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Abstract: The two-parameter-fitting method (PFM) is commonly used to calculate the stopping-
power ratio (SPR). This study proposes a new formalism: a three-PFM, which can be used in multiple
spectral computed tomography (CT). Using a photon-counting CT system, seven rod-shaped samples
of aluminium, graphite, and poly(methyl methacrylate) (PMMA), and four types of biological
phantom materials were placed in a water-filled sample holder. The X-ray tube voltage and current
were set at 150 kV and 40 µA respectively, and four CT images were obtained at four threshold
settings. A semi-empirical correction method that corrects the difference between the CT values from
the photon-counting CT images and theoretical values in each spectral region was also introduced.
Both the two- and three-PFMs were used to calculate the effective atomic number and electron density
from multiple CT numbers. The mean excitation energy was calculated via parameterisation with
the effective atomic number, and the SPR was then calculated from the calculated electron density
and mean excitation energy. Then, the SPRs from both methods were compared with the theoretical
values. To estimate the noise level of the CT numbers obtained from the photon-counting CT, CT
numbers, including noise, were simulated to evaluate the robustness of the aforementioned PFMs.
For the aluminium and graphite, the maximum relative errors for the SPRs calculated using the
two-PFM and three-PFM were 17.1% and 7.1%, respectively. For the PMMA and biological phantom
materials, the maximum relative errors for the SPRs calculated using the two-PFM and three-PFM
were 5.5% and 2.0%, respectively. It was concluded that the three-PFM, compared with the two-PFM,
can yield SPRs that are closer to the theoretical values and is less affected by noise.

Keywords: photon-counting CT; effective atomic number; electron density; mean excitation energy;
stopping-power ratio

1. Introduction

An X-ray computed tomography (CT) image is a map of the photon linear attenuation
coefficient, which is usually calculated as the sum of the cross-sectional contributions of the
photoelectric effect, Compton scattering, and Rayleigh scattering. This linear attenuation
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coefficient changes as a function of incident X-ray energy and the atomic number of the
material [1,2].

A dual-energy CT, where images are taken using different energies, has the advantage
that the effective atomic number and the electron density of the material can be estimated,
allowing us to know some of the physical properties of the material. This ability to
know some of the physical properties of materials is further exploited to calculate the
stopping-power ratio (SPR) required to calculate the patient dose in particle therapy,
through parameterisation of the effective atomic number and mean excitation energy
(I-value) [3,4]. However, many studies have reported that dual-energy CT is strongly
affected by the beam-hardening effect because the lower-energy X-rays in the polychromatic
X-ray beam are more greatly attenuated than the higher-energy X-rays [5–7]. Thus, some
projections are hardened, such that the amount of detection can vary because of changes
in the average X-ray energy [4,8–10]. In this case, beam-hardening artefacts in CT images
directly affect the effective atomic number and electron density calculation.

Photon-counting CT is a novel alternative approach that counts individual X-ray pho-
tons from multiple energy bins. With a single exposure, the detector acquires simultaneous
measurements of the photon flux above one or more user-defined energy thresholds. The
potential advantage of the photon-counting detector is that the ability to resolve energies
enables energy-selective imaging with a single X-ray exposure [5,11]. The flux data ob-
tained for a set of non-overlapping energy windows from a photon-counting CT system
can provide information about the energy dependence of the attenuation coefficients of
the materials in an object and, therefore, the types of materials present. One of the advan-
tages of photon-counting imaging is that it can reduce beam-hardening artefacts, because
the energy-bin images are reconstructed from data acquired via a narrow polyenergetic
spectrum, and the energy-bin data are weighed and combined after log normalisation [12].
Although photon-counting CT systems have many theoretical advantages, there are several
experimental problems that must be resolved before clinical implementation can begin,
such as detector non-uniformity, inter-pixel charge sharing, and poor energy and image
resolution after reconstruction [5,13,14]. Photon-counting CT enables multiple-energy
X-ray imaging, also called spectral X-ray imaging, which uses more than two energies. The
additional number of energy measurements (i.e., bins) provides more discrete information
about the transmitted spectra and enables the use of new approaches for the application
of material decomposition and tissue differentiation, such as K-edge imaging, and for
improving diagnostic accuracy on contrast agents [11,15,16].

SPR is a physical property that can be estimated from dual-energy CT or spectral
X-ray imaging by calculating the effective atomic density and electron density for each
pixel of the CT image. Simard et al. [17] recently stated that the SPR estimated from
spectral X-ray is slightly superior to that estimated from dual-energy CT. The SPR can
be measured directly by making a particle beam vertically incident on a material whose
physical thickness is known and then, calculating the difference in the thickness of passage
in water with or without the material. However, because it is not possible to measure
all substances in the human body directly, the method of converting a CT number to the
SPR using the CT-number–SPR conversion curve is mainly used in the clinic, but this
method is known to have an error of up to 3% [18]. Therefore, the method of estimating
the SPR by calculating the effective atomic number and electron density using dual-energy
or spectral CT has recently been highlighted because it can estimate the SPR for each
pixel of the CT image with a certain level of accuracy. From dual-energy CT images,
Rutherford et al. [1] first calculated the effective atomic number and electron density using
a three-parameter-fitting method (PFM). Three-PFM is a method of approximating the
atomic cross-section to calculate the linear attenuation coefficient with three terms, namely
photoelectric attenuation, incoherent scattering, and coherent scattering, and calculating
the parameters of each term to fit the theoretical value. However, their three-PFM has not
yet been used to calculate the effective atomic number and electron density from multiple
CT images, that is, more than two CT images, and the SPR has not yet been calculated from
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multiple CT images. On the other hand, the two-PFM proposed by Torikoshi et al. [19]
has been used more widely because of its mathematical simplicity. Two-PFM is a method
of approximating the atomic cross section to calculate the linear attenuation coefficient
with two terms, namely photoelectric absorption and combined Compton and coherent
scattering, and calculating the parameters of each term to fit the theoretical value. For
example, Ohno et al. [20] used two-PFM to calculate the effective atomic number and
electron density from multiple CT images. However, because the current two-PFM ignores
energy dependence while approximating the fitting parameter from the theoretical value,
the method itself has a large error [3].

