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Abstract: Compared with the standard depolarization index, indices of polarimetric purity (IPPs)
have better performances to describe depolarization characteristics of targets with different rough-
nesses of interfaces under different incident angles, which allow us a further analysis of the depolariz-
ing properties of samples. Here, we use IPPs obtained from different reflective interfaces as a criterion
of depolarization property to characterize and classify targets covered by organic paint layers with
different roughness. We select point-light source as radiation source with wavelength as 632.8 nm,
and four samples, including Cu, Au, Al and Al2O3, covered by an organic paint layer with refractive
index of n = 1.46 and Gaussian roughness of α = 0.05~0.25. Under different incident angles, the values
of P1, P2, P3 at divided 90 × 360 grid points and their mean values in upper hemisphere have been
obtained and discussed in the IPPs space. The results show that the depolarization performances of
the different reflective interfaces (materials, incident angles and surface roughness) are unique in
IPPs space, providing us with a new avenue to analyze and characterize different targets.

Keywords: samples; incident angles; roughnesses; IPPs

1. Introduction

Reflecting properties of different surfaces can be applied in many areas, such as 3D
graphics simulation [1], biological sensing [2,3] and prediction of vegetation [4,5], which
has been investigated extensively in recent years. Polarization as a powerful tool plays a
great role in Mie ellipsometry [6,7] or full radiative transfer simulations [8]. In addition,
polarization information of reflected light, such as degree of polarization (DoP), angle of
polarization (AoP), Stokes vector et al., can provide more additional information about the
targets in new aspects. When light interacts with targets, the polarization of the incident
light may undergo a modification, carrying structural information of the targets. Therefore,
it is important to characterize the process of the reflective polarization for exploring the
polarization distributions and revealing the features of the surface, which can be used
in polarization remote sensing [9,10], target detection and recognition [11–14], especially
in the hidden-target identification. When the sample is not an ideal smooth surface, the
reflected light will have different propagating directions, namely scattering. Reflection
from a rough surface can be typically modeled using a bidirectional reflectance distribution
function (BRDF) [15–23]. As a famous geometrical optics model, the Torrance–Sparrow (T-S)
model [15] has been widely investigated and expanded to the polarized BRDF (pBRDF)
models [16–21]. The Monte Carlo (MC) method has also been introduced to solve the
composition of samples in fusion devices or reactive plasmas and a series of cases about
polarization information [24–33], especially in photons tracking [24,25,29,30]. Wang et al.
have combined the MC model with BRDF, giving birth to a flexible method to acquire the
reflective polarization information from a rough surface [34]. However, these models cannot
represent depolarization of the samples, which is important in real applications [35–42].
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As mentioned above, depolarization is related to the structural and chemical charac-
teristics of the samples at different physical scales, and it can be used for classifying [35,36]
and analyzing samples [38–42]. The Mueller matrix (MM), which is composed of 4 × 4
elements namely mij, can be used to characterize the depolarization properties of mediums,
and from the obtained depolarization we can obtain a set of parameters, namely IPPs
(indices of polarimetric purity). The IPPs are composed of three mutually orthogonal axes
P1, P2, and P3, providing a detailed description of the polarimetric purity [43–45]. In theory,
the obtained IPPs can form a purity space. Each point in the purity space can represent a
specific degree of depolarization very well, which is linked to the relative weights of the
spectral components of MM directly. Meanwhile, it also provides complete information on
the structure of polarimetric randomness. Given an MM, the corresponding values of P1,
P2, P3 can be directly calculated [43–47]. In simple words, IPPs are easy to implement for
discussing depolarization properties.

In this paper, we investigated the depolarization of the reflective interfaces that are
composed of Cu, Au, Al and Al2O3 covered by an organic paint layer, which is a kind
of common paint with a refractive index of n = 1.46 under the wavelength as 632.8 nm,
and different roughness as functions of incident angles by using MC simulations. The
overall depolarizations of different samples are calculated, and the results illustrate that
the overall depolarization increases with increasing the roughness of organic paint layers.
In addition, the metals and oxides samples show opposite dependence on incident angles,
in which large incident angles may result in weak depolarization of metals, and on the
contrary, result in strong depolarization of oxides. Moreover, these dependences are also
varying for different metals. The exiting light from reflective interface has different IPPs
with different zenithal and azimuthal directions. In other words, refractive light carries
unique depolarization information with different directions. In order to better explain the
depolarization characteristics of samples, we also calculate P1, P2, P3 at each divided grid
point in the upper hemisphere space that include all directions of refractive light. Our
results can reflect more dimensions information about depolarization of the target, which
provides a new method for remote sensing and hidden target identification.

