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Details on preparation of decal transfer Silhouette paper 

The composition of decal transfer Silhouette paper is (according to available 
datasheet): paper sheet (contents 83%); polyvinyl alcohol resin (10%); polyamide resin 
(3%), polyalyl resin (2%) and polyurethane resin (2%). 

While the exact composition and arrangement of the different layers is not disclosed 
in the datasheet, our understanding and investigation make us conclude that Silhouette 
paper is made up of at least three layers: the paper carrier; a PVA sacrificial water soluble 
layer (which allows the release of the tattoo), and the tattoo layer which can be transferred 
onto skin. 

Before electrodes and tracks deposition, the surface of the decal transfer paper has 
been gently washed with a water jet, and then dried using a compressed‐air gun. Com‐ 
paring the morphology of the paper observed by optical microscope before and after the 
wash, it seems that a water soluble layer on top was removed by washing (Figure SI1). 

This hypothesis was confirmed by thickness measurements of the released tattoo 
layer without or with wash: washing of the tattoo paper sheet prior to release reduced the 
final thickness of the tattoo layer from about 4‐4.5 µm to about 1.7 um. 



 
Figure 1. a) Washing and drying of the surface of the decal transfer paper using a DI water jet (left) and a compressed‐air 
gun (right); b) A schematic representation of the different layers which compose the paper before and after washing and 
the corresponding optical microscope images of the paper surface before (c) and after (d) the treatment; Typical mean 
value for decal transfer paper thickness before and after washing are reported, together with the corresponding examples 
of thickness profiles (e and f). 



Tattoo electrodes -fabrication procedure 
 

 
Figure 2. Schematic representation of Tattoo electrodes fabrication procedure: a) tattoo 
paper substrate; b) printing of PEDOT:PSS electrodes; c) Ag ink interconnection track 
screen printing; d) polyimide layer for supporting the external electrical connection, 
shaped by laser cutter; e) Ag ink interconnection track screen printing on polyimide 
layer; f) contact pad flipping for correct assembly; g) assembly of contact pad on tattoo 
electrode layer by small drops of the Ag ink; h) laser cut glue sheet (form transfer tat- 
too paper kit) used as passivation layer; i-l) assembly of neodymium magnets and 
support; m) final tattoo electrode assembly. 

 



Tattoo electrodes - Inkjet printing and conductivity 
In general, concerning ink‐jet printing, the properties of the substrate strongly influ‐ 

ence the quality of the print, and consequently the conductivity of the printed electrodes. 
For this reason the printing parameters have to be optimized. In particular we worked on 
the formulation of PEDOT:PSS ink (conducting polymer in water) using glycerol as a bi‐ 
ocompatible additive improving conductivity and print quality (S.H. Eom et al. Organic 
Electronics 10, 536–542, 2009). The final formulation chosen was PEDOT:PSS Clevios P Jet 
700 (H.C. Starck) + 10% vol glycerol. In order to print more layers, an intermediate heating 
at T=120°C for 10 min is needed. In Figure SI.3 it is shown how the addition of glycerol 
improved the quality of the print and increased the conductivity of PEDOT:PSS elec‐ 
trodes, printed as multiple superimposed layers. “R” is the surface resistivity in Ω/□, 
measured the opposite edges of a printed square of 1cm lateral size. 

 

Figure 3. Example of samples obtained by printing PEDOT:PSS Clevios P Jet 700 as received on 
washed Silouette tattoo paper (top), and samples obtained by printing PEDOT:PSS Clevios P Jet 
with addition of 10%vol of glycerol (bottom). Typical value for electrodes’ surface resistivity are 
reported. 