In this study, we present the inherent error of the aforementioned PFMs that funda-
mentally affect the results of the calculation of the effective atomic number and electron
density. This study proposes a new formalism: a three-PFM, which can be used in multiple
spectral CT. Both two- and three-PFMs were used to calculate the effective atomic number
and electron density from multiple CT numbers using a photon-counting CT system. A
semi-empirical correction method that corrects the differences between the CT values from
the photon-counting CT images and the theoretical values in each spectral region was also
introduced. The I-value was calculated via parameterisation with the effective atomic num-
ber, after which the SPR was calculated from the calculated electron density and the I-value.
Then, the SPRs from both methods were compared with their corresponding theoretical
values. To estimate the noise level of the CT numbers obtained from the photon-counting
CT, CT numbers, including noise, were simulated to evaluate the robustness of the two-
and three-PFMs.

2. Materials and Methods
2.1. Effective Atomic Number and Electron Density from the Linear Attenuation Coefficient

The X-ray linear attenuation coefficient µ can be related to the atomic cross-section as
a function of energy E and a single element Z [1,2]

µ(E, Z) = ρNA
1
A

{
σPE(E, Z) + σKN(E, Z) + σSCA(E, Z)

}
, (1)

where σPE and σKN are the photoelectric and Klein–Nishina cross sections, respectively;
σSCA is the correction term for the coherence and binding energy effects; and ρ, NA, and A
are the mass density, Avogadro’s number, and atomic mass, respectively. Each cross-section
term can then be approximated via the PFM [1]

µ(E, Z) = ρe

{
KPE(E)Zm + KKN(E) + KSCA(E)Zn

}
, (2)

where ρe is the electron density, defined by ρNA
Z
A , and KPE, KKN , and KSCA are coefficients

for the photoelectric and Klein–Nishina terms and for the coherence and binding energy
effects term, respectively. These terms can be determined via least-square fits to NIST atten-
uation coefficients from the NIST XCOM photon cross sections database [21]. Rutherford
et al. [1] proposed values for the exponents m and n at 3.62 and 1.86, respectively. For
mixtures, the electron density is calculated using Equation (3), and Z is represented by the
effective atomic number (Z) [22]

ρe = ρNA ∑i ωi
Zi
Ai

, (3)

Z = α

√
∑i ωiZα

i , (4)

where ωi is the fractional weight (i.e., ∑i ωi = 1). In general, α in Equation (4) is assigned
values between 2.94 and 4 because it varies depending on the attenuation process and
the materials being attenuated [22,23]. In our study, we adopted an α value of 3.3 for the
theoretical calculations in Section 2.4.5, referring to Landry et al.’s [24] results [3,9,24].
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2.1.1. Two-Parameter-Fitting Method

Torikoshi et al. [19] proposed an expression of the linear attenuation coefficient as a
photoelectric term and a scattering term based on Jackson and Hawkes’ formulation [2]

µ(E, Z) = ρe

[
Z4F(E, Z) + G(E, Z)

]
, (5)

where ρeZ4F(E, Z) is the photoelectric attenuation, and ρeG(E, Z) is the combined Comp-
ton and coherent scattering term. Yang et al. [3] derived the F(E, Z) and G(E, Z) terms
from fitting to attenuation cross-sections, referred from the NIST XCOM database, for each
Z in a quadratic equation and interpolating over the entire Z range for several energies.
In this study, we employed the method expressed in Equation (5) and referred to it as
two-PFM. Figure 1a shows the µ(E, Z)/ρe calculated using Equation (5) from 30 keV to
150 keV obtained using the NIST XCOM database, and their corresponding NIST values and
Figure 1b shows the relative errors. The functions F(E, Z) and G(E, Z) are obtained via
quadratic fits of the photoelectric and scattering terms of the NIST attenuation coefficients.
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Figure 1. (a) µ(E, Z)/ρe (solid line) from 30 keV to 150 keV of atomic numbers up to 29, calculated via two-parameter fitting
methods (PFMs) using Equation (5), and corresponding NIST values (marker), (b) relative errors between calculated and
NIST values in (a).

Equation (5) is a valid equation for a monochromatic X-ray beam. Using continuum
energy spectrum X-rays, we adopted an average attenuation coefficient, which is approxi-
mated via integration of the photoelectric and scattering terms weighted with a normalised
energy spectrum function [9]:

〈µ〉k = ρe

∫ Ek+1

Ek

ωEk

[
Z4F(E, Z) + G(E, Z)

]
dE. (6)

The subscript k indicates individual energy threshold levels in the spectral CT: k = 1 to
4, and ωEk is the weighting function of the spectrum in each threshold

ωEk = Φ(E, Emax )/
∫ Ek+1

Ek

Φ(E, Emax)dE, (7)

where Φ(E, Emax ) represents the energy spectrum generated in an X-ray tube with a
maximum energy Emax. From Equation (6), the effective atomic number is calculated from
four CT numbers obtained at four energy thresholds using Equation (8)
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〈µ〉k
[

Z4〈F(Ek+1, Z)〉+ 〈G(Ek+1, Z)
〉
]− 〈µ〉k+1

[
Z4〈F(Ek, Z)〉+ 〈G(Ek, Z)〉

]
= 0, (k = Th1 to Th3). (8)

where k represents each of the four energy threshold levels in the spectral CT; and
〈F(Ek, Z)〉 and 〈G(Ek, Z)〉 are the weighted sums of the spectra for F(E, Z) and G(E, Z),
respectively. The electron density is then calculated using Equation (9), using the effective
atomic number calculated in Equation (8):

〈F(Ek+1, Z)〉(〈µ〉k − ρe〈G(Ek, Z)〉)− 〈F(Ek, Z)〉
(
〈µ〉k+2 − ρe〈G(Ek+2, Z)〉

)
= 0, (k = Th1 to Th3). (9)

The Appendix A details the derivation process for Equations (8) and (9).

