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Abstract: Microbial biomass concentration is a key bioprocess parameter, estimated using various
labor, operator and process cross-sensitive techniques, analyzed in a broad context and therefore
the subject of correct interpretation. In this paper, the authors present the results of P. pastoris cell
density estimation based on off-line (optical density, wet/dry cell weight concentration), in-situ
(turbidity, permittivity), and soft-sensor (off-gas O2/CO2, alkali consumption) techniques. Culti-
vations were performed in a 5 L oxygen-enriched stirred tank bioreactor. The experimental plan
determined varying aeration rates/levels, glycerol or methanol substrates, residual methanol levels,
and temperature. In total, results from 13 up to 150 g (dry cell weight)/L cultivation runs were
analyzed. Linear and exponential correlation models were identified for the turbidity sensor signal
and dry cell weight concentration (DCW). Evaluated linear correlation between permittivity and
DCW in the glycerol consumption phase (<60 g/L) and medium (for Mut+ strain) to significant
(for MutS strain) linearity decline for methanol consumption phase. DCW and permittivity-based
biomass estimates used for soft-sensor parameters identification. Dataset consisting from 4 Mut+

strain cultivation experiments used for estimation quality (expressed in NRMSE) comparison for
turbidity-based (8%), permittivity-based (11%), O2 uptake-based (10%), CO2 production-based (13%),
and alkali consumption-based (8%) biomass estimates. Additionally, the authors present a novel
solution (algorithm) for uncommon in-situ turbidity and permittivity sensor signal shift (caused by
the intensive stirrer rate change and antifoam agent addition) on-line identification and minimization.
The sensor signal filtering method leads to about 5-fold and 2-fold minimized biomass estimate drifts
for turbidity- and permittivity-based biomass estimates, respectively.

Keywords: biomass concentration; in-situ and soft-sensors; turbidity; permittivity; signal filtering;
off-gas analysis; stirred-tank bioreactor; Pichia pastoris

1. Introduction

Pichia pastoris (Komagataella pastoris) is a yeast culture widely used in biotechnology
and is capable of expressing various types of recombinant proteins, under submerged
bioreactor cultivation conditions, that are of major importance [1,2]. Hepatitis B core-
(HBcAg) [3,4] and surface- (HBsAg) [5,6] antigens are recombinant protein examples
being investigated for improved vaccines and agents used in biomedicine development.
Hepatitis B antigens can be also used in biosensing development for clinical assays [1].
Under optimal process conditions, the process productivity depends on the overall number
of microorganisms and fraction of those which are in active target product production-,
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metabolic- or propagation-state [7]. Correct and well-interpreted information on actual
total or viable cell mass concentration therefore is key bioprocess information. Moreover,
minimal requirements for real-time process supervision is of utmost importance when
concerning pharmaceuticals production processes that are subject to GMP guidelines [8].

Literally microbial biomass concentration is expressed as a mass or number of cells
attributed to liquid sample volume (e.g., g/L, kg/m3, cells/mL, cells/m3, etc.). Common
direct off-line biomass concentration analysis methods include gravimetric dry/wet cell
weight measurements and cell counting with chemocytometers [9], Coulter counters [10]
and flow-cytometers [11]. These direct analyses are usually calibrated to instrumental
methods to speed up the biomass measurement, improve reliability, and for automation
purposes. These instrumental methods utilize physical (optical and electrical), chemical
(interactions with enzymes, dyes, antibodies, etc.) or physiological (e.g., O2 consumption,
CO2 production, acidification) characteristics of the analyzed sample or cultivated cul-
ture [12–14]. For in-situ and on-line applications the most popular are optical density (OD)
(known also as turbidity), specific capacitance (detected by dielectric spectroscopy) and
various soft-sensor (based on culture physiology related variables) measurement use in
estimations described in detail further. In-situ microscopy has also proven its applicability
in on-line biomass concentration monitoring [15].

Industrially, the most common method employed for biomass detection is based on the
interaction between culture and light. There are three different basic effects of interactions
between culture and light used in biomass OD detection methods: absorption, emission,
and scattering [14]. Mathematical expressions of various forms (e.g., linear [16,17] polyno-
mial [16], power functions, etc.) are used for OD or turbidity measurement correlation to
biomass concentration. The typical wavelength range includes the light from ultraviolet
(UV) to mid-infrared (MIR) spectrum. UV to near infrared (NIR) light (350–1100 nm) is used
for culture OD measurement with photometers [18], in-situ [19] or at-line [20,21] instru-
ments. Lack of UV and low wavelength visible spectrum (VIS) light for OD measurement is
it cross-sensitivity with other components present in the culture broth [22]. Majority of OD
NIR in-situ sensors (turbidimeters) use light wavelengths of 800–1100 nm, because most cul-
ture media absorb very little light in this region [12]. Usually, low wavelength in-situ NIR
systems are used for accurate biomass estimation up to 20–40 DCW [12], however, under
constant mixing and aeration conditions, good quality biomass estimates of up to 90 DCW
have been reported [23]. There are no extensive studies, in which high cell density biomass
(>90 DCW) is monitored using a turbidity probe with acceptable or identified accuracy. In
comparison to the in-situ turbidity method, current off-line and in-situ microscopy-based
techniques are limited for quantification and morphological analysis of relatively large
cells, such as microalgae [24] and yeast [15,25], and have been employed for cell densities
up to just 60–70 yeast DCW.

Dielectric properties of the cell suspension, such as capacitance (pF) and permittiv-
ity (pF/cm), proportionally relate to viable cell volume. This phenomenon is used by
in-situ permittivity sensors [26,27] and Coulter-counters [28,29]. Modern instruments use
frequency-scanning techniques in a range from 100 KHz to 20 MHz, capable for cell size
and biomass concentration estimation (dielectric spectroscopy). Reported measurement
ranges are up to 35–155 DCW [26,30] in high cell density cultures. The reported method
demonstrates limited applicability in low biomass (<~5–10 g/L [29,30]) and high conductiv-
ity conditions [12,13]. In the reported research, linear [26,29] or mixed linear-nonlinear [29]
relationships between DCW and permittivity can be observed for various bacterial and
yeast cultures cultivated under varying conditions. As the permittivity measurement selec-
tively accounts for the viable cell volume (compared to DCW, in which also nonviable cells
are counted), it is obvious that under varying process conditions the correlation between
permittivity and DCW may differ. This can be especially true for the methanol induction
phase in methylotrophic yeast P. pastoris cultivations, in which variations in cell viability
and size are present at different growth rates [31]. In this case, alternatively to the DCW
measurement, generally accepted as the standard biomass measure reference, evaluation of
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soft-sensor performance, if calibration is made to the reference permittivity-based biomass
estimates, is an interesting aspect not widely investigated elsewhere.

A common characteristic of in-situ turbidity and permittivity measurements is a
cross-sensitivity to the stirring rate, bubble size and their movement near/trough the
sensor-measuring tip that were observed or discussed in probe application reports pub-
lished elsewhere [18,32–35]. To avoid this uncommon side effect, degassed chambers or
signal filtering is suggested. Typically such uncommon in-situ turbidity and permittivity
sensor shift amplitudes are too high to be avoided or minimized by simple moving av-
erage or Savitzky–Golay filtering algorithms [33] usually useful for smoothing random
measurement noise. Instead, the use of methods that validate the sensor signal reading
prior to its use for biomass estimation are necessary. A method for in-situ turbidity sensor
signal stabilization (validation) using swarm intelligence is applicable [36], however, this
technique requires high implementation efforts and additional process data, like base feed,
off-gas CO2 and O2, and DO use and analysis. Alternatively, to the previous method,
there is a lack of examples using a simple rate analysis of the in-situ sensor signal for
measurement validation and faulty shift exclusion.

Process-data and model-based soft-sensor methods, in combination or used separately,
have been proven for application in biomass estimation [12,36]. Data driven methods
using measures of biomass physiological activity, such as O2 consumption/CO2 produc-
tion [37–39], alkali amount added for compensation of acidification [37,38,40] are the most
popular approaches. Typical soft sensors are mathematical models based on growth kinetics
(data driven) or statistical analysis (such as multilinear regression (MLR) or principal com-
ponent analysis (PCA)), neural networks, or combinations of all of these techniques [12,37].
Process data- and model-based estimates can also be used in Kalman [37,41] and parti-
cle [41] filters for improved estimation accuracy, however these techniques are complex
and, therefore, difficult to implement.

The bottleneck for the soft-sensor performance is the accuracy of conversion rate
calculation. While random (measurement noise) errors can be minimized quite easily with
data smoothing algorithms, this is not the case for systematic errors caused by miscalibra-
tions, inaccuracy of analytical devices or various technical shortcomings of the biomass
related measuring sensor [42]. Moreover, as it was shown for the P. pastoris culture [39,43],
yield coefficients are not constant for different biomass growth rates. As proposed else-
where [44,45], performance of off-gas biomass estimators may also be influenced by badly
tuned dissolved oxygen (DO) control followed by significant fluctuations in DO-related
variables, i.e., off-gas data of CO2 and O2. Therefore, systematic errors can only be de-
tected and possibly reduced by making use of all available information in terms of the
first-principle (elemental balancing) constraints and the accuracy of turnover rates in
reconciliation procedures, what are well described elsewhere [39,46,47].

Characteristic biomass concentrations achieved at the end of P. pastoris high-cell-
density cultivation processes are 100–185 DCW [17,30,35,48]. In most of the cultivations,
glycerol and methanol substrates are fed consecutively. Several stress factors, influenc-
ing biomass viability and morphology of HBsAg producing P. pastoris MutS strain were
reported [49]. In comparison to the MutS strain, P. pastoris Mut+ strain, is more tolerant
to methanol, what would possibly lead to higher viability indicators, e. g., permittivity,
compared to the MutS strain. At the beginning of the methanol fed-batch phase, culture
metabolism adapts to toxic methanol and the induction of recombinant protein synthesis.
High residual methanol levels (>5–10 g/L) are toxic for cells [50,51]. Therefore, different
residual methanol and oxygen levels may influence biomass optical, dielectric and physio-
logic conditions used for biomass quantification with the methods introduced previously.
Just a few research articles are available (one of them from Godfeld et al. [30]) where high
cell density (≥90 DCW) P. pastoris biomass detection with solid at-line, in-situ or soft-sensor-
based biomass estimation methods are analyzed for a rather high number of experiments.
Therefore, from the information available in the scientific or practical application reports,
it is often difficult to evaluate method applicability under ‘real process’ conditions with
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the reviewed process disturbances and cross sensitivity to parameters like anti-foam agent
addition or rapid stirrer rate change influence on biomass estimation accuracy.