2. Methods
2.1. The IPPs of Material Media

To start, we focused on a set of three parameters, called IPPs, which provide an
extended way to characterize, analyze and classify samples with different depolarization
property. It is because IPPs can represent the relative statistical weight of the decomposed
nondepolarizing components, providing a more accurate description of the depolarization
properties of the sample. IPPs are defined as relative differences among the four eigenvalues
(taken in decreasing order λ0 ≥ λ1 ≥ λ2 ≥ λ3 ≥ 0) of the covariance matrix H, which can
be obtained from MM by the following equation [43]:

H =
1
4


m00 + m01 + m10 + m11 m02 + m12 + i(m03 + m13) m20 + m21 − i(m30 + m31)

m02 + m12 − i(m03 + m13) m00 −m01 + m10 −m11 m22 −m33 − i(m23 + m32)
m20 + m21 + i(m30 + m31) m22 −m33 + i(m23 + m32) m00 + m01 −m10 −m11
m22 + m33 − i(m23 −m32) m20 −m21 + i(m30 −m31) m02 −m12 − i(m03 −m13)

m22 + m33 + i(m23 −m32)
m20 −m21 − i(m30 −m31)
m02 −m12 + i(m03 −m13)

m00 −m01 −m10 + m11

 (1)

In theory, four non-negative eigenvalues (λ0 ≥ λ1 ≥ λ2 ≥ λ3 ≥ 0) can be obtained
from the covariance matrix H, which can be used to represent the relative statistical
weights of the nondepolarizing components, from which the IPPs can be defined by the
following equations:

P1 =
λ0 − λ1

trH
, (2)

P2 =
(λ0 − λ2) + (λ1 − λ2)

trH
, (3)

P3 =
(λ0 − λ3) + (λ1 − λ3) + (λ2 − λ3)

trH
, (4)
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The depolarization index (P∆) can be calculated from IPPs as follows:

P∆ =
1√
3

√
2P2

1 +
2
3

P2
2 +

1
3

P2
3 , (5)

In general, nondepolarizing samples are characterized by P∆ = P1 = P2 = P3 = 1. The
samples with P∆ = P1 = P2 = P3 = 0 are corresponding to ideal depolarizers, and there will
be MM = diag(m00, 0, 0, 0), where m00 is the mean intensity coefficient. Note that, the
values of IPPs will be restricted by the following inequalities:

0 ≤ P1 ≤ P2 ≤ P3 ≤ 1, (6)

2.2. Microfacet Theory

In general, the height field of rough surface satisfies the Gaussian distribution with
variance α. The larger the variance, the rougher the surface. In addition, rough surface
is assumed to be made of many microfacets, called microfacets theory, and the normal
vector of each microfacet can be determined by θ and σ shown in Figure 1b, which can be
calculated by sampling [34]. Then, the reflective light and refractive light of microfacets
can be calculated by the Fresnel formula and normal vector of microfacet [48,49].
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Figure 1. (a) Surface composed of the microfacets in the XYZ coordinate system, (b) the schematics
of a single microfacet.

In the tracking process of the polarized light, each beam of light propagates in global
coordinate system shown in Figure 1a, and Fresnel’s law is used in the local coordinate
system defined by normal vector of microfacets shown in Figure 1b. Thus, it is necessary to
translate two kinds of coordinate system. The coordinate transformation can be accessed by
rotating an angle θrot [48]. The rotation matrix is R(θ)rot, and the corresponding Mueller
matrix M(θ)rot can be expressed as follows [48].

R(θ)rot =

(
cos θ − sin θ
sin θ cos θ

)
, (7)

M(θ)rot =


1 0 0 0
0 cos 2θ − sin 2θ 0
0 sin 2θ cos 2θ 0
0 0 0 1

, (8)
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2.3. Monte Carlo Simulation

As shown in Figure 2a, a sample is covered by some coating layers. The point-light
source is emitted in the upper hemisphere. When a beam of light reaches to the coating
layer with an angle of θ, refraction and reflection will happen. The reflected light will be
collected in the upper hemisphere immediately. In contrast, the refracted light will go
through a series of reflections and refractions, and can be collected in the upper hemisphere
eventually, in which the upper hemisphere is divided into 90 × 360 grids with the step
of 1◦ (in both zenithal and azimuthal directions) to collect the reflective and refractive
photons. The top view of the upper hemisphere is shown in Figure 2b, in which the
upper hemisphere can be divided into 90 rings according to the zenith angle (0◦~90◦), and
combining azimuth angle (0◦~360◦), the detection grid can be fixed. The exiting light from
the coating layers can be collected according to their concrete positions defined by the
azimuth and zenith in the corresponding grid, from which their Stokes vectors in each grid
can be obtained by counting and summing the received photons’ Stokes vectors.
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Figure 2. (a). Model of sample covered by coating layers, (b) the top view of the upper hemisphere.