2.1.2. Three-Parameter-Fitting Method

In our study, we improved the accuracy of µ(E, Z)/ρe by adding energy and atomic
number dependency to each index of Equation (2)

µ(E, Z) = ρe

{
KPE(E, Z)ZPE(E,Z) + K INC(E, Z)ZINC(E,Z) + KCOH(E, Z)ZCOH(E,Z)

}
, (10)

where KPE(E, Z)ZPE(E,Z), K INC(E, Z)ZINC(E,Z), and KCOH(E, Z)ZCOH(E,Z) are terms for
photoelectric absorption and incoherent and coherent scattering, respectively. In this model,
each term has a new dependence on E and Z to improve the approximation accuracy more
than that in Equation (2). Hereafter, we refer to this method as three-PFM. Figure 2a shows
the µ(E, Z)/ρe calculated using Equation (10) from 30 keV to 150 keV obtained using
the NIST XCOM database, and their corresponding NIST values and Figure 2b shows
the relative error values. We can see that, compared to two-PFM, as shown in Figure 1b,
three-PFM can further reduce the relative errors with respect to the theoretical values.
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Equation (10) can be approximated for polychromatic X-rays in the same manner as
that used for Equation (6):

〈µ〉k = ρe

∫ Ek+1

Ek

ωEk

{
KPE(E, Z)ZPE(E,Z) + K INC(E, Z)ZINC(E,Z) + KCOH(E, Z)ZCOH(E,Z)

}
dE. (11)

From Equation (11), the effective atomic number can be numerically calculated from
four CT numbers obtained at four energy thresholds, as follows:

− 〈µ〉Th2σ
Weight
ETh1

+ (〈µ〉Th1 − 〈µ〉Th3)σ
Weight
ETh2

+ (〈µ〉Th2 − 〈µ〉Th4)σ
Weight
ETh3

+ 〈µ〉Th3σ
Weight
ETh4

= 0. (12)
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The Appendix A details the derivation process for Equation (12). σ
Weight
Ek=1 to 4

in Equation (12)
represents the sum of the three terms in parentheses in Equation (11) at each threshold k, where
each coefficient and exponent are weighted by the spectrum. The electron density was then
calculated as follows:

ρe =

∑k
〈µ〉k

σ
Weight
Ek

(Z)

4
. (13)

2.1.3. Errors of the Two- and Three-PFM

Figure 3a,b show the relative errors of the atomic number and electron density calcu-
lated using Equations (8) and (9) for the two-PFM and calculated using Equations (12) and
(13) for the three-PFM, respectively, compared to the theoretical values. The calculations
were performed under the assumption of monochromatic X-rays, for example, using values
of 40, 60, 80, and 100 keV, which are the energies used in the photon-counting CT in
Section 2.3. For the two-PFM, the calculated effective atomic number and electron density
had relative errors within 1% and 0.35%, respectively, whereas, for the three-PFM, the
calculated effective atomic number and electron density have relative errors, based on
the theoretical values, within 0.5%, except for atomic numbers 2 and 3 (further discussed
in Section 4), and 0.05%, respectively. However, because the effective atomic number of
human tissue is between 6 and 15 [4], the errors for atomic numbers 2 and 3 will have a
negligible effect on the calculation.
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2.2. Stopping-Power Ratio from I-Value Parameterisation

The SPR is a parameter used to determine the Bragg curve’s position in ion beam
dose calculation and can be calculated using the Bethe–Bloch formula [25], which can be
approximated as follows [3,26]

SPR =
ρe,m

ρe,w
×

ln
[
2mec2β2/Im

(
1− β2)]− β2

ln[2mec2β2/Iw(1− β2)]− β2 , (14)

where ρe,m and ρe,w are the electron densities of the medium and water, respectively; mec2

is the equivalent energy of the electron rest mass; Im and Iw are the I-values of the medium
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and water, respectively, and β is the ratio of the ion velocity to the speed of light. The
I-value of the mixture can be calculated using the Bragg additivity rule [27], as follows:

lnIm =
∑ ωiZi

Ai
× lnIi

∑ ωiZi
Ai

. (15)

In this study, the theoretical I-values of the elements were obtained from the Particle
Data Group (PDG) database [28], which refers to ICRU Report 37 [29], and those of the
mixtures were calculated using Equation (15).

Yang et al. [3] and Bourque et al. [4] have demonstrated that I-values can be parame-
terised as linear or polynomial functions of effective atomic numbers. Figure 4 shows the
I-value for each element from the PDG and the I-values for human tissues, for which we
refer to the effective atomic numbers and I-values in Table 1 of Bourque et al. [4], calculated
using the Bragg additivity rule. The I-value for atomic number 1 was added to the mixture
value in Figure 4, and least-squares fitting was applied to the fourth-order polynomial of
the atomic number, denoted with a dashed line in Figure 4. This fourth-order polynomial
fitting result was adopted in the SPR calculation. The I-values of the elements, obtained
from PDG, were also fitted to the fourth-order polynomial, shown as a solid line in Figure 4.
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Table 1. Elemental compositions and mass densities of the biological phantom materials.