Application of various standard off-line (OD/WCW/DCW), in-situ (turbidity/permittivity)
and soft-sensor-based (off-gas O2/CO2; alkali consumption) methods for 13 high cell den-
sity P. pastoris cultivations is presented in this contribution. For the different process stages
and biomass levels, simple approximation models were identified and used. Biomass
estimation results, in the context of varying process conditions, were analyzed. Aspects of
the practical implementation and interpretation of the applied methods are discussed. A
practical example for the oxygen uptake rate calculation for the bioprocess with oxygen
enrichment and one O2 off-gas analyzer is demonstrated. Finally, a novel solution (algo-
rithm) for uncommon in-situ turbidity and permittivity sensor signal shifting, caused by
intensive stirrer rate change and antifoam agent addition, was implemented and tested
experimentally.

2. Materials and Methods
2.1. Cultivation Conditions

Cultivation of both HBcAg (Mut+) and HBsAg (MutS) recombinant Pichia pastoris
GS115 strains was performed in a series of experiments in a 5 L fully automated bench-top
bioreactor system EDF-5.4 (Biotehniskais Centrs AS, Riga, Latvia). In general, cultivation
conditions corresponded to the Invitrogen corporation cultivation guidelines for Mut+

and MutS strains, respectively. However, some parameters (see Table 1) varied due to
recombinant protein production screening or technical reasons, namely, residual methanol
levels (0.01–5 g/L) during the protein production phase, process temperature (throughout
the whole process) (30 ± 0.1 or 24 ± 0.1 ◦C), dissolved oxygen (DO) level (1–40%) and
aeration rate (1.7 or 3.0 slpm).

Table 1. Experiment overview.

Exps.1 Cultivation
Protocol

Parameter Settings Variable Control Range in the Process

Temperature
(◦C)

Aeration (Qair)
(slpm)

O2
Enrich-ment

Residual
Methanol 2 (g/L)

Dissolved Oxygen
(DO) 3 (%)

1c Inv., Mut+ 30 1.7 yes 0.05–0.1 35–40
2c Inv., Mut+ 30 1.7 yes 0.01–0.05 25–40
3c Inv., Mut+ 30 3.0 yes 0.5–1.5 25–30
4c Inv., Mut+ 30 3.0 yes 1.5–2 25–30
5c Inv., Mut+ 30 3.0 yes 1.5–2 25–30
6c Inv., Mut+ 30 3.0 yes 0.02 25–30
1s Inv., MutS 30 3.0 yes 0.01 20–40
2s Inv., MutS 24 3.0 yes 0.01 20–40
3s Gurramkonda 30 3.0 no 5–7 3–5
4s Gurramkonda 30 3.0 no 1–3 15–25
5s Inv., MutS 30 3.0 yes 0.5–2.0 25–30
6s Inv., MutS 30 3.0 no 4– 5 1–2
7s Inv., MutS 30 3.0 no 1.5–2.5 1–2; 20–35
1 The letters indicate specific strain cultivated—‘c’ HBcAg obtainment processes and ‘s’ HBsAg obtainment processes. 2 Residual methanol—
an indicative methanol concentration range in the methanol consumption (induction) phase. On-line and off-line methanol analysis is
available in Appendix A, Figure A3. 3 Some of the online process parameters are indicated in Appendix A, Figure A1.

Additional MutS strain cultivation under conditions proposed by Gurramkonda et al. [50]
was performed, and two different residual methanol set-points 2 and 6 g/L were tested.
The main differences between the Invitrogen’s and Gurramkonda’s protocols were related
to the DO and excess methanol levels, as well as some differences in the batch and fed-batch
media nutritional content.

Before the start of the cultivation process, the culture medium pH was adjusted to
5.0 ± 0.1 (Invitrogen protocol) or 5.6 ± 0.1 (Gurramkonda’s protocol) using a 28% NH4OH
solution, which was also used to control the set pH value during the cultivation (peristaltic
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pump: WP10-S 3/16 L4-B, Welco, Tokyo, Japan; tubing: inner diameter 3.2 mm, outer
diameter 6.4 mm). DO set-point of 30 ± 5% was controlled by automatically adjusting the
stirrer rotational speed (200–1000 rpm) or additional inlet air enrichment with O2 regarding
Table 1.

As it is indicated in the Table 1, in some experiments DO level insignificantly differed
from the set-point. The aeration and O2 enrichment procedure is described in the further
subsections of this chapter. An outlet gas condenser was used for humidity condensing
from the exhaust gas to minimize evaporation and the water content in the off-gas. Off-gas
drying through glycerol concentrate and silica gel was used. The foam level was controlled
by the addition of antifoam 204 (Sigma).

Four datasets characterizing a set of experiments to be calibrated to different models
or set of experiments, in which biomass measurements are available for specific method
or process comparison, are introduced. Dataset 1 (experiments 3c, 4c, 5c, 6c, 1s, 2s, 4s, 5s,
6s and 7s) and Dataset 2 (experiments 1c and 2c) are used for different calibration model
evaluation for the turbidity measurement. Dataset 3 (experiments 3c, 4c, 5c and 6c) forms
a set of 4 experiments from which the performance of used in-situ turbidity/permittivity
and soft-sensor techniques can be compared for the case of using constant soft-sensor
parameters. Finally, Dataset 4 (experiments 1s, 2s, 3s and 6s) consists of MutS strain
cultivation experiments with permittivity measurement available as well.

The bioreactor setup consists of a glass vessel and a stainless steel upper and bottom lid
(see Figure 1). The reactor has a working volume of 2–4 L, two standard Rushton turbines,
and an outlet gas condenser. The process controller (PLC) has 3 DI/DO, 4 AI/AO and
1 relay input unit (Siemens AG, Germany). The process analytical tools of the off-gas O2
and CO2 measurement (Bluesens, Herten, Germany; BlueInOneFerm; measurement ranges
for O2 and CO2, respectively, were up to 50 and 25 vol.%), culture turbidity (ASD19-EB-01,
Optek, Essen, Germany; light absorption (transmission) measurement within 840–910 nm
wavelength range; optical path length 10 mm) and permittivity (Hamilton, Bonaduz,
Switzerland, Incyte) were connected to the PLC and utilized for process monitoring. PC
(SCADA) was connected to the PLC through a router via Ethernet link. Programming in
Matlab (R2019a, Mathworks, Natick, MA, USA) .m code was used for implementation
of the proposed biomass estimation and on-line sensor filtering algorithms. The data
exchange of the process and control variables between the control algorithms (Matlab) and
SCADA (programmed in the software platform of PcVue Solutions, Ltd., Sèvres, France)
was implemented every 1 s through an OPC server. Detailed information on the reactor
vessel and control system configuration can be found in the research published earlier [52].

2.2. Off-Line Measurements

Cell growth was monitored by off-line measurements of the optical density (OD) at a
wavelength of 590 nm (GRANAT, KFK-2, St. Petersburg, Russia). Wet cell weight (WCW)
and dry cell weight (DCW) concentration measurements were determined gravimetri-
cally. Biomass samples were placed in pre-weighted Eppendorf tubes® and centrifuged
at 13,200 RPM for 5 min. Afterwards, the supernatant was discarded, and the cells were
resuspended in distilled water and centrifuged once more. The liquid phase was discarded,
and the remaining wet cell biomass was weighted. Afterwards, the samples were dried at
105 ◦C until a constant weight was reached, and the dry cell biomass was determined.

Off-line methanol was measured using gas chromatography (6890 N GC Agilent,
Santa Clara, CA, USA).

All yield parameters calculated attributing them to dry cell weights.
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Figure 1. Schematic diagram of the bioreactor and controls architecture.

2.3. Turbidity and Permitivitty Signal Acquisition and Filtering

Turbidity sensor signal recording was made every 60 s. Signal preprocessing parame-
ters were chosen to provide stable sensor readings (symmetric signal damping and 60 s
as an integration time for signal damping). Permittivity was measured and calculated by
the Incyte ‘Frequency Scan’ mode with 17 simultaneous measurements across a frequency
range of 0.3–10 MHz. Permittivity measurements were made every 2 s and integrated,
creating a moving average over a defined period. These acquisition periods varied in
experiments 3c, 4c, 5c, 6c, 1s, 2s, 3s, and 4s; their respective values in seconds were 60, 60,
60, 60, 60, 720, 360, and 60.

The turbidity and permittivity signal filtering technique was implemented for sudden
signal jumps and drops initiated by sudden stirrer rotational speed changes and antifoam
agent addition. The concept of the filtering method is based on sensor signal change
rate analysis allowing to count rapid sensor signal shifts, which are uncharacteristic for
common biomass growth or cell lysis behavior. Counting such uncommon sensor signal
shifts allows for subtraction of accumulated shifts from the actual sensor readings. The
filtering algorithm is presented in Figure 2.

