The proposed
method does not overfit but tends to select most important features so that a small number
of features results in a classification accuracy comparable to that of RISE.

4.3. Qualitative Evaluations

We provide a set of visualizations that qualitatively validate the proposed method
for the four datasets as shown in Figures 6–9. The results demonstrate that the saliency
maps that were generated by the proposed method are sparser than those of other methods,
and result in faithfully depicting the target object, whereas the results of other methods
are blurred and often diffused over the entire region of the image. This capability of
representing the target object effectively indicate the core regional clues corresponding
to the model prediction. Moreover, the fine-grained characteristics of our saliency maps
render them more visually plausible than that of other methods.

In particular, the fine-grained characteristics of the proposed method lead the resulting
saliency maps to be similar to segmentation of the target objects, as shown in Figure 6. As
RISE depends on the non-deterministic sampling of random masks, its saliency maps are
subject to vary and saliency maps may result in excessively distributed blobs. The baseball,
odometer, and green mamba are good examples where the saliency maps by the proposed
method clearly highlight plausible regions for the target objects. Such a distinction is more
obvious in the fine-grained classification. In the case CUB-200 in Figure 7, the proposed
method results in much finer saliency maps compared with other methods. The saliency
maps of our method indicate the specific clues for the classification, such as the beak for
the European goldfinch, the wings for the tree swallow, and the tail for the California
gull, respectively. On the other hand, RISE results in coarser saliency maps than those
of our method and a much longer computational time. The saliency maps by LIME and
Gram-CAM tend to indicate the entire targets. Similar observations were found for the Car
and Aircraft datasets, which are shown in Figures 8 and 9, respectively.

Failure cases. Figure 10 illustrates the failure cases of the proposed method, which
were mainly caused by the `1 regularization of the saliency maps. In particular, these cases
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usually occurred when the the regional evidence was relatively large and spread over in
the input image. In such a case, the regularization led to the proposed method resulting
in spotted or dim saliency maps, as shown in Figure 10a. Otherwise, a saliency map may
be created in an incorrect location in the image, and thus the corresponding explanation
may misclassify the image as different from the original model prediction, as illustrated in
Figure 10b.

Alp

Basketball

Grille

Siberian husky

American egret

Norwich terrier

Baseball

Whistle

Image
Grad-CAM

0.84     0.59

0.78     0.04

0.49     0.05

0.31     0.02

0.82     0.08

0.38     0.01

0.99     0.19

1.00     0.13
Insertion Deletion

Grad-CAM

0.94     0.58

0.70     0.04

0.52     0.10

0.34     0.02

0.81     0.02

0.26     0.02

0.96     0.20

Ours

1.00      0.09
Insertion Deletion

0.92     0.54

0.78     0.07

0.61     0.05

0.30     0.02

0.87     0.07

0.52     0.00

0.83     0.56

RISE

0.99     0.10
Insertion Deletion

Sorrel

Green mamba

Flute

Buckle

Mushroom

Guinea pig

Norwich terrier

Odometer

Image
Grad-CAM

0.79     0.21

0.88     0.18

0.82     0.12

0.32     0.02

0.91     0.43

0.71     0.04

0.45     0.10

0.90     0.25
Insertion Deletion

Grad-CAM

0.98     0.21

0.89     0.09

0.88     0.16

0.25     0.01

0.85     0.19

0.75     0.07

0.43     0.05

Ours

0.92      0.28
Insertion Deletion

0.98     0.07

0.90     0.17

0.94     0.03

0.43     0.01

0.88     0.38

0.54     0.14

0.53     0.07

RISE

0.98     0.40
Insertion Deletion

Figure 6. Qualitative results by comparing the saliency maps of the proposed method to the existing methods for the images
taken from ImageNet. In the left half of each row, the four columns correspond to input images and the saliency maps of the
proposed method, RISE [9], and Grad-CAM [11], respectively, which also applies to the right half of the row. (Best viewed
under magnification).
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Image
Ours RISE LIME Grad-CAM

Insertion Deletion Insertion Deletion Insertion Deletion Insertion Deletion
European
Goldfinch

0.98 0.10 0.99 0.02 0.96 0.14 0.98 0.10

California Gull 0.39 0.04 0.36 0.04 0.27 0.10 0.32 0.06

Pacific Loon 0.60 0.06 0.58 0.02 0.51 0.08 0.60 0.02

Image
Ours RISE LIME Grad-CAM

Insertion Deletion Insertion Deletion Insertion Deletion Insertion Deletion
White crowned 

Sparrow
0.82 0.01 0.87 0.01 0.78 0.01 0.80 0.02

Tree Swallow 0.82 0.09 0.76 0.04 0.73 0.07 0.79 0.05

Least Auklet 0.85 0.19 0.88 0.13 0.72 0.47 0.83 0.32

Figure 7. Comparisons of saliency maps from the proposed method to those from RISE [9], LIME [10], and Grad-CAM [11]
for CUB-200 [29]. (Best viewed under magnification).