Elemental Composition (Percentage by Mass) Mass Density (g cm−3)

H C N O P Cl Ca

BE-T-10 3.69 29.22 1.19 32.66 10.24 0.06 22.92 1.730
BE-H-10 5.11 42.45 1.73 28.13 7.00 0.09 15.49 1.500
BE-N-10 6.97 60.03 2.45 21.79 2.30 0.13 6.33 1.240
WD-3010 8.63 68.89 2.18 17.88 0.15 2.27 1.018

2.3. Photon-Counting CT System

Figure 5 shows the experimental setup. The photon-counting CT system was housed
in a lead-shielded box, which consisted of an X-ray tube with a tungsten target (L12161-
07, Hamamatsu, Japan), and included a sample holder, collimator, detector module, and
computer. The collimator was made of tungsten with a thickness of 7 mm and 64 circular
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converging holes, each with a diameter of 0.6 mm and spacings of 1 mm each. This
design lowers the transmission of the scattered radiation of 150 keV energy to less than
1% [30]. The sample holder was made of poly(methyl methacrylate) (PMMA) and was
cylindrically shaped, 30 mm in diameter, and 85 mm in height, with the capability to rotate
360◦. It can hold up to seven samples, each with a 5 mm diameter and 65 mm height.
Water fills the space surrounding the sample rods [31]. An energy-differentiation-type
64-channel cadmium telluride (CdTe) radiation line sensor module (C10413, Hamamatsu,
Japan) was used as the imaging system. The CdTe detector consists of 64 pixels of CdTe
elements, and the size of each element is 0.8 mm (W) × 0.5 mm (H) × 5 mm (T). The
elements are aligned with a pitch of 1 mm and a space of 0.2 mm between them. Each CdTe
detector was connected to a 64-channel application-specific integrated circuit (ASIC) with
64 low-noise amplifiers. Signal pulses from each detector pixel were differentiated using
five comparators according to their energy levels, where each threshold voltage could be
controlled by user preference. The measured energy resolution at the full width at half
maximum was 10% at 122 keV, which is the main peak of 57Co. [32].
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Figure 5. (a) picture of the photon-counting computer tomography (CT) system (b) schematic view
of the photon-counting CT system, (c) position of each sample in the sample holder, (d) picture of the
collimator installed in front of the cadmium telluride (CdTe) detector device.

2.4. Experimental Procedures
2.4.1. Photon-Counting CT Measurement

Seven rod-shaped samples were placed in a water-filled sample holder. The seven
materials used for the samples were aluminium, graphite, PMMA, and four types of
biological phantom materials (Kyoto Kagaku, Japan), that is, BE-T-10, BE-H-10, BE-N-10,
and WD-3010, mimicking the properties of compact bone, cortical bone, internal bone,
and water, respectively [31]. For the experimental conditions, the X-ray tube voltage
and current were set at 150 kV and 40 µA, respectively, with focal spot sizes of 7 µm.
All measurements were performed at room temperature, which was controlled between
20 ± 1 ◦C. The sample holder rotated 360◦ at intervals of 2◦. The count source period of
the detector for each projection was 100 ms and was repeated 100 times to reduce statistical
uncertainty, which required 10 s per projection. Each CT number within each energy
window was derived by subtracting the data taken above the threshold energy, k + 1, from
those of k: 40 to 60 keV for energy window one, 60 to 80 keV for energy window two, 80 to
100 keV for energy window three, and 100 to 120 keV for energy window four. Each CT
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image was reconstructed using the fan-beam-based filtered-backprojection method with a
Shepp–Logan filter [33], and ring artefacts were removed via a ring correction method in
polar coordinates [34] and a three-step correction method introduced by Prell et al. [35].

2.4.2. Spectrum Measurement

To obtain the weighted sum from the spectrum to the coefficients and exponent values
of each term in Equations (6) and (11), information on the X-ray energy spectrum ωEk at each
threshold energy is required. After determining the weighting sum of each term, we could
calculate the atomic number and electron density for the two-PFM and three-PFM. Because
the diameter of the sample holder used in the CT measurement was 30 mm, a 30 mm-thick
slab phantom was prepared [9] from 15 mm-thick PMMA and 15 mm-thick polypropylene
and was attached to the X-ray tube. Fifty-four points (at approximately 2.1 keV intervals)
were measured between 40 keV and 150 keV, with the X-ray tube voltage set to 150 kV.
Figure 6 shows the spectra, measured using the CdTe line-sensor array, without and with
the 30 mm-thick slab phantom. To obtain the spectral weights in Equations (6) and (11),
the spectra measured using the 30 mm-thick slab phantom were interpolated using the
cubic spline interpolation method to increase the energy resolution. The mean energy at
each threshold can be calculated using Equation (16), where Φ(E) is the spectrum obtained
from the experiment (Figure 6), and each sum of the spectra were obtained within each
energy window.

〈E〉k =
∫ Ek+1

Ek
E·Φ(E)dE∫ Ek+1

Ek
Φ(E)dE

(16)
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2.4.3. Semi-Empirical Correction Method for CT Values

The linear attenuation coefficients derived from the CT numbers using the photon-
counting CT system were lower than those of the NIST values. This result can be attributed
to the scattered X-rays and inter-pixel charge sharing of the CdTe detector [5,14,36]. Because
the coefficients and exponent values of each term in Equations (6) and (11) were determined
using the NIST values (by fitting), accurate values cannot be obtained in the effective atomic
number and electron density calculations if the linear attenuation coefficients obtained
from the CT number are different from the NIST values. Therefore, we applied a correction
method that directly compares the linear attenuation coefficient from the CT number with
the NIST value. To perform such a correction, each rod sample (5 mm in diameter) of
PMMA, graphite, magnesium, aluminium, and titanium was separately placed at the
centre of the water-filled sample holder to obtain CT images of each sample with respect
to the four thresholds. Each linear attenuation coefficient derived from the CT image was
then compared with the NIST value and fitted with a power function. Figure 7 compares
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the linear attenuation coefficients obtained from photon-counting CT and those calculated
using Equation (17) with NIST values for each of the four energy windows.