Further the filtering algorithm main execution steps are described. The actual sensor
signal is read (Ei) at the time moment ti (Step 1). As the filter algorithm uses a median
calculation over a time period of τmed = 30 min ahead of each iteration (procedure described
further), execution of the main filtering loop could take place when the sensor signal
sampling time or tprocess is equal or exceeds τmed (Step 2). Initially, in Step 3, the following
parameters are calculated: time difference between the sensor signal sampling events
(signal sampling frequency ∆t = 1 min):

∆t = ti − ti−1 (1)

sampled sensor signal difference:

∆E = Ei − Ei−1 (2)
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sensor signal change rate at the moment of a new sensor signal reading:

RE,i =
∆E
∆t

(3)

sensor signal change rate sum at the moment of a new sensor signal reading:

RSE,i =
i

∑
i−τsum

RE,i (4)

where τsum indicates the amount of the last RSE samples to be summed if the sensor signal
sampling frequency is 1 min. In this research, τsum = 5 min was used for both turbidity and
permittivity probe signal filtering. Summing of RE allows to obtain less noisy and extended
height peaks of uncommon signal change rate, therefore it is easier to identify them. From
the results presented in the Results section, it can be seen that explicit RSE shifts from
zero (RSE zero-baseline shift) are observable for turbidity measurement within the process
10–30 h (for permittivity-based measurement, this deviation is practically negligible). The
median of RSE calculation (Equation (5)) and its subtraction from RSE, are performed for
signal normalization (Step 3) to exclude the RSE zero-baseline shift phenomenon. The
median of the sensor signal change rate sum at the time moment ti:

mRSE,i = median
(
RSE,i−τmed : RSE,i

)
(5)

where τmed indicates the amount of the last RSE samples to be used for RSE median value
calculation, if the sampling frequency is 1 min. In this research, τmed = 30 min was used for
both turbidity and permittivity probe signal filtering. Normalized sensor signal change
rate sum at the time moment ti:

nRSE,i = RSE,i −mRSE,i (6)
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Normalized RSE,i (nRSE,i) then is compared with the allowed preset minimum and
maximum limit values of RSE,min and RSE,max (Step 4) (identified RSE,min and RSE,max
shown in the Results section). If nRSE exceeds the preset minimum or maximum bounds,
then the algorithm considers the inappropriate behavior of the biomass concentration
increment/decrement, and substitutes the sensor signal reading with the last output from
the filter (Ei,out = Ei-1,out) (Step 6). The filter accounts for the difference between the actual
and previous raw sensor signal readings, and sums it to the cumulative shift parameter
(Ei,shift) that accounts for all the registered shifts from a particular process. Ei,shift can be
positive or negative and is subtracted from the raw Ei (Ei,out = Ei − Ei,shift) each time when
no pre-set inappropriate behavior of the biomass concentration increment/decrement
occurs (Step 5). Ei,out is used in biomass estimation (Step 7).

2.4. Turbidity Signal Approximation to DCW

Two datasets of experiments, Dataset 1 and Dataset 2, representing two aeration
regimes 3.0 slpm and 1.7 slpm used respectively, were identified for different representation
of DCW and Eturb relationship in the high cell density region (calibration data and identified
models shown in Figure 3 and Table 2 respectively).
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Table 2. Identified in-situ turbidity sensor biomass estimation approximation models and their
parameters for two aeration regimes.

Datasets of
Experiments

Aeration
(slpm) Fit Interval Model Name Model Parameters

Dataset 1:
3c, 4c, 5c, 6c,
1s, 2s, 4s, 5s,

6s, 7s

3.0 Whole region Exponential 1
(Equation (7)) a = 1.547, b = 2.85

Dataset 2:
1c, 2c 1.7

Eturb ≤ 1.40 Exponential 2
(Equation (8))

a = 3939, b = 4.8,
c = −3938, d = 4.8

Eturb ≤ 0.72 Linear (Equation (9)) a = 10.76, b = 2.176

Eturb > 0.72 Linear (Equation (9)) a = 542.3, b = −109

For the Dataset 1 experiments, Exponential 1 model:

Xturb = a· exp(b·Eturb) (7)
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was identified, approximating DCW measurements in the whole turbidity measurement
range of 0–1.55 CU. For the Dataset 2 experiments, Exponential 2 model:

Xturb = a· exp(b·Eturb) + c· exp(d·Eturb) (8)

was identified, approximating DCW measurements in the turbidity measurement range of
0–1.40 CU. However, the model Exponential 2 has a parabolic-like curvature with a narrow
maximum within 1.40–1.45 CU, and a sharp spike. The same correlation quality for Dataset
2 was obtained by the Linear model:

Xturb = a·Eturb + b (9)

for the two measurement ranges of Eturb ≤ 0.72 and Eturb > 0.72, each having its own set
of model parameters. Identified Exponential 1 and Linear models were used for in-situ
turbidity-based biomass estimation for Dataset 1 and Dataset 2 experiments respectively,
presented in the Results section.

2.5. Permittivity Signal Approximation to DCW

For biomass concentration (Xperm) estimation from the permittivity signal (Eperm), a
linear relationship (Equation (10)) was used:

Xperm = CFX ·Eperm (10)

Fitting the experimental permittivity signal data to off-line DCW measurements
(Dataset 3 experiments 3c, 4c, 5c, 6c; and experiments 1s, 2s, 3s, 4s) from glycerol batch and
fed-batch phases, when cell viability is close to 100%, the correlation between the Xperm
and CFX parameters can be considered linear (calibration data enclosed in Appendix E,
Figure A13). Experimental data showed that the pre-induction permittivity measurement
correlation to DCW did not significantly differ for different experiments. The cell factor
CFX = 4.04 g/L/pF/cm was identified and used to calculate permittivity-based biomass
concentration estimates for both glycerol and methanol consumption phases presented
in this research. A similar approach to determine CFX is presented by Horta et al. [29];
however, they analyzed this correlation for dry biomass values only up to approx. 7 g/L.
After methanol induction, which can be accompanied by physiochemical or morphological
changes in the cell [39], the Eperm correlation to DCW is no longer linear. As it appears from
the results shown further, in the methanol consumption phase, the use the same correlation
cell factor identified for glycerol phase (4.04 g/L/pF) lead to a varying-quality fit for DCW
measurements even for the experiments performed under similar conditions. The possible
reasons for this phenomenon are discussed further.

2.6. OUR and CPR Calculation

Information from the culture oxygen uptake rate (OUR) and carbon dioxide pro-
duction rate (CPR) can be used for biomass concentration quantification. In steady-state
conditions, the oxygen uptake rate (OUR) can be assumed to be equal to the oxygen trans-
fer rate (OTR), OUR = OTR. For online OUR and CPR calculation, information about O2
and CO2 concentrations in the bioreactor inlet and outlet gas lines, along with the gas
flow rates in these lines, is required. The estimation precision depends on identification
and the control precision of the previously mentioned parameter. In the majority of the
conducted experiments, inlet air enrichment with O2 was used to follow the guidance from
Invitrogen Co. cultivation protocols, according to the requirement of the relatively high
dissolved oxygen (DO) level control. Air and O2 enrichment flows were controlled with
separate rotameters and automatic valves for both gases (system configuration enclosed in
Appendix C, Figure A7). Extra oxygen was added by the means of oxygen pulses. During
these oxygen pulses (oxygen valve ‘open’) the air valve is closed simultaneously. At the
end of oxygen pulses, (oxygen valve ‘close’), the air valve opens. The inlet gas flow rate
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was organized to have the same rotameter set-point for both gases (Qair,rot = QO2,rot).
That leads to a constant overall flow rate (Qair + QO2,enr = const) of 1.7 or 3.0 slpm regarding
the experimental plan as indicated in Table 1. This principle has been explained in detail in
another research [53]. In this case, different inlet air O2 enrichment levels were achieved by
manipulating the oxygen valve open times:

τO2,enr = nO2,%·τO2,period/100 (11)

where τO2, period was 30 s, and nO2,%—oxygen valve percentage controlled by the PLC PID
algorithm while maintaining the set DO level.

Enriching the inlet air with O2 and having one O2 gas analyzer at the exhaust gas line,
inlet O2 concentration calculation is required. For this purpose, ‘inlet gas O2 calibration’
was made in a water environment to assess the O2 concentration in the inlet gas under
different nO2,% and when no oxygen consumption was present. Set calibration percentages
(nO2_calibr,%) and the corresponding O2 concentrations in the output (cO2_calibr,%) were:
nO2_calibr,% = [0, 5, 10, 15, 20, 25, 30, 100], cO2_calibr,% = [20.11, 26.25, 29.99, 33.84, 37.71, 41.62,
45.5, 100], respectively. Linear approximation of cO2_calibr,% values between the measured
calibration points were used for the whole nO2_calibr,% interval with the step size of 1%.

The mathematical expressions of the necessary parameters for OUR and CPR cal-
culation are described below. Pure oxygen flow rate at the moment of oxygen pulse
(in L/min):

QO2,enr = nO2,%·QO2, rot/100 (12)

inlet air flow rate during an open air valve (L/min):

Qair = (1− nO2,%/100)·Qair, rot (13)

correction factor taking into account the gas dilution by N2:

CorF =
CN2,air·Qair

(Qair + QO2,enr)·(100− CO2,air − CCO2,air)·100
(14)

concentration of O2 in the inlet gas (vol. %):

CO2,in =
(nO2,% − nO2_calibr,%(i))·

(
CO2calibr ,out(i + 1)− CO2calibr ,out(i)

)
nO2_calibr,%(i + 1)− nO2_calibr,%(i) + CO2_calibr,out(i)

(15)

total flow rate of O2 in the bioreactor (L/min):

QO2total ,in = (Qair + QO2,enr)·CO2,in/100 (16)

oxygen transfer rate (g/kg/h):

OTR(t) =
(CO2,in − (Qair + QO2,enr)·nO2,%·CorF)·MO2

100·Vm·W
(17)

carbon dioxide production (evolution) rate (g/kg/h):

CPR(t) =
(−Qair·CCO2,air/100 + (Qair + QO2,enr)·nCO2,%·CorF)·MCO2

100·Vm·W
(18)

2.7. Estimation of Biomass Concentration from OUR, CPR and BCR

In most aerobic cultivations, the relationship between the biomass concentration (X)
and the OUR and CPR in a bioreactor can be modeled by means of Luedeking/Piret-type
relationships [38,54]:

OUR(t) = YrXO·RX(t) + YmXO·X(t) (19)