The MC method is adopted to perform the simulation [34]. In order to explore the
depolarization of samples covered by organic layers, we needed to get the MM of each grid
under conditions of different incident angles and roughnesses of organic layers. Thus, we
have defined the direction of the incident light as 30◦, 40◦, 50◦, 60◦ and 70◦, four kinds of
incident lights with different polarization states as Sin1= [1000], Sin2 = [1100], Sin3 = [1010],
Sin4 = [1001], respectively, the samples under organic layers as Cu, Al, Au, and Al2O3,
and the roughnesses of the organic layers as 0.05~0.25 with the step of 0.05. Based on
experience, we have fixed the roughness of sample as 0.2. In the simulation model, light
reaching the coating layer can be traced as the following steps:

1. Calculating the next layer j (usually i +1 or i −1) to be scattered based on the number
of current layer i and the direction of propagation.

2. Sampling the normal vector of the jth layer according αx and αy [34].
3. Transforming polarized light S from the global coordinate to the local coordinate by

Sl = M(θ)rotS.
4. Calculating the direction of reflected and refracted light according to the Fresnel

formula and normal vector on the selected microfacet.
5. Obtaining reflected and refracted light from Fresnel’s formula and MM, respectively,

by Srl = MrSl , Stl = MtSl , where Mr and Mt are the reflective Muller matrix and the
transmitting Muller matrix, respectively [34].

6. Translating them from the local coordinate to the global coordinate, respectively, by
Sr = M(θ)rotSrl ,St = M(θ)rotStl .
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7. Checking whether the light has left the coating. If yes, collecting the light in the upper
hemisphere. If no, back to step 1.

8. Calculating MM and covariance matrix of each grid in the upper hemisphere.
9. Getting the eigenvalue (λ0 ≥ λ1 ≥ λ2 ≥ λ3) from the covariance matrix.
10. Calculating P1, P2, P3 from λ0λ1λ2λ3.

The process of photons tracking by MC is shown in Figure 3.
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It should be noted that our simulation was based on two assumptions: (1) the scale of
microfacet is much larger than the incident wavelength, which means the geometry optics
can be applied; (2) the coating is so thin that the absorption can be ignored.

3. Results and Discussion
3.1. Comparing with BRDF Model

To demonstrate the accuracy and validity of the simulation model, we compared the
results of reflection from a copper surface obtained by MC simulation and experiment-
based BRDF model included in the SCATMECH [50]. Here, it should be noted that the
SCATMECH is a light scattering library and published by the NIST in 2017 [50], which
has been verified in many experiments. In both simulation schemes, the refractive index
of copper and the surface roughness parameters are set as 0.27 + 3.40i and αx = αy = 0.2,
respectively, and the incident nonpolarized light (with the wavelength of 632.8nm and the
incident angle of 40◦) is set as Sin = [1000] with 10 million emitted photons every time. The
results of our MC model and the experiment-based BRDF model are plotted in the top and
bottom panels in Figure 4, respectively. It is obvious that the reflective polarization patterns
of I, Q, U, V, AoP and DoP obtained by our MC model agree well with those obtained by
analytical BRDF model, which can verify the accuracy and validity of our model.
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3.2. Influence of Roughness

First, we chose samples (Cu, Al, Al2O3, Au) covered by organic paint layers as different
reflective interfaces, in which the organic paint layer is a common paint and we assume
it is a pure substance whose refractive index is 1.46 under the incident wavelength of
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632.8 nm. We would investigate the dependence of P1, P2, and P3 on the roughness of
the organic paint layer. In the simulation, the roughness αx = αy ranges from 0.05 to 0.25
with step of 0.05. The incident angle and wavelength of light are set as 632.8 nm and 50◦

in the upper hemisphere, respectively. We have investigated four samples, including Cu
(n = 0.27 + 3.40i), Al (n = 1.4482 + 7.53i), Au (n = 0.18 + 3.43i), and Al2O3 (n = 1.77), which
are covered by an organic paint layer. The number of emitted photons is 10 million to
ensure the accuracy of our MC simulation.