〈µ〉k =
∫ Ek+1

Ek
µ(E)·Φ(E)dE∫ Ek+1

Ek
Φ(E)dE

(17)
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The CT numbers measured in each window were corrected to the expected NIST
theoretical value via the plotted power function for each energy window in Figure 7. The
corrected CT numbers were then used to calculate the effective atomic number and electron
density using the two- and three-PFMs.

2.4.4. SPR Calculation Using Two-PFM and Three-PFM

With the four reconstructed images corrected using the method discussed in Section 2.4.3,
we calculated the effective atomic number and electron density of each sample using the
two-PFM (Equations (8) and (9)) and three-PFM (Equations (12) and (13)). The I-value was
then calculated using the calculated effective atomic number, using the parameterisation
method shown in Figure 4. Because human tissues, which are mixtures, are actually
needed in a clinic, a fitting curve for the fourth-order polynomial fitting of the mixture,
calculated using the Bragg additivity rule, was used for the conversion to the I-value. For
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the 290 MeV/u carbon-ion beam, SPR was calculated via the application of the electron
density, and the I-value derived from the photon-counting CT images to Equation (14).
The SPR depends on the energy of ions and has an error within 1% for the energy of the
carbon ions used clinically, i.e., from 55 MeV/u to 430 MeV/u. In this study, the energy of
290 MeV/u carbon ions, which will be used to measure the Bragg curve in Section 2.4.5,
was utilised for SPR calculation.

2.4.5. Theoretical Values of Effective Atomic Number, Electron Density, I-Value, and SPR

To compare the experimental values for the rod samples used in Section 2.4.1 with
their corresponding theoretical values, the theoretical electron density and effective atomic
number of the rod samples were calculated using Equations (3) and (4), respectively, and
the I-values for the elements were obtained from the PDG database, and those for mixtures
were calculated using Equation (15). The elemental compositions and mass densities of the
biological phantom materials mentioned in Section 2.4.1 were obtained from the catalogue
of Kyoto Kagaku [37] and are summarised in Table 1. The method of calculating the SPR
by measuring the depth difference of the Bragg curve is conventionally referred to as
water-equivalent length (WEL) or water-equivalent path length (WEPL) and has been
adopted because of its reliability [38,39]. Here, we adopt the WEL calculation method for
the theoretical value of SPR. This method is expressed as Equation (18), where RH,w is the
depth of the Bragg curve from the distal H% in only water. RH,m is the depth of the Bragg
curve from the distal H% in the water column when a slab material is placed between the
water and the ionisation chamber; H is the height from the Bragg peak at the distal portion
of the Bragg curve, which is generally represented as a percentage; and tm is the physical
thickness of the slab material. In this study, the value of H was 80.

SPR =
RH,w − RH,m

tm
(18)

A height-adjustable water column was used to measure the SPR. Depth profiles of
the Bragg curves from the 290 MeV/u carbon-ion beam were obtained in water only and
for each slab absorber using a plane-parallel chamber (PTW, advanced Markus model
34045) [31]. A slab phantom of each material (aluminium, graphite, PMMA, and four
biological phantom materials) was placed between water and an ionisation chamber in
a water column. After each Bragg curve was obtained, each SPR was calculated using
Equation (18). The values of effective atomic number, electron density, I-value, and SPR
obtained from photon-counting CT were compared with their theoretical values to calculate
their relative errors using Equation (19):

Relative error [%] =
Valuephoton−counting CT −Valuetheory

Valuetheory
× 100. (19)

For the values of the photon-counting CT images, the mean value and standard
deviation were calculated by setting the region of interest (ROI) corresponding to the size
of each rod sample (5 mm in diameter).

2.5. Random Noise Effect for Theoretical Linear Attenuation Coefficient

Compared to single-energy CT or dual-energy CT, photon-counting CT is more sus-
ceptible to image noise because only a portion of the photon is counted for each energy
bin. Thus, it is necessary to test how the noise in the image affects the results [40,41]. CT
numbers, including noise, were simulated to evaluate the robustness of the calculation
method described in Sections 2.1 and 2.2. For noise, a Gaussian distribution was assumed,
and a 6% noise level was considered (σ = 6%). Each noise was added to a total of 4096
theoretical linear attenuation coefficients obtained using Equation (17) for each of the
seven samples mentioned in Section 2.4.1 with regard to four different thresholds. For
4096 noise-implemented linear attenuation coefficients, the effective atomic number and
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electron density were calculated for each sample using the two-PFM and three-PFM, and
the I-value and SPR were calculated using the method described in Section 2.2.

3. Results

Figure 8 shows each reconstructed CT image of the seven samples, obtained via
photon-counting CT system for the four different thresholds, corrected using the method
discussed in Section 2.4.3. Ring artefacts are seen at thresholds one and four because of the
high absorption rate at low energy and the low X-ray flux at the detector at high energy. In
the case of BE-T-10, the sample itself cracked, and a dent portion occurred in the image.
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threshold one, (b) threshold, (c) threshold three, and (d) threshold four. The number above the rod in each figure corre-
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and 7. Graphite. 

Figure 8. Reconstructed CT images, in which linear attenuation coefficient is corrected via the method in Figure 7, for
(a) threshold one, (b) threshold, (c) threshold three, and (d) threshold four. The number above the rod in each figure
corresponds to Figure 5c: 1. BE-H-10; 2. BE-N-10; 3. BE-T-10; 4. Aluminium; 5. poly(methyl methacrylate) (PMMA); 6.
WD-3010; and 7. Graphite.