CPR(t) = YrXC·RX(t) + YmXC·X(t) (20)
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where RX is the biomass growth rate of the cellular system, g/kg/h; X is the biomass
concentration, g/kg; and YrXO [g(O2)/g(X)], YrXC [g(CO2)/ g(X)] are yield parameters.
YmXO [g(O2)/g(X)/h] and YmXC [g(CO2)/g(X)/h] are model parameters related to biomass
maintenance as YmXO quantifies the growth-independent part of the oxygen uptake rate
and YmXC quantifies the growth-independent part of the CPR. A similar equations can
be formulated for the amonia or sodium hydroxide consumption rate during the culti-
vation [54] and for taking into account the influence of feed solution addition on the pH
change [38]:

BCR(t) = YrXB1·RX(t) + YrXB2·
Fs(t)
W(t)

(21)

where YrXB1 [g(base)/g(X)] is the yield parameter, YrXB2 [g(base)/kg(culture)] is a parame-
ter related to the feeding (characterize the pH change due to substrate addition), and Fs is
the substrate feeding rate, kg/h; W is the culture mass (or volume in L if the culture broth
density ≈1 kg/L), kg. The rate of W(t) change can be defined as:

dW
dt

= Fs + Fb + Fa f − Fsmp − FCO2 (22)

where Fb is the base addition rate, kg/h; Faf is the anti-foam solution addition rate,
kg/h; Fsmp is the sampling rate, kg/h; FCO2 is the carbon lost rate related to CO2 pro-
duction/evolution, kg/h. As W(t) can be calculated online, the biomass balance in the
reactor (Equation (23)) can be formulated by the ordinary differential Equations (24)–(26).
Ordinary differential equations can be solved if the initial biomass X0 as well as the coef-
ficients YrXO, YmXO, YrXC, YmXC, YrXB1, and YrXB2 are known. The six coefficients can be
identified independently of the data records W(t), OUR(t), CPR(t), BCR(t), and X(t) previ-
ously measured in the process under consideration using standard nonlinear parameter
optimization techniques [54]:

dX
dt

= RX(t) (23)

dX
dt

=
OUR(t)−YmXO·X(t)

YrXO
(24)

dX
dt

=
CPR(t)−YmXC·X(t)

YrXC
(25)

dX
dt

=
BCR(t)−YrXB2· Fs(t)

W(t)

YrXB1
− F(t)

W(t)
·X(t) (26)

Soft-sensor yield coefficients YrXO, YmXO, YrXC, YmXC, YrXB1, and YrXB2, used in the
estimations, were determined using MATLAB’s fminsearch function minimizing RMSE
between reference and soft-sensor output. Off-gas (O2/CO2 concentrations) and alkali
consumption data available for all experiments presented in this research, was used to
identify a set of individual soft-sensor parameter (YrXO, YmXO, YrXC, YmXC, YrXB1, and
YrXB2) for correlation to DCW (results included in Appendix D). Off-gas analysis-based
soft-sensors were fitted to the process data from both glycerol and methanol consumption
phases. One set of alkali consumption-based soft-sensor parameters was identified for both
substrate consumption phases, as during the initial process stage (corresponding to glycerol
phase), alkali consumption dynamics had a weak correlation to biomass growth dynamics.

Obtained parameter sets were analyzed in context with the specific growth rate
(Appendix D, Figure A10), as the soft-sensor yield and rate parameter dependency of
specific growth rate was discussed in the Introduction section. However, strong correlation
between the soft-sensor parameter sets from the experiments with similar growth rates
(like for exps. 3c and 4c) or process conditions (like for exps. 4c and 5c) cannot be identified.
The possible reason of this might be the posed inaccuracies due to OUR, CER or BCR
calculation and varying cell metabolism in similarly propagating cultures under varying
process conditions. As the scope of this research is to demonstrate model-free soft-sensor
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application possibilities under particular experimental conditions, techniques, like Kalman
or Particle filtering are avoided. Soft-sensor yield parameter reconciliation procedures
using first-principle (elemental balancing) constraints, leaving the soft-sensor techniques as
simple as possible, are also avoided. Instead, a decision was made to include Mut+ strain
cultivation experiments 3c, 4c, 5c and 6c, that have similar experimental conditions and
consistent measurements available, in Dataset 3 for comparison reasons. The reference
parameters from literature and the mean values of identified soft-sensor parameters for
Dataset 3 experiments for both glycerol and methanol phases are presented in Table 3.
The soft-sensor parameters obtained from Gamisans et al. research [43] (see Table 3),
correspond to the specific biomass growth rate range of 0.035–0.150 1/h and 0.035–0.100
1/h for glycerol and methanol consumption phases, respectively.

Table 3. Soft-sensor yield coefficients attributed to DCW.

Symbol Unit
Value

Glycerol
(Identified 1)

Glycerol
(Reference)

Methanol
(Identified 1)

Methanol
(Reference)

YrOX g/g 0.66 — 4.60 —

YmOX g/g/h 0.035 0.026 3 0.014
0.003 3

0.020 [17]
0.024–0.045 4

YOX_total
2 g/g 0.70–0.99 1.42–1.79 [43] 3.80–6.08 5.69–6.51 [43]

~5.5 [39]
YrCX g/g 0.51 — 2.99 —

YmCX g/g/h 0.068 0.071 [55]
0.166 3 0.033 0.282 [55]

0.029 3

YCX_total
2 g/g 0.59–1.03 1.17–1.59 [43] 3.25–4.74 4.01–4.78 [43]

~3.5 [39]
YrBX1 g/g/h 0.024 — 0.024 —
YrBX2 g/g/h 0.030 — 0.030 —

1 Mean values of identified Dataset 3 parameters. YOX_total and YCX_total average parameter value intervals
obtained from exps. 4c, 5c and 6c (data included in Appendix D, Figure A11); average parameters from 3c
exp. were excluded, as they significantly differ from the reference for the methanol phase. 2 Total yield also
includes consumed oxygen or produced CO2 due to culture maintenance requirement. 3 Parameters calcu-
lated from YmOX = mATP · YO2/ATP · MO2 and YmOX = mATP · YO2/ATP · MO2 equations for O2 uptake and CO2
production cases respectively (mATP 2.51 mmol(ATP)/g(X)/h and 0.44 mmol(ATP)/g(X)/h for glycerol and
methanol consumption phases respectively taken from Gamisans et al. research [43]); stoichiometric yield co-
efficients YO2/ATP = 0.5/1.53 = 0.33 g(O2)/g(ATP) and YCO2/ATP = 3/2 = 1.5 g(CO2)/g(ATP) for glycerol and
YO2/ATP = 0.5/2.01 = 0.25 g(O2)/g(ATP) and YCO2/ATP =3/2 = 1.5 g(CO2)/g(ATP) for methanol consumption cases
respectively adapted from Niu et al. research [55]. 4 Calculated using the available range from the reviewed
maintenance rate coefficients 0.016–0.030 g(S)/g(X)/h [56] and YO2/S = 1.5 g(O2)/g(S) [17].

Soft-sensor parameters for Dataset 3 experiments were also identified for permittivity-
based reference biomass estimates, as this was found to be valuable for comparison reasons,
assuming a more similar soft-sensor and permittivity measurement relation to the culture
physiology in opposite to gravimetric DCW measurement. The identified soft-sensor
parameters for both reference biomass measurements for Dataset 3 experiments and sole
glycerol and methanol substrates are shown in Figure 4.

2.8. Estimation Quality Analysis

Estimation quality was analyzed by mean of normalized root mean square error
attributed to the measurement range (NRMSE) and expressed in percent’s. Root mean
square error expressed as:

RMSE =

√
∑n

i = 1
(
Xi − X̂i

)2

n
(27)
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and NRMSE:
NRMSE =

RMSE
Xmax − Xmin

·100% (28)

where Xi is the ith reference biomass measurement, X̂i is the biomass estimate, Xmin and
Xmax are the minimum and maximum values of reference Xi. NRMSE values, obtained
in this research are calculated for the samples taken along the duration of the process
(t0 − tend).
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3. Results

Four datasets were used for the evaluation of the presented biomass concentration
estimation method. Datasets consist of 13 cultivation experiments performed under vari-
ous conditions, from which six were Mut+ (HBcAg production) and seven were MutS

(HBsAg production) processes. The main results of the method implementation are
presented further.

3.1. Biomass Concentration Determined Off-Line

Reliability of the off-line biomass optical density (OD), wet cell weight (WCW) and
dry cell weight (DCW) concentration measurements can be evaluated on the basis of how
these parameters correlate between each other. Information on the correlation between



Sensors 2021, 21, 1268 14 of 34

DCW, WCW and OD is important when recalculation from one to another measurement is
necessary (for comparison reasons, yield calculations etc.). The results further described
in detail are obtained from Dataset 1 and Dataset 2 off-line data included in Appendix A
(Figure A2), where the method of correlation appears in a brief context of some of the
varying process parameters indicated in Table 1 (some of the on-line parameters are
available in Appendix A, Figure A1). The results indicates a more consistent and linear
correlation of DCW~WCW compared to more disperse and less linear correlations of
DCW~OD and WCW~OD (Figure A2, panel C). Two linear DCW~WCW correlation
equations for the interval 0–200 WCW (R2 = 0.98, RMSE = 2.79 g/L):

DCW = 0.27·WCW (29)

and for the interval 200–450 WCW/L (R2 = 0.88, RMSE 8.25 g/L)

DCW = 0.32·WCW− 6.34 (30)

were identified.
Additionally, linear DCW~OD and WCW~OD approximation models were eval-

uated: DCW~OD within the OD interval 0–120 abs.u., DCW = 0.487*OD (R2 = 0.96,
RMSE = 4.2 g/L) and WCW~OD within the OD interval 0–100 abs.u., WCW = 1.802*OD
(R2 = 0.98, RMSE = 9.89 g/L).