Image
Ours RISE LIME Grad-CAM

Insertion Deletion Insertion Deletion Insertion Deletion Insertion Deletion
Ford Ranger 

SuperCab 0.70 0.02 0.66 0.01 0.43 0.08 0.69 0.02

Smart Fortwo 
Convertible 0.56 0.06 0.68 0.06 0.52 0.05 0.50 0.07

Plymouth Neon 
Coupe 0.69 0.06 0.72 0.12 0.69 0.09 0.64 0.12

Image
Ours RISE LIME Grad-CAM

Insertion Deletion Insertion Deletion Insertion Deletion Insertion Deletion
Maybach Landaulet 

Convertible 2012 0.97 0.13 0.98 0.11 0.89 0.64 0.97 0.22

Volvo C30 
Hatchback 0.54 0.02 0.54 0.01 0.17 0.09 0.53 0.01

Hyundai Veracruz 
SUV 2012 0.72 0.02 0.65 0.02 0.24 0.03 0.50 0.03

Figure 8. Comparisons of saliency maps from the proposed method to those from RISE [9], LIME [10], and Grad-CAM [11]
for Cars [30]. (Best viewed under magnification).그림11 Fixed

Aircraft Variant

Image
Ours RISE LIME Grad-CAM

Insertion Deletion Insertion Deletion Insertion Deletion Insertion Deletion
737-200 0.92 0.05 0.92 0.032 0.87 0.09 0.91 0.07

A321 0.79 0.02 0.79 0.01 0.58 0.06 0.57 0.04

A318 0.88 0.05 0.80 0.06 0.84 0.13 0.86 0.17

Image
Ours RISE LIME Grad-CAM

Insertion Deletion Insertion Deletion Insertion Deletion Insertion Deletion
DC-9-30 0.79 0.02 0.88 0.04 0.22 0.07 0.71 0.01

MD-11 0.92 0.04 0.94 0.07 0.83 0.09 0.67 0.09

BAE 146-200 0.87 0.05 0.85 0.04 0.80 0.15 0.68 0.08

Figure 9. Comparisons of saliency maps from the proposed method to those from RISE [9], LIME [10], and Grad-CAM [11]
for FGVC-Aircraft [31] variant. (Best viewed under magnification).
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현 𝐿𝑠𝑝𝑎𝑟𝑠𝑒의한계점
Lack of Class Discriminative Ability

(a) (b)

0.89     0.25

Ours

Insertion Deletion

0.40     0.09

Grad-CAM

1.00     0.22

0.55     0.05

Insertion Deletion

RISE

Insertion Deletion
0.99     0.19

0.69     0.05Soup bowl

Maze

Image

0.14     0.26

Ours

Insertion Deletion

0.31     0.02

Grad-CAM

0.73     0.00

0.48     0.08

Insertion Deletion

RISE

Insertion Deletion
0.90     0.00

0.69     0.09Knee pad

Petri dish

Image

Figure 10. Examples of faulty saliency maps that are generated by the proposed method as compared to the existing
methods for the images taken from ImageNet. (a) Saliency maps that indicate only some of large regional evidence, and (b)
saliency maps that focus on faulty regional clues. (Best viewed under magnification)

5. Conclusions

We proposed a method to explain the predictions of deep neural networks by learning
surrogate networks corresponding to the target network. The surrogate networks in the
proposed method consist of two network branches (i.e., the student and the explanation
networks). The student network aims to approximate the output of the target network using
attention and was trained with the knowledge distillation to better transfer the inference
capability of the target network. The explanation network takes the attentive features
learned by the student network as inputs. The goal of the explanation network is to generate
a saliency map that faithfully retrieves the original class scores of the target network. The
experimental results demonstrated the advantages of the proposed method as follows. First,
the fidelity of saliency maps generated by the proposed method is competitive in terms of
two quantitative metrics (i.e., the deletion and insertion scores) as compared to the best-
performing approaches. In addition, the proposed method is efficient in that it runs much
faster than the best method by two orders of magnitude. Lastly, the qualitative evaluation
indicates that the proposed method results in fine-grained saliency maps and enables itself
to be suitable for fine-grained classification, a useful downstream classification task.
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Appendix A

This section describes the algorithms used to calculate the deletion and the insertion scores.
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Algorithm A1 Calculating the insertion score.
Input: Image I, visual explanation E of I, model M, # of pixel batch n,
filter size of Gaussian kernel k, standard deviation of Gaussian kernel σ
Output: Insertion score s of E for I

1: function INSERTIONSCORE(I, E, M, n, k, σ)
2: c← predicted class of I by M
3: D ← GaussianFilter(I, k, σ)
4: C ← {p(c|D, M)}
5: i← 0
6: while I 6= D do
7: pos← position of xth important pixels in E; i < x ≤ i + n
8: D[pos]← I[pos]
9: C ← C ∪ {p(c|D, M)}

10: i← i + n
11: end while
12: s← AUC(C)
13: end function

Algorithm A2 Calculating the deletion score.
Input: Image I, visual explanation E of I, model M, # of pixel batch n
Output: Deletion score s of E for I

1: function DELETIONSCORE(I, E, M, n)
2: c← predicted class of I by M
3: D ← I · 0
4: C ← {p(c|D, M)}
5: i← 0
6: while I 6= D do
7: pos← position of xth important pixels in E; i < x ≤ i + n
8: I[pos]← D[pos]
9: C ← C ∪ {p(c|D, M)}

10: i← i + n
11: end while
12: s← AUC(C)
13: end function
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