Figures 9 and 10 compare the effective atomic numbers, electron densities, I-values,
and SPRs calculated using two-PFM and three-PFM, respectively, using each of the four
images obtained in Figure 8. The ring artefact in Figure 8 is reflected in the calculated image.
For the effective atomic number, the centre parts of the sample holder in Figures 9a and 10a
have incorrectly calculated parts because of the ring artefacts seen at the centre parts of
the images of thresholds 1 and 4 in Figure 8a,d. The I-values in Figures 9c and 10c were
converted from the effective atomic numbers in Figures 9a and 10a, respectively, via fourth-
order polynomial fitting of Figure 4 calculated using the Bragg additivity rule. The SPRs
of Figures 9d and 10d were then calculated from electron density (b) and I-value (c) of
Figures 9 and 10.
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The values for each of the seven samples are plotted in Figure 11. The error of the
SPR in Figure 11d tends to increase as the density of the sample increases. In the case of
three-PFM, the overall relative error and standard deviation were less than those of two-
PFM. Table 2 summarises the theoretical and experimental values and the relative errors
for atomic number, electron density, I-value, and SPR. Figure 12 describes the theoretical
values of the electron density and SPR in which 6% of noise level were added. As the
electron density and SPR obtained from the experiment are within the error range of the
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theoretical value, it can be estimated that a noise level of about 6% may be included to the
CT numbers obtained from the photon-counting CT. For three-PFM, the overall standard
deviation was less than those of two-PFM.
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Table 2. Theoretical and experimental values for effective atomic number, electron density, I-value, and SPR. Relative error
values are indicated in parentheses. Square brackets enclose the experimental values and relative errors when I-value and
SPR are calculated from the obtained fitting curve using the PDG database in Figure 4.

Effective Atomic Number Electron Density I-Value SPR

Samples Theory Two
PFM

Three
PFM

Theory
(1e23)

Two
PFM

Three
PFM Theory Two

PFM
Three
PFM Theory Two

PFM
Three
PFM

BE-H-
10 12.4 11.3

(−8.3)
11.2

(−9.6) 4.73 4.42
(−6.5)

4.79
(1.2) 87.5 87.8

(0.3)
86.8

(−0.8) 1.39 1.47
(5.5)

1.42
(1.7)

BE-N-
10 9.8 9.1

(−7.3)
9.0

(−8.4) 3.98 3.68
(−7.6)

4.07
(2.0) 74.0 78.2

(5.7)
77.9
(5.3) 1.23 1.24

(1.2)
1.22

(−0.6)

BE-T-10 13.8 12.7
(−7.8)

12.5
(−9.4) 5.38 4.98

(−7.4)
5.35

(−0.4) 100.0 99.4
(−0.6)

96.9
(−3.0) 1.58 1.63

(3.5)
1.56

(−0.7)

Aluminium 13.0 13.2
(1.6) 13.0(−0.3) 7.83 7.56

(−3.5)
7.75

(−1.1) 166.0

105.1
(−36.7)
[164.4

(−1.0)]

102.0
(−38.6)
[161.2

(−2.9)]

2.10

2.46
(17.1)
[2.37

(12.7)]

2.25
(7.1)
[2.16
(2.9)]

PMMA 6.5 7.2
(10.8) 7.2 (9.8) 3.80 3.40

(−10.6)
3.80
(0.1) 68.5 72.0

(−3.3)
71.7

(−3.6) 1.17 1.15
(−1.6)

1.15
(−2.0)

WD-
3010 7.9 7.0

(−11.2)
7.0

(−11.2) 3.32 2.95
(−11.1)

3.35
(0.9) 67.2 70.9

(5.4)
71.0
(5.5) 1.01 1.01

(−0.1)
1.02
(0.8)

Graphite 6.0 7.3
(21.1)

7.2
(20.0) 6.65 5.51

(−17.2)
5.61

(−15.7) 78.0 72.2
(−7.4)

72.0
(−7.8) 1.67 1.87

(12.0)
1.70
(1.4)
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Figure 12. Comparison of experimentally obtained electron density (Figure 11b) and theoretically calculated electron
density via (a) two-PFM and (b) three-PFM, and of experimentally obtained SPR (Figure 11d) and theoretically calculated
SPR via (c) two-PFM and (d) three-PFM. The theoretical values were calculated by adding a 6% noise level to each linear
attenuation coefficient from four different thresholds. Solid lines indicate the same values for x- and y-axes, and the dotted
line represents the error level of 5% for the solid line. Standard deviations are plotted together for each value.
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4. Discussion

Most studies have adopted the two-PFM of Equation (5) for dual-energy CT calcula-
tions because it is possible to solve the effective atomic number and electron density clearly
when there are two linear attenuation coefficients using two photon energies, assuring a
certain degree of accuracy [3,9]. On the other hand, few publications have discussed the
accuracy of the fitting method. In contrast, Yang et al. [3] reported that two-PFMs had
errors within 1% of the effective atomic number and within 0.35% of the electron density.
This result is in good agreement with the calculations shown in Figure 3a,b. Meanwhile, in
the conventional approach for the three-PFM using Equation (2) because the exponents m
and n of each term are fixed to constants, the calculated µ(E, Z)/ρe has a somewhat large
error, depending on the atomic number. We modified Equation (2) for each term to have a
dependence on the atomic number, as suggested by Torikoshi et al. [19] for two-PFM, and
significantly reduced errors in µ(E, Z)/ρe (Figure 2). Therefore, the errors of the atomic
number and electron density calculated using the three-PFM were within 0.5% (except
for atomic numbers 2 and 3) and 0.05%, respectively, which were reduced by more than
half of those of two-PFM. In Figure 3a, the relative errors of atomic numbers 2 and 3 are
fairly high, which seems to be due to the polynomial fitting not fitting well for atomic
numbers 2 and 3. For the range of atomic number 1 to 29, compared to the NIST value,
atomic number 2 exhibited an error of 8%–10% for the coherent scattering term, and atomic
number 3 exhibited an error of 0.6%–0.8% for the photoelectric attenuation. Thus, the
relative errors of µ(E, Z)/ρe for atomic numbers 2 and 3 appear to be greater than those
for other atomic numbers (Figure 2b). However, because the atomic number of the sample
used in this study was between 6 and 15, this error may not have had a significant effect on
our calculations. Although both the two- and three-PFMs calculate the electron density
after the effective atomic number is calculated, the calculated electron density does not
seem to be significantly affected by the calculated effective atomic number (Figure 3).