Total (statistical and instrumental) measurement errors were evaluated from 1 exper-
iment by repeating the analysis five times. Average OD measurement [1.2 2.9 36.4 119.0
219.2 251.0 322.4 362.2] values were calculated from samples taken along the process in
different process stages for the whole density region, total respective OD measurement
errors were ∆OD = [0.1 0.1 0.9 4.0 6.3 6.6 17.0 27.6]. DCW and WCW measurement total
errors, compared to OD, deviated less along the whole process. Average ∆DCW and
∆WCW values were calculated as 0.98 DCW and 2.33 WCW, respectively. If the WCW
measurement average error is recalculated to the dry biomass case (proportional coefficient
~0.3 as a mean from coefficients in Equations (27) and (28), the ∆WCW average measure-
ment error of 0.7 DCW is about 30% lower than the measured ∆DCW. Despite this, the
DCW concentration measurement was chosen to be correlated to the instrumental methods
described further. This is due to the mathematical calculations used further, where DCW
concentration is commonly used to represent specific yield and kinetic expressions.

3.2. Biomass Estimates from In-Situ Turbidity and Permittivity Sensors

As it was discussed in the Introduction chapter, sudden stirrer rate changes and anti-
foam agent addition may cause significant changes in the turbidity and permittivity signals
and a respective shift in biomass estimates. Particular cross-sensitivity is presented in the
example enclosed in Figure 5.

For, example, well observable simultaneous negative turbidity and positive permit-
tivity signal shifts (Figure 5, panel A) happen when the addition of an anti-foam agent
takes place at around process 42 h (Figure 5, plot on the top of panel B). In the same
example within process 44–45 h, a sudden stirrer rate decrease and an increase caused
significant permittivity signal and minor turbidity signal shifts. As it can be seen from
the supplementary data included in Appendix B (Table A1 and Figures A4–A6), a strong
correlation of the shift actuator (stirrer rate or anti-foam addition rate change) and shift
actuator signal height to the height of sensor signal shift or specific measurement (turbidity
or permittivity), is not observable. This means, that the sensor signal should be analyzed
directly for uncommon shifts that account for un-typical biomass growth/lysis. From the
data presented in Figure 5 panel B, the nRSturb and nRSperm filtering criteria response to
the shift actuators can be evaluated. Optimal (safe) filter parameters that are appropriate
for accounting and filtering of the major turbidity and permittivity signal disturbances
in Dataset 1/Dataset 2 and Dataset 3/Dataset 4 experiments respectively, were identified
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(Table 4) and the improvement for biomass concentration estimation quality, represented
by XpermFiltr and XturbFiltr results, can be visually observed in Figure 6.

Sensors 2021, 21, x FOR PROOF 15 of 34 
 

 

 

(A) (B) 

Figure 5. In-situ turbidity and permittivity sensor signal filtering parameter and result overview (experiment 6c). (A) Ex-
panded view of the biomass estimates using raw and filtered turbidity and permittivity sensor signals. Plot on the top of 
panel B: changes in the stirrer rotational speed and antifoam solution addition rate. Plot in the middle of panel B: turbidity 
signal preprocessing parameters RSturb, mRSturb and nRSturb used in the filter. Plot in the bottom of panel B: permittivity 
signal preprocessing parameters RSperm, mRSperm and nRSperm used in the filter. 

For, example, well observable simultaneous negative turbidity and positive 
permittivity signal shifts (Figure 5, panel A) happen when the addition of an anti-foam 
agent takes place at around process 42 h (Figure 5, plot on the top of panel B). In the same 
example within process 44–45 h, a sudden stirrer rate decrease and an increase caused 
significant permittivity signal and minor turbidity signal shifts. As it can be seen from the 
supplementary data included in Appendix B (Table A1 and Figures A4–A6), a strong cor-
relation of the shift actuator (stirrer rate or anti-foam addition rate change) and shift actu-
ator signal height to the height of sensor signal shift or specific measurement (turbidity or 
permittivity), is not observable. This means, that the sensor signal should be analyzed 
directly for uncommon shifts that account for un-typical biomass growth/lysis. From the 
data presented in Figure 5 panel B, the nRSturb and nRSperm filtering criteria response to the 
shift actuators can be evaluated. Optimal (safe) filter parameters that are appropriate for 
accounting and filtering of the major turbidity and permittivity signal disturbances in Da-
taset 1/Dataset 2 and Dataset 3/Dataset 4 experiments respectively, were identified (Table 
4) and the improvement for biomass concentration estimation quality, represented by 
XpermFiltr and XturbFiltr results, can be visually observed in Figure 6. 

Table 4. Upper and lower normalized rate sum (nRSE,max/nRSE,min) bounds used for on-line turbid-
ity and permittivity signal (E) filtering. 

Figure 5. In-situ turbidity and permittivity sensor signal filtering parameter and result overview (experiment 6c). (A) Ex-
panded view of the biomass estimates using raw and filtered turbidity and permittivity sensor signals. Plot on the top of
panel B: changes in the stirrer rotational speed and antifoam solution addition rate. Plot in the middle of panel B: turbidity
signal preprocessing parameters RSturb, mRSturb and nRSturb used in the filter. Plot in the bottom of panel B: permittivity
signal preprocessing parameters RSperm, mRSperm and nRSperm used in the filter.

Table 4. Upper and lower normalized rate sum (nRSE,max/nRSE,min) bounds used for on-line turbid-
ity and permittivity signal (E) filtering.

nRSE,max/nRSE,min τsum τmed

For the turbidity signal 0.01/−0.01 CU/min 5 min 30 min
For the permittivity signal 2.5/−2.5 pF/m/min 5 min 30 min
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As it can be observed from the results of experiment no. 6c (Figure 5, panel A,
42 h; or Figure 6, 42 h) and experiment no. 2s (Figure 6, ~75 h), the filter did not com-
pletely eliminate the sudden permittivity signal shifts. It would be possible to eliminate
these sudden jump to a higher extent by narrowing the permittivity signal nRSE,max and
nRSE,min bounds, although that would lead to signal over-filtration in some other explo-
rative examples included in this research. Signal over-filtration is a result of the biomass
increment/decrement-related sensor response ‘freezing’ in a no changing state (Figure 2,
place in the algorithm where the actual sensor output is equalized to one-step-ahead
measurement, Ei,out = Ei-1,out). For example, some over-filtration can be observed for the
turbidity signal at the end of experiment no. 6s and starting from the middle of experiment
no. 7s. Over-filtration of the permittivity signal is not observable in such extent.

A total of six experiments (1c, 3, 5c, 6c, 1s and 4s), representing the average tendency
of uncommon signal shifting frequency and range per experiment, were analyzed in detail,
and the raw results are included in Appendix B. From 12 shift cases analyzed in detail,
seven occurred due to the intensive change of the stirrer rotational speed, three resulted
from the mixed stirrer/a-foam addition interaction, and two cases occurred purely because
of anti-foam addition. In these analyzed examples, XturbRaw shifted by 10% on average, and
the filter minimized this shift to 1.8%, but for XpermRaw, it was 51.0% and 19.0%, respectively.
From these results, an average filtering efficiency of the single shifts can be evaluated—for
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the turbidity measurement shifts, the error was reduced 5 times but for the permittivity
measurement, this indicator was reduced twice.

A good XturbFiltr (for Dataset 1 and Dataset 2 experiments) and XpermFiltr (for Dataset
3 and Dataset 4 experiments) estimation quality in the glycerol phase (average RMSE’s
5.0 and 2.7, respectively) and a notably lower estimation quality in the methanol phase
(average RSME’s 12.3 and 28.5, respectively) was achieved. Normalized root mean square
errors (NRSME) of 7% and 8% were calculated from Dataset 1/Dataset 2 and Dataset 3
XturbFiltr fit to DCW respectively. NRMSE of 11% was calculated from Dataset 3 XpermFiltr fit
to DCW. Calculated NRMSEs for in-situ and soft-sensors are compared in Table 5. Other
results characterizing the soft-sensor performance, are presented in the next section.

Table 5. Normalized root mean square error (NRMSE) values fitted to DCW and XpermFiltr for
different datasets.

XturbFiltr XpermFiltr XOUR XCPR XBCR

Average NRMSE (%)

Fit to DCW for
Dataset 1 and Dataset 2 7 — — — —

Fit to DCW for
Dataset 3 8 11 10 13 8

Fit to XpermFiltr for
Dataset 3 — — 11 14 10

Both methods showed a lower biomass estimation quality for the methanol consump-
tion phase. Such behavior for Xturb estimates can be explained by the application of the
method based on limited optical characteristics under rather high cell density conditions.
It should also be mentioned that, during the glycerol consumption phase, fewer off-line
biomass samples were analyzed, therefore, having an impact on the estimation error
calculated for this phase.

3.3. Biomass Estimation from OUR, CER and BCR Data

As it was shown in the soft-sensor development procedure in the Materials and
Methods section, off-gas analysis-based soft-sensor yield (conversion) parameters for
methylotrophic P. pastoris may depend on specific biomass growth rate. A strong correlation
between the soft-sensor parameter sets from the experiments with similar growth rates
(like for exps. 3c and 4c) or process conditions (like for exps. 4c and 5c) was not identified.

Dataset 3 experiments with similar experimental conditions were selected for soft-
sensor performance evaluation. Specific growth rates for Dataset 3 experiments were
comparably similar, e.g., µglyc = [0.09 0.10 0.14 0.14] 1/h for glycerol and µmeth = [0.015
0.015 0.030 0.010] 1/h for methanol consumption phase, respectively. The identified and
reference yield and yield-rate parameter values are compared in Table 3. The identified
model parameters were used for biomass estimation (results included in Figure 7).