To study the overall depolarization property, we calculated the average values of P1, P2,
and P3 at all physically feasible points [46] in the upper hemisphere of reflective interface, as
shown in Figure 5. It can be observed that P1, P2, and P3 form IPPs space, in which the point
(1, 1, 1) represents nondepolarizing samples and the other points represent depolarizing
samples. In other words, the intrinsic depolarizing mechanisms can be demonstrated
according to the coordinate in the IPPs space. Figure 5 shows that the values of P1, P2,
and P3 gradually decrease with increasing roughness, indicating the depolarization of the
samples increases with the increasing roughness. It is because light will be scattered rather
than reflected at a rough surface, leading to depolarization of light. In addition, we can
see that the calculated results of Cu in IPPs space are closer to that of Au, while far away
from those of Al and Al2O3. This phenomenon could be attributed to the refractive index of
the samples. As shown above, the refractive index of Cu is similar to that of Au, but quite
different from those of Al and Al2O3. Therefore, we may get different distributions in the
IPPs space for different samples, making it possible to classify the samples.
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In order to further demonstrate the advantages of IPPs, we calculated the values of P1,
P2, and P3 at each grid in the upper hemisphere when the surface roughness of organic
paint layer is αx = αy = 0.05, 0.10, 0.15, 0.20, and 0.25, as shown in Figure 6. Here, we take
the sample of Cu as an example. The points at which the values of P1, P2, and P3 equal zero
means that eigenvalues derived from the covariance matrix H are negative, called physically
unfeasible points [46]. The number of these feasible points increases but the values are
decreasing with increasing roughness, which means the average value is decreasing for
all physically feasible points when the roughness increases. It is consistent with Figure 5.
From the simulation results, we can obtain particular depolarization information of the
sample from the physically feasible points. For example, the values of P1, P2, and P3 in
the point of (60, 0) decrease with increasing roughness, but are always bigger than those
in the point of (60, 60). It means that the MM for the latter case has more depolarization
components in characteristic decomposition, which reflects the different points in the upper
hemisphere having different depolarization components. In other words, light received at
different points in the upper hemisphere undergoes various coding by the sample. This
characteristic makes it more difficult for us to classify the samples by using the values of
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P1, P2, and P3 at each grid in the upper hemisphere than by using their average values’
distributions in IPPs space.
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3.3. Influence of Incident Angle

It is well known that the scattering of light at an irregular structure is highly dependent
on the incident angle. Therefore, the dependences of depolarization of samples on the
incident angles were investigated. Here, we chose the same reflective interface, but the
surface roughness of the organic paint layer was fixed as αx = αy = 0.2. The incident angles
are 30◦, 40◦, 50◦, 60◦ and 70◦. The calculated overall distributions of P1, P2, and P3 in IPPs
space are shown in Figure 7.
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For metals, the results show that their depolarization properties decrease with the
increasing incident angles. It is because light collected at most grids has smaller scattering
components with increasing incident angles. On the contrary, oxides, such as Al2O3, hold
opposite results that increasing incident angles result in more depolarization. These results
illustrate that metals and oxides have different dependence of depolarization characteristics
on incident angles, which makes it possible for us to classify samples.

Similarly, the values of P1, P2, and P3 at each grid in the upper hemisphere is not
significantly dependent on the incident angles, as shown in Figure 8. Here, we still take the
sample of Cu as an example. It can be seen that the number of physically unfeasible points
slightly decreases with the increasing incident angles, and the physically feasible points
have a tendency of spreading towards the center of the circle under a large incident angle.
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The depolarization performances at different grids are different. In addition, the P1, P2,
P3 of the same grid are different, which is because the P1, P2, P3 as the relative differences
of different pure systems mapped from the reflective interface depend on the inherent
attribute of reflective interface, which can be used for analyzing IPPs decomposition
of reflective interface and exploring the composition of reflective interface. Combining
the distribution patterns of P1, P2, P3 and the IPPs space has significant advantages in
classifying the depolarization characteristics of samples.
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4. Conclusions

In this paper, we have emphasized the interest of using IPPs as a criterion for character-
ization and classification of samples covered by organic paint layers. On one hand, the IPPs
carry unique depolarization information of samples, thus leading the unique distributions
of overall depolarization for different samples in IPPs space. The distributions of Cu, Al,
Au, Al2O3 with different incident angles and roughnesses of organic paint layers were
investigated and discussed. On the other hand, the IPPs of each grid vary, which represents
that the light coded by samples vary in different directions. These have exhibited the
significant potential of using IPPs for target detection and remote sensing, especially the
identification of the hidden target.
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