To calculate the effective atomic number and electron density accurately using both
two-PFM and three-PFM, the prerequisite is that the linear attenuation coefficient ob-
tained from the CT number for each threshold should correspond to the NIST value.
The linear attenuation coefficient measured using the CdTe detector; on the other hand,
did not exhibit the theoretical value at low-energy (50–70 keV) and high-energy regions
(120–150 keV). Therefore, the effective atomic number and electron density calculated us-
ing the parameters fitted by the NIST values would be lower or higher than the theoretical
values. Nakashima et al. [36] and Matsumoto et al. [42] experimented with spectral CT
using a CdTe detector and observed that the linear attenuation coefficients measured in
low-energy regions were lower than the theoretical values because of scattered X-rays.
They installed a molybdenum collimator and reduced the relative error of the linear at-
tenuation coefficient by 16%. We thus fabricated a collimator from tungsten to compare
the X-ray spectra and confirmed that the collimator is effective in low-energy regions, as
reported by Nakashima et al. [36]. In high-energy regions, on the other hand, the linear
attenuation coefficients still differ from the theoretical values. Miyajima [43] reported that
the impurities of the detector disturb the drift of charge carriers and cause carrier trapping,
which reduces the output pulse height and results in spectrum distortion. They corrected
the spectral distortion due to transmission of primary X-rays, escape of secondary X-rays,
and tailing, using the stripping method with the detector response function. However, it is
considerably difficult to perform all corrections for each 64-detector element for different
thresholds and for each material in a single sample holder at the same time. To address
these problems, instead of solving the spectrum itself, we chose a semi-empirical method
that theoretically corrects the experimental values by directly comparing the CT numbers
with the NIST values weighted by the experimental X-ray spectrum for each threshold.
In Figure 7, the difference between the theoretical and experimental linear attenuation
coefficients increased with increasing material density and was the largest at threshold
1. We experimentally confirmed that the difference between the two linear attenuation
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coefficients was reduced when the energy width of the threshold was reduced, and we
suspect that photon-counting CT was still affected by beam hardening.

In Figure 8, the photon-counting CT images show ring artefacts at threshold 1 (40–60 keV)
and threshold 4 (100–120 keV). The artefacts on these images had a direct impact on the
calculation of the effective atomic number and electron density. The artefact at threshold 1
seems to be related to the low number of photons because of the large attenuation coefficient,
and the artefact at threshold 4 seems to be related to the detector response capable of
absorbing high-energy photons. Using Equation (1), proposed by Tsutsui et al. [44], we
calculated the X-ray absorbed fraction of our 5 mm-thick CdTe line-sensor array. CdTe
absorbs 100% of low-energy photons, but the absorption starts to decrease from 100 keV
to 85% at 150 keV. We set the threshold at four, that is, 120 keV, because severe artefacts
started appearing on the image from 130 keV.

The effective atomic number calculations for graphite and aluminium demonstrated
better results than the relative errors of 35% for graphite and 12% for aluminium in
Nakashima et al. [36] and Zou et al. [45], who used two-PFM (Table 2). As shown in
Figure 11b, most values of electron density calculated using three-PFM, compared to those
of two-PFM, are closer to the theoretical values. The calculation for the SPR image can be
considered to be a deformation of the electron density image as much as the influence of
the I-value map. However, the I-value estimation method was different for elements and
mixtures (Figure 4). Because we used the I-value from the mixture, the relative errors of
two-PFM and three-PFM for aluminium were −36.7% and −38.6%, respectively. However,
through the use of the I-value estimated from the element (fourth-order polynomial fitting),
the errors could be reduced to −1.0% and −2.9%, respectively (Table 2). When the SPR
is calculated from the element of fourth-order polynomial fitting, the relative errors of
two-PFM and three-PFM for aluminium could be reduced by 4% to 12.7% and 2.9%,
respectively. The Particle Data Group [28] mentioned that the I-value calculation using
the Bragg additivity rule could be underestimated because electrons in a mixture are
more tightly bound than in free elements. Hiraoka et al. [46] also showed that I-values
calculated using the Bragg additivity rule tended to be lower than the I-values obtained
via experimentation, with an uncertainty of ±5%.

A potential disadvantage of multiple-energy imaging is that the signal-to-noise ratio is
degraded because the noise increases in proportion to the sum of the squares of the number
of images [47]. However, the current study did not consider the evaluation of image quality
and noise to see how realistic the SPR calculation results would be with the noise included.
Instead, we estimated the noise level included in the reconstructed CT numbers in Figure 8
by adding noise to the theoretically calculated linear attenuation coefficient. As shown in
Figure 12, it is thought that the three-PFM will be less affected by the noise contained in
the CT numbers than the two-PFM. As Taasti et al. [41] mentioned, this noise level would
be expected to be twice that of single-energy CT. We calculated the SPR using a photon-
counting CT system, but there seems to be room for improvement in the image-based
calculations, such as the inclusion of noise and artefacts of the reconstructed images, to
accurately calculate the effective atomic number and electron density.