As can be extracted from the available reference sources [39,43], O2 and CO2 yield
parameters also include part of the consumed/produced O2/CO2 due to maintenance
requirements. For comparison reasons, the integration of consumed O2 and produced CO2
per mass of biomass was done (data included in Appendix D, Figure A11). The mean yield
coefficients YOX_total and YCX_total, representing the total yield ratio of consumed oxygen and
produced carbon dioxide per mass of biomass, were in accordance or comparably close to
the indicated reference values for those parameters identified for the methanol consumption
phase. The YCX_total parameter for glycerol consumption phase is also close to the reference
sources, however it partly declines, indicating an unclosing C-balance. As it appears
from the carbon mass balance for the methanol consumption phase (Figure A12 enclosed
in the Appendix D), for the majority of reference DCW measurements, a C imbalance
is lower than 10%, indicating for a closing C elemental balance that was also proposed
elsewhere [39]. The findings above indicate a comparably accurate CER calculation. At
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the same time, a comparably higher OUR-based yield coefficient deviation from reference
sources indicate for inaccuracies in OUR calculations. Such inaccuracies may occur due
to O2 off-gas measurement calibration shifts and/or an insufficiently accurate method
utilized for oxygen concentration calculation in oxygen enriched inlet air.

With the identified set of Dataset 3 mean parameters, DCW estimation error (NRMSE)
for XOUR, XCPR and XBCR was 10%, 13% and 8%, respectively. The soft-sensor parameters
for fitting to the reference permittivity (XpermFiltr) measurement, identified for the same
dataset, did not lead to an improved estimation quality for any of the observed methods.
The estimation quality between the used methods is compared in the Table 5.
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4. Discussion

Various biomass estimation methods were applied in up to 135 DCW high cell density
P. pastoris cultivations under varying process conditions. A high number of cultivations
(13 exp.) were analyzed. This forms an extensive overview of the method reproducibility
and applicability under particular or similar experimental conditions. As the glycerol or
methanol consumption leads to different cell physiological behavior, separate soft-sensor
parameters were fit for each of the substrate consumption phases. Below, the major findings
are summarized, and a discussion on the result interpretation is extended.

4.1. Off-Line Biomass Detection Methods

For cell densities up to 60 DCW, the photometric OD measurements suitably correlate
to the DCW (RMSE 4.2 g/L). For higher DCW densities, the OD measurement fails to
sufficiently represent the biomass dynamics. The above-mentioned is true because of
the cross-sensitivity of the well-known UV/NIR method to culture constituents, such as
cell debris, by-products or other matters added to the bioreactor. The aforementioned
is illustrated in an obvious way elsewhere [27], where the same in-situ turbidity signal
at different process stages corresponds to about 2 times different DCW levels. Statistical
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and instrumental errors of ±0.98 DCW and ±2.33 WCW obtained for DCW and WCW
measurements respectively, indicate a suitable accuracy for reference biomass concentration
measurement methods.

4.2. DCW Estimation with the In-Situ Turbidity Sensor

Biomass densities of 50 DCW were achieved up until the start of the methanol con-
sumption (induction) phase. For biomass densities up to 50 DCW, the in-situ turbidity
method performed well for DCW estimation (RMSE 5.0 g/L). For the higher biomass
densities of 50–135 g/L, an estimation accuracy about two times lower was observed
(RMSE 12.3 g/L). Few research results are available, where turbidity probe applications
are demonstrated at such high cell densities (≥90 DCW). In the research conducted by
Goldfeld and co-authors [30], at-line NIR turbidity measurement was used for high cell
density P. pastoris biomass monitoring. A similar correlation quality up to about 90 DCW
(300 WCW) can be observed for the turbidity related biomass estimation method [30].
However, for the 90–165 DCW (300–550 WCW) interval, the average deviation between
off-line (WCW) and on-line measurements fit either poorly or even not at all [30]. From the
available measurement data [30], a rough estimate of at least 1.5 times better XturbFiltr~DCW
fit for the 90–130 DCW range, comprehensively examined in the current research, can be
evaluated for the current contribution. Another research is available, where successful
S. cerevisiae monitoring for up to 90 DCW [23] is presented. However, in this example,
a long-lasting (45 days) continuous membrane filtrated culture under constant mixing
and aeration conditions was investigated. As one of the discussed reference examples
had a lower turbidity-based biomass estimate correlation quality to DCW [30], but the
other one [23] lacked an investigation in the biomass density region above 90 DCW, the
particular contribution can be addressed as one of the rare examples, where the turbidity-
based biomass estimation results above 90 DCW are demonstrated with comparably higher
accuracy. Moreover, a new region of high cell densities for the in-situ turbidity technique is
investigated. Turbidity measurement demonstrated one of the highest accuracies of 8%
(NRMSE) in comparison to other investigated methods.

4.3. In-Situ Permittivity (XpermFiltr) Based Biomass Estimates

For the glycerol consumption phase (<25–30 h), permittivity-based biomass estimates
fit well to DCW. Starting from the very beginning of the methanol consumption phase,
within 1–2 h, XpermFiltr declined in all cultivations by about 10–20 g/L. This change in the
culture dielectric properties under new conditions is a characteristic behavior as adaptation
to another substrate and start of recombinant protein synthesis occurs [57]. The XpermFiltr

behavior within the methanol consumption phase differed between Mut+ and MutS strains.
In the majority of Mut+ processes (3c, 4c and 5c), XpermFiltr closely followed the DCW
dynamics. At the same time, in the MutS processes, XpermFiltr remained at the same level
(1s and 3s) or increased slowly (2s and 4s). Similar permittivity-based biomass estimates
and DCW dynamics are observable also in the research conducted by Goldfeld et al. [30].

The reason for such XpermFiltr and DCW shifts in the comparably similar processes (like
for the Dataset 3 experiments) can be caused by the varying permittivity of cell population
caused by changes in the cell size and/or intracellular conductivity [57]. If one assumes
that the intracellular conductivity remains unchanged for the morphologically different
cell clusters, the varying dynamics of the cell population size could lead to differences
between XpermFiltr and DCW. Vanz et al. [49] studied the morphological changes of P.
pastoris under high yield HBsAg production. From the presented data, one can extract that,
during the induction phase (120 h) for 40% of the cell population, the diameter increased
by about 50% leading to about 3-fold increased cell volume for this population. Particular
changes at the end lead to the cell volume increase of the whole system by about 20%.
At the same time, the number of apoptotic cells in the induction phase increased by 10%.
Overall, that would lead to a viable cell volume increase by 10%. Under circumstances
introduced earlier, the permittivity-based biomass estimate should, accordingly, increase
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by 10%. Raschmanová et al. [31] extensively studied the morphological changes of several
P. pastoris strains under different growth rates, synthesizing extracellular proteins. The
results indicate the extended range for the apoptotic (impaired viability) cells to form 10 to
30% of the population depending on the strain used and the specific biomass growth rate.
Moreover, the populations of larger cells appeared to grow under medium biomass growth
rates (µmethanol = 0.16 1/h), and with a trend to decrease at low (µmethanol = 0.08 1/h) and
high (µmethanol = 0.32 1/h) biomass growth rates.

The findings above show that the P. pastoris culture morphology and viability signifi-
cantly change over the methanol induction phase. Moreover, the dynamics of these changes
vary under different biomass-specific growth rates (excess methanol levels), influencing
also the permittivity-based biomass estimate correlation to DCW. This could be the case
of the varied XpermFiltr and DCW correlation for Mut+ cultivations presented here, as the
protein yield and accumulation dynamics were similar in these processes (yet unpub-
lished results). Despite the varied cultivation conditions in MutS cultivations, a significant
decline in XpermFiltr against DCW was noted. Due to the poor HBsAg biosynthesis, the
obtainment of purified product was possible from only one experiment (yet unpublished
results). This leads to the conclusion that in the MutS processes, less viable, low-size and
low-productivity cell populations dominated in comparison to Mut+ processes.

A number of permittivity measurements showed an average DCW fit quality of 11%
(NRMSE) for Dataset 3 using fixed parameter sets for glycerol and methanol consumption
phases. Above-described permittivity measurement performance lead to the conclusion,
that there is some interpretation gap, regarding permittivity correlation to methylotrophic P.
pastoris DCW biomass during induction phase. Therefore, for the in-depth investigation of
permittivity/DCW correlation, analysis of the cell morphology change would be necessary.

4.4. Soft-Sensor-Based Biomass Estimates

Evaluated off-gas and alkali consumption-based soft-sensor estimation accuracies for
Dataset 3 experiments are 10%, 13% and 8% for oxygen-uptake-based, carbon-production-
based and alkali-consumption-based biomass estimators, respectively. As the scope of this
research was to demonstrate a model-free soft-sensor development that is as simple as
possible, the obtained results still could be improved by means of the methods discussed
in the introduction. Taking into account the differences between some of the identified
and reference yield parameters for oxygen consumption and, in a lesser extent, for carbon
dioxide production, one should state that the possible reasons for this could be related
to the imprecisions in O2/CO2 off-gas sensor calibration, airflow adjustment etc. For
oxygen consumption-based yield parameters, these differences may also occur due to an
insufficiently accurate method utilized for oxygen concentration calculation in oxygen-
enriched inlet air.

The alkali consumption-based estimator shows similar performance to turbidity mea-
surement. Knowing that the turbidity measurement better performs in the first part of the
process (<50 DCW), but alkali-based biomass estimator indicates better results starting
from the end of the glycerol batch phase (>25 DCW), a combination of both measurements
would lead to a superior, reliable and non-complex biomass estimation procedure.

4.5. In-Situ Turbidity and Permittivity Signal Filter

The in-situ sensor signal filtering method lead to about 5-fold and 2-fold minimized
biomass estimate drifts for turbidity- and permittivity-based biomass estimates, respec-
tively. As the method was verified in a sufficiently high number of experiments (for
turbidity 12 exps. and for permittivity 8 exps.), it is applicable in process on-line mon-
itoring. Considering filtering performance, e.g., some of the shifts may be filtered only
partly or some overfiltration is possible, the method is applicable for decision making
in bioprocess control. Some examples of unfiltered permittivity signal peaks, analyzed
in detail, are added to the supplementary material (Appendix B, Figures A4–A6). From
this data, one can observe that unfiltrated shift nRSE does not exceed preset reference
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nRSE,max and nRSE,min bounds, but the nRSE peak has a wider area compared to neighbor
peaks not related to the signal uncommon shift. Therefore, identifying uncommon shift
nRSE peak threshold area and selecting it as a filtering criterium, might lead to improved
filtering accuracy.

4.6. Concluding Remarks

Despite the inert implementation of the process analytical tools for decision-making in
biopharma’s process control, the future cybernetical-physical systems (i.e., interconnected
systems of physical machines that are controlled by soft-sensor and algorithms) are likely
to become autonomous units, being able to function without manual interventions, and
delivering quality by design [58]. For that purpose, reliable and well interpretable real-
time biomass sensor data acquisition will be of major importance. Due to this reason, the
contribution authors expect to enhance the development of biomass monitoring.
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Abbreviations
CF Cell factor [g/L/pF/cm]
HBcAg Hepatitis B core-antigen
HBsAg Hepatitis B surface-antigen
DO Dissolved oxygen
OD Optical density [rel. u. (relative units)]
DCW Dry cell weight concentration [g/L]
WCW Wet cell weight concentration [g/L]
GMP Good Manufacturing Practice
PID Proportional, Integral and Derivative control parameters
PLC Process Logical Controller
SCADA Supervisory Control and Data Acquisition
c Concentration
O2 Oxygen
CO2 Carbon dioxide
N2 Nitrogen
µ Biomass growth rate [1/h]
Fs Feeding rate of substrate solution [kg/h]
FCO2 Carbon loss via off-gass [kg/h]
Fb Alkali addition rate [kg/h]
Fe Evaporation rate [kg/h]
Fsmp Sampling rate [kg/h])
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E Raw sensor signal (output) [units depend on the sensor]
Eperm Permittivity sensor signal (output) (DeltaEps) [pF/cm]
Eturb Turbidity sensor signal (output) [CU (concentration units)]
R Rate
RS Rate sum
RX Biomass formation rate [kg(X)/kg(Culture)/h]
Qair Air flow rate [slpm (standard liters per minute)]
QO2,enr Oxygen flow rate [slpm (standard liters per minute)]
t Process time [h]
τ Period [s, min, h]
W Culture mass [kg]
x Total biomass weight [g, kg]
X Biomass concentration [g/L, kg/L]
Y Yield parameter [kg/kg]
Indices
ATP Adenosine triphosphate
i Item number i
t Time point t
O, O2 Oxygen
C, CO2 Carbon dioxide
E Raw sensor signal (output)
B Base or alkali
X Biomass
DCW Dry cell weight concentration
WCW Wet cell weight concentration
af Antifoam
m Maintenance
S Substrate
enr Enrichment
Filtr Filtrated signal
% Percent
calibr Calibration
pH Acidity measure
feed Feed solution
turb Turbidity
perm Permittivity
glyc Glycerol
meth Methanol
end End measurement
0 Initial measurement
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Appendix B

Table A1. In-situ turbidity and permittivity sensor signal filtering quality parameter evaluation overview for a part of the
presented experiments.

Column.
no. (→) 1 2 3 4 5 6 7 8 9

Exps. Time
(h)

Max.
dn/dt
(rpm)

Max.
d(a-foam)/dt

mL/min

Max. RSn
for Eturb

(min)

Biomass
Estimates
XturbRaw0
XturbRaw1

(Diff. in %)
(g(Dry Cell
Weight)/L)

Biomass
Estimates
XturbFiltr0
XturbFiltr1

(Diff. in %)
(g(Dry Cell
Weight)/L)

Max. RSn
for Eperm

(min)

Biomass
Estimates
XpermRaw0
XpermRaw1
(Diff. in

%) (g(Dry
Cell

Weight)/L)

Biomass
Estimates
XpermFiltr0
XpermFiltr1
(Diff. in

%) (g(Dry
Cell

Weight)/L)

1c 21.3 −97 0 −0.069
65.08
53.6

(17.6%)

62.3
59.1

(5.1%)
- - -

23.05 139 0 +0.069
51.8
63.6

(22.8%)
58.658.6(0%) - - -

27.53 70 0.9 (27.47 h) −0.099
97.2
79.7

(18%)

91.3
91.3
(0%)

- - -
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Table A1. Cont.

Column.
no. (→) 1 2 3 4 5 6 7 8 9

Exps. Time
(h)

Max.
dn/dt
(rpm)

Max.
d(a-foam)/dt

mL/min

Max. RSn
for Eturb

(min)

Biomass
Estimates
XturbRaw0
XturbRaw1

(Diff. in %)
(g(Dry Cell
Weight)/L)

Biomass
Estimates
XturbFiltr0
XturbFiltr1

(Diff. in %)
(g(Dry Cell
Weight)/L)

Max. RSn
for Eperm

(min)

Biomass
Estimates
XpermRaw0
XpermRaw1
(Diff. in

%) (g(Dry
Cell

Weight)/L)

Biomass
Estimates
XpermFiltr0
XpermFiltr1
(Diff. in

%) (g(Dry
Cell

Weight)/L)

2c NA NA NA NA Good filtering
quality NA NA NA NA

3c 22.7 36 0 +0.014
25.7
26.4

(2.7%)

25.7
25.7
(0%)

+0.67 NA NA

78.05 −131 0.2 (77.38 h) +0.014
78.7
78.0

(0.9%)

73.8
74.0

(0.3%)
+12.3

140.9
206.1

(46.3%)

155.2
152.8
(1.5%)

4c Similar to 3c experiment

5c 19.73–
20.30 NA NA NA NA NA

In the explorative experiments, the
unusually lasting decrease and then the

lasting increase of the stirrer rotation
speed lead to a permittivity signal peak

unfiltered by the proposed filter
algorithm and filter parameters

(Figure A3)

58.83 0 0.1 −0.023
99.5
91.8

(7.7%)

100.0
100.0
(0%)

+3.5
90.1

101.1
(12.2%)

90.1
101.1

(12.2%)

6c 36.8 0 0.2 −0.088
94.5
75.5

(20.1%)

93.3
96.7

(3.6%)
+7.5

41.6
69.2

(66.3%)

41.6
50.9

(22.4%)

44.07 −217 0 −0.019
81.7
76.7

(6.1%)

100.8
98.2

(2.6%)
+10.1

66.21
121.9

(84.1%)

46.9
56.6

(20.7%)

44.50 114 0 0.0005
76.1
80.8

(6.2%)

98.0
103.7

(5.8%)
−13.1

118.8
64.8

(45.5%)

57.2
53.9

(5.8%)

1s 94.03 62 0 −0.039
87.4
78.0

(10.8%)

80.6
80.6
(0%)

3.99
37.7
67.9

(80.1%)

37.7
45.2

(19.9%)

4s 18.03 30

17.9–18.02 h
tree ~0.35 mL
impulses of

a-foam

−0.035
26.2
25.3

(3.4%)

25.1
25.0

(0.4%)

1.78 (max.
reached in

~6 min)

26.06
34.3

(31.6%)

26.06
34.3

(31.6%)

22.25 26 0 −0.030
71.2
66.1

(7.2%)

70.0
68.8

(1.7%)
+4.40

42.7
60.5

(41.7%)

42.7
60.5

(41.7%)

Mean difference in % 10.3% 1.6% — 51.0% 19.5%

NA: not analyzed. -: no measurement. Mean difference in %: mean of differences indicated in parentheses. Description of the columns of
Table A1: (1) Time when a significant sensor signal change starts; (2) Stirrer maximum change rate reached in approximately 2 to 3 min
starting from the time indicated in column 1; (3) Maximum addition rate of the anti-foam agent reached in approximately 2 to 3 min starting
from the time indicated in column 1 or reached in the time indicated in parentheses (from the right of the parameter); (4) Maximum RSn of
the turbidity signal reached in approximately 2 to 3 min starting from the time indicated in column 1; (5) Influence of the raw sensor signal
shift of DCW biomass estimate, where: XturbRaw0 biomass estimate from the raw turbidity sensor signal just before the signal’s uncommon
shift; XturbRaw1 biomass estimate from the raw turbidity sensor signal immediately after the signal uncommon shift; diff. in % (parameter
in parentheses) = ABS(XturbRaw1 − XturbRaw0)*100%/XturbRaw0; for columns (6), (8) and (9) analogic description as for column (5) using
appropriate parameters of XturbFiltr, XpermRaw and XpermFiltr; (7) maximum RSn of the permittivity signal reached in approximately 2 to
3 min starting from time indicated in column 1.
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Figure A8. Soft-sensor biomass estimation results, using individually identified yield coefficients. Two different datasets
fitted to: (A) off-line DCW (Dataset 1/Dataset 2 and individual 3s experiments) using coefficients presented in Figure A9;
and (B) sparse XpermFiltr (Dataset 4 experiments) using coefficients presented in Figure 4.
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31. Raschmanová, H.; Zamora, I.; Borčinová, M.; Meier, P.; Weninger, A.; Mächler, D.; Glieder, A.; Melzoch, K.; Knejzlík, Z.; Kovar, K.
Single-Cell Approach to Monitor the Unfolded Protein Response during Biotechnological Processes with Pichia pastoris. Front.
Microbiol. 2019, 10, 335. [CrossRef]

32. Konstantinov, K.; Pambayun, R.; Matanguihan, R.; Yoshida, T.; Perusicn, C.M.; Hu, W.-S. On-line monitoring of hybridoma cell
growth using a laser turbidity sensor. Biotechnol. Bioeng. 1992, 40, 1337–1342. [CrossRef]

33. Brignoli, Y.; Freeland, B.; Cunningham, D.; Dabros, M. Control of Specific Growth Rate in Fed-Batch Bioprocesses: Novel
Controller Design for Improved Noise Management. Processes 2020, 8, 679. [CrossRef]

34. Münzberg, M.; Hass, R.; Khanh, N.D.D.; Reich, O. Limitations of turbidity process probes and formazine as their calibration
standard. Anal. Bioanal. Chem. 2016, 409, 719–728. [CrossRef]

35. Katla, S.; Mohan, N.; Pavan, S.S.; Pal, U.; Sivaprakasam, S. Control of specific growth rate for the enhanced production of human
interferon α2b in glycoengineered Pichia pastoris: Process analytical technology guided approach. J. Chem. Technol. Biotechnol.
2019, 94, 3111–3123. [CrossRef]