5. Conclusions

The SPR was calculated using a photon-counting CT system after multiple CT numbers
were obtained at each threshold. The values for the four CT numbers obtained for the
four energy thresholds were calibrated to their corresponding NIST values using a semi-
empirical correction method. To calculate the effective atomic number and electron density,
we developed a new method, namely, three-PFM, applicable to multiple spectral CT to
improve upon the conventional method, namely, two-PFM. Because the three-PFM fits the
NIST value more accurately than the two-PFM, the effective atomic number and electron
density calculated using the three-PFM exhibited less error than those calculated using the
two-PFM. The effective atomic numbers and electron densities of the target materials were
derived using each method. The effective atomic numbers were converted into I-values
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via parameterisation. The I-values and electron densities were applied to the Bethe–Bloch
formula to calculate the SPRs of the target materials. The results of this study demonstrate
that three-PFM, compared to two-PFM, calculated SPRs that were closer to the theoretical
values and less affected by noise. Therefore, the proposed three-PFM can be potentially
used in photon-counting CT, which is more easily affected by noise than single-energy CT
or dual-energy CT.
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Appendix A

We rewrite Equation (6) to Equation (A1)

〈µ〉k = ρe

[
Z4〈F(Ek, Z)〉+ 〈G(Ek, Z)〉

]
, (k = Th1 to Th4), (A1)

where k represents each of the four energy threshold levels in the spectral CT, and
〈F(Ek, Z)〉 and 〈G(Ek, Z)〉 are weighted sums from the X-ray spectra of Equation (6).
If the electron density at each energy threshold is the same, then the aforementioned
equation can be written as:

〈µ〉Th1
Z4〈F(ETh1, Z)〉+ 〈G(ETh1, Z)〉

=
〈µ〉Th2

Z4〈F(ETh2, Z)〉+ 〈G(ETh2, Z)〉
=

〈µ〉Th3
Z4〈F(ETh3, Z)〉+ 〈G(ETh3, Z)〉

=
〈µ〉Th4

Z4〈F(ETh4, Z)〉+ 〈G(ETh4, Z)〉
.

(A2)

We can then write Equation (A3) by binning each of the two equations of (A2):

〈µ〉k
[

Z4〈F(Ek+1, Z)〉+ 〈G(Ek+1, Z)〉
]
− 〈µ〉k+1

[
Z4〈F(Ek, Z)〉+ 〈G(Ek, Z)〉

]
= 0, (k = Th1 to Th3). (A3)

Finally, Equation (A3) is summarised with respect to the effective atomic number and
becomes Equation (A4):

Z4 −
[
〈µ〉Th2〈G(ETh1, Z)〉 −∑Th2

k=Th1
{[
〈µ〉k − 〈µ〉k+2

]
〈G(Ek+1, Z)〉

}
− 〈µ〉Th3〈G(ETh4, Z)〉

−〈µ〉Th2〈F(ETh1, Z)〉+ ∑Th2
k=Th1

{[
〈µ〉k − 〈µ〉k+2

]
〈F(Ek+1, Z)〉

}
+ 〈µ〉Th3〈F(ETh4, Z)〉

]
= 0. (A4)

To calculate the electron density, if the atomic number is the same for each energy
threshold, Equation (A1) can be written as:
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〈µ〉Th1 − ρe〈G(ETh1, Z)〉
ρe〈F(ETh1, Z)〉 =

〈µ〉Th2 − ρe〈G(ETh2, Z)〉
ρe〈F(ETh2, Z)〉 =

〈µ〉Th3 − ρe〈G(ETh3, Z)〉
ρe〈F(ETh3, Z)〉 =

〈µ〉Th4 − ρe〈G(ETh4, Z)〉
ρe〈F(ETh4, Z)〉 . (A5)

In a similar manner, we can write Equation (A6) by binning each of the two equations
of (A5):

〈F(Ek+1, Z)〉(〈µ〉k − ρe〈G(Ek, Z)〉)− 〈F(Ek, Z)〉
(
〈µ〉k+2 − ρe〈G(Ek+2, Z)〉

)
= 0, (k = Th1 to Th3). (A6)

We can then summarise Equation (A6) with respect to electron density and write it as
Equation (A7):

ρe =
−〈µ〉Th1〈F(ETh2, Z)〉+∑Th2

k=Th1{〈[ F(Ek , Z)〉−〈F(Ek+2, Z)〉]〈µ〉k+1}+〈µ〉Th4〈F(ETh3, Z)〉
−〈F(ETh2, Z)〉〈G(ETh1, Z)〉+∑Th2

k=Th1{[〈F(Ek , Z)〉−〈F(Ek+2, Z)〉]〈G(Ek+1, Z)〉}+〈F(ETh3, Z)〉〈G(ETh4, Z)〉
. (A7)

In the case of Equation (12), Equation (11) is written as Equation (A8)

〈µ〉k = ρeσ
Weight
Ek

, (k = Th1 to Th4), (A8)

where σ
Weight
Ek

is the sum of the three terms in parentheses in Equation (11) at each threshold
k, where each coefficient and exponent are weighted by the spectrum. If we assume that the
electron density at each energy threshold is the same, then the aforementioned equation
can be written as

〈µ〉Th1

σ
Weight
ETh1

=
〈µ〉Th2

σ
Weight
ETh2

=
〈µ〉Th3

σ
Weight
ETh3

=
〈µ〉Th4

σ
Weight
ETh4

. (A9)

We can then write Equation (A10) by binning each of the two Equations of (A9):

− 〈µ〉Th2σ
Weight
ETh1

+ (〈µ〉Th1 − 〈µ〉Th3)σ
Weight
ETh2

+ (〈µ〉Th2 − 〈µ〉Th4)σ
Weight
ETh3

+ 〈µ〉Th3σ
Weight
ETh4

= 0. (A10)

Finally, solving the aforementioned equation with respect to Z repeatedly yields the
solution Z:

Z : −〈µ〉Th2σ
Weight
ETh1

+ ∑Th2
k=Th1

{[
〈µ〉k − 〈µ〉k+2

]
σ

Weight
Ek+1

}
+ 〈µ〉Th3σ

Weight
ETh4

= 0. (A11)
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