36. Brunner, V.; Klöckner, L.; Kerpes, R.; Geier, D.; Becker, T. Online sensor validation in sensor networks for bioprocess monitoring
using swarm intelligence. Anal. Bioanal. Chem. 2019, 412, 2165–2175. [CrossRef] [PubMed]

37. Pohlscheidt, M.; Charaniya, S.; Bork, C.; Jenzsch, M.; Noetzel, T.L.; Lübbert, A. Bioprocess and Fermentation Monitoring. Encycl.
Ind. Biotechnol. 2013, 2013, 1469–1492. [CrossRef]

38. Galvanauskas, V.; Simutis, R.; Lübbert, A. Direct comparison of four different biomass estimation techniques against conventional
dry weight measurements. Process Control Qual. 1998, 11, 119–124. [CrossRef]

39. Wechselberger, P.; Sagmeister, P.; Herwig, C. Real-time estimation of biomass and specific growth rate in physiologically variable
recombinant fed-batch processes. Bioprocess Biosyst. Eng. 2012, 36, 1205–1218. [CrossRef]

40. Zhang, W.; Bevins, M.A.; Plantz, B.A.; Smith, L.A.; Meagher, M.M. Modeling Pichia pastoris growth on methanol and optimizing
the production of a recombinant protein, the heavy-chain fragment C of botulinum neurotoxin, serotype A. Biotechnol. Bioeng.
2000, 70, 1–8. [CrossRef]

41. Stelzer, I.V.; Kager, J.; Herwig, C. Comparison of Particle Filter and Extended Kalman Filter Algorithms for Monitoring of
Bioprocesses. Comput. Aided Process Eng. 2017, 40, 1483–1488. [CrossRef]

42. Steinwandter, V.; Zahel, T.; Sagmeister, P.; Herwig, C. Propagation of measurement accuracy to biomass soft-sensor estimation
and control quality. Anal. Bioanal. Chem. 2016, 409, 693–706. [CrossRef]

43. Tomàs-Gamisans, M.; Ferrer, P.; Albiol, J. Fine-tuning the P. pastoris iMT1026 genome-scale metabolic model for improved
prediction of growth on methanol or glycerol as sole carbon sources. Microb. Biotechnol. 2017, 11, 224–237. [CrossRef]

44. Kuprijanov, A.; Gnoth, S.; Simutis, R.; Lübbert, A. Advanced control of dissolved oxygen concentration in fed batch cultures
during recombinant protein production. Appl. Microbiol. Biotechnol. 2009, 82, 221–229. [CrossRef]

45. Oliveira, R.; Clemente, J.; Cunha, A.E.; Carrondo, M.J.T. Adaptive dissolved oxygen control through the glycerol feeding in a
recombinant Pichia pastoris cultivation in conditions of oxygen transfer limitation. J. Biotechnol. 2005, 116, 35–50. [CrossRef]

46. Jobé, A.M.; Herwig, C.; Surzyn, M.; Walker, B.; Marison, I.; Von Stockar, U. Generally applicable fed-batch culture concept based
on the detection of metabolic state by on-line balancing. Biotechnol. Bioeng. 2003, 82, 627–639. [CrossRef] [PubMed]

47. Van Der Heijden, R.T.J.M.; Romein, B.; Heijnen, J.J.; Hellinga, C.; Luyben, K.C.A.M. Linear constraint relations in biochemical
reaction systems: II. Diagnosis and estimation of gross errors. Biotechnol. Bioeng. 1994, 43, 11–20. [CrossRef] [PubMed]

48. Liu, W.-C.; Gong, T.; Wang, Q.-H.; Liang, X.; Chen, J.-J.; Zhu, P. Scaling-up Fermentation of Pichia pastoris to demonstration-scale
using new methanol-feeding strategy and increased air pressure instead of pure oxygen supplement. Sci. Rep. 2016, 6, 18439.
[CrossRef] [PubMed]

49. Vanz, A.L.; Lunsdorf, H.; Adnan, A.; Nimtz, M.; Gurramkonda, C.; Khanna, N.; Rinas, U. Physiological response of Pichia pastoris
GS115 to methanol-induced high level production of the Hepatitis B surface antigen: Catabolic adaptation, stress responses, and
autophagic processes. Microb. Cell Factories 2012, 11, 103. [CrossRef]

50. Gurramkonda, C.; Adnan, A.; Gäbel, T.; Lunsdorf, H.; Ross, A.; Nemani, S.K.; Swaminathan, S.; Khanna, N.; Rinas, U. Simple high-
cell density fed-batch technique for high-level recombinant protein production with Pichia pastoris: Application to intracellular
production of Hepatitis B surface antigen. Microb. Cell Factories 2009, 8, 13. [CrossRef]

51. Potvin, G.; Ahmad, A.; Zhang, Z. Bioprocess engineering aspects of heterologous protein production in Pichia pastoris: A review.
Biochem. Eng. J. 2012, 64, 91–105. [CrossRef]

52. Grigs, O. Model Predictive Feeding Rate Control in Conventional and Single-use Lab-scale Bioreactors: A Study on Practical
Application. Chem. Biochem. Eng. Q. 2016, 30, 47–60. [CrossRef]

53. Mayyan, M. On-Line Estimation of Oxygen Transfer Rate with Oxygen Enriched Air using Off-Gas Sensor for Escherichia coli.
Ph.D. Thesis, Clemson University, Clemson, SC, USA, 2017.

54. Jenzsch, M.; Simutis, R.; Eisbrenner, G.; Stückrath, I.; Lübbert, A. Estimation of biomass concentrations in fermentation processes
for recombinant protein production. Bioprocess Biosyst. Eng. 2006, 29, 19–27. [CrossRef] [PubMed]

http://doi.org/10.1590/0104-6632.20150324s00003534
http://doi.org/10.1002/btpr.1890
http://doi.org/10.3389/fmicb.2019.00335
http://doi.org/10.1002/bit.260401107
http://doi.org/10.3390/pr8060679
http://doi.org/10.1007/s00216-016-9893-1
http://doi.org/10.1002/jctb.6118
http://doi.org/10.1007/s00216-019-01927-7
http://www.ncbi.nlm.nih.gov/pubmed/31286180
http://doi.org/10.1002/9780470054581.eib606.pub2
http://doi.org/10.1163/156856698750247786
http://doi.org/10.1007/s00449-012-0848-4
http://doi.org/10.1002/1097-0290(20001005)70:1&lt;1::AID-BIT1&gt;3.0.CO;2-Y
http://doi.org/10.1016/B978-0-444-63965-3.50249-X
http://doi.org/10.1007/s00216-016-9711-9
http://doi.org/10.1111/1751-7915.12871
http://doi.org/10.1007/s00253-008-1765-y
http://doi.org/10.1016/j.jbiotec.2004.09.016
http://doi.org/10.1002/bit.10610
http://www.ncbi.nlm.nih.gov/pubmed/12673762
http://doi.org/10.1002/bit.260430104
http://www.ncbi.nlm.nih.gov/pubmed/18613306
http://doi.org/10.1038/srep18439
http://www.ncbi.nlm.nih.gov/pubmed/26790977
http://doi.org/10.1186/1475-2859-11-103
http://doi.org/10.1186/1475-2859-8-13
http://doi.org/10.1016/j.bej.2010.07.017
http://doi.org/10.15255/CABEQ.2015.2212
http://doi.org/10.1007/s00449-006-0051-6
http://www.ncbi.nlm.nih.gov/pubmed/16502002


Sensors 2021, 21, 1268 34 of 34

55. Niu, H.; Daukandt, M.; Rodriguez, C.; Fickers, P.; Bogaerts, P. Dynamic modeling of methylotrophic Pichia pastoris culture with
exhaust gas analysis: From cellular metabolism to process simulation. Chem. Eng. Sci. 2013, 87, 381–392. [CrossRef]

56. Barrigón, J.M.; Valero, F.; Montesinos-Seguí, J.L. A macrokinetic model-based comparative meta-analysis of recombinant protein
production byPichia pastorisunderAOX1promoter. Biotechnol. Bioeng. 2015, 112, 1132–1145. [CrossRef]

57. Flores-Cosío, G.; Herrera-López, E.J.; Arellano-Plaza, M.; Mathis, A.G.; Kirchmayr, M.; Amaya-Delgado, L. Application of
dielectric spectroscopy to unravel the physiological state of microorganisms: Current state, prospects and limits. Appl. Microbiol.
Biotechnol. 2020, 104, 6101–6113. [CrossRef] [PubMed]

58. Steinwandter, V.; Borchert, D.; Herwig, C. Data science tools and applications on the way to Pharma 4.0. Drug Discov. Today 2019,
24, 1795–1805. [CrossRef]

http://doi.org/10.1016/j.ces.2012.11.006
http://doi.org/10.1002/bit.25518
http://doi.org/10.1007/s00253-020-10677-x
http://www.ncbi.nlm.nih.gov/pubmed/32440707
http://doi.org/10.1016/j.drudis.2019.06.005

	Introduction 
	Materials and Methods 
	Cultivation Conditions 
	Off-Line Measurements 
	Turbidity and Permitivitty Signal Acquisition and Filtering 
	Turbidity Signal Approximation to DCW 
	Permittivity Signal Approximation to DCW 
	OUR and CPR Calculation 
	Estimation of Biomass Concentration from OUR, CPR and BCR 
	Estimation Quality Analysis 

	Results 
	Biomass Concentration Determined Off-Line 
	Biomass Estimates from In-Situ Turbidity and Permittivity Sensors 
	Biomass Estimation from OUR, CER and BCR Data 

	Discussion 
	Off-Line Biomass Detection Methods 
	DCW Estimation with the In-Situ Turbidity Sensor 
	In-Situ Permittivity (XpermFiltr) Based Biomass Estimates 
	Soft-Sensor-Based Biomass Estimates 
	In-Situ Turbidity and Permittivity Signal Filter 
	Concluding Remarks 

	
	
	
	
	
	References