 
Tattoo electrodes - material’s properties 

 
PEDOT:PSS Layer Tattoo Sub- 

strate Silver Paste Kapton 

Bulk Modulus E [MPa] 1-2 103  a 42 a ≈ 100-200 b 2-2.7 103  a 

Max Strength Smax [MPa] --- --- ≈ 10-26 b ≈ 100 a 

Poisson's ratio ν 0.3 c 0.5 c 0.5 c 0.34 a 

Max strain εmax 5-10% (uniax) b >10% b >10% b <1% a 

Thickness [um] 0.4-0.6 b 1.5 b 15 d 25 a 

Flexural rigidity D [N m x10-9] e 0.0223 0.0236 56.3 4650 
 
 

Table SI.1. Summary of typical mechanical properties for used materials. 
a From literature (PEDOTPSS data from F. Greco et al. Soft Matter, 7: 10642, 2011) or technical datasheets 
b Experimentally measured/verified 
c Typical value for rubber‐like (incompressible) materials is 0.5, typical value for rigid polymers is 0.3 
d Nominal value for screen printing from silver paste material datasheet 
e Calculated. 



Transthoracic impedance measure and thermistor control – Details 
 



 
 

Figure 4. a‐c) Details of transthoracic impedance measurement (and thermistor control) acquired while performing de‐ 
fined routines as presented in Figure 3 of the main text, showing the correspondences of respiratory acts detection (peaks 
of the curves). Green dashed lines show correct correspondence, orange dashed lines show false negative (thermistor peak 
detection, no impedance peak detection), red dashed lines show false positive (impedance peak detection, no thermistor 
peak detection). Overall the detection accuracy is around 92%. 



Stand-alone devices for Tattoo Electrode interface – Fabrication and details 
Stand‐alone device is built in a modular way to easily adapt to different types of 

measurement, having a BT microcontroller board based on AZ‐BLE PSoC module (by Cy‐ 
press) for data collection/elaboration and transmission connected to specific sensor boards 
for analog front‐end for each different application. Two different devices have been de‐ 
signed, one specific EMG measurements and another one specific for ECG measurement. 
Both devices have the same BT microcontroller HW module (but with different control 

firmware). Both device have the same housing and assembling procedures (see Figure 
SI5), and can be connected with a PC via Bluetooth through a suitable receiving dongle, 
where transmitted data is visualised in real time by means of a custom software interface. 

Three electronic board have been developed for assembling the two devices: one 
Bluetooth Control Board (common to the two devices, see details in Figure SI6), one EMG 
Sensor Board (for EMG device, see details in Figure SI7) and one ECG Sensor Board (for 
ECG device, see details in Figure SI8). Some specific detail on the electronic of analog 

front‐end architecture for both EMG and ECG device is provided in the follow. 
 

EMG measurements device – Analog front-end 
The analog front‐end (Figure SI7) used for signal conditioning is composed by a first 

differential amplification stage with a gain G1 = 10, followed by a rectification stage, an 
active filter module and finally by a second amplification stage with tuneable gain. The 
output signal is acquired by BT microcontroller board with 12 bit of resolution (full span 
3V), further elaborated (the derivative signal is calculated at 50 Hz update rate) and trans‐ 
mitted via BT with a UART (Universal asynchronous receiver‐transmitter) over BT proto‐ 
col to a PC where it is visualised in real time by means of a custom software interface 

 
ECG measurements device – Analog front-end 

The analog module for ECG detection (Figure SI8) is different from the previous one 
presented for ECG (while the BT microcontroller board is the same, and it is specifically 
built around the MAX30003 chip (Maxim Integrated, U.S.), a monolithic biopotential, an‐ 
alog front‐end for clinical and fitness applications, providing ECG waveforms and heart 
rate detection. The MAX30003 is connected with the microcontroller through a high speed 
digital SPI interface, guaranteeing up to 500 sps (128 sps in our specific implementation) 
of waveform sampling with a resolution up to15 bit and 5µVP‐P noise. 

 
Stand-alone devices’ fabrication – HW, FW, SW open source files and assembling process 

All the material needed to build both stand‐alone devices is made available as open 
source at the following repository: https://doi.org/10.5281/zenodo.4382056 

The schematics and layouts files, developed with Eagle 6.3, are freely available at the 
repository (“ElectronicBoards.zip”), with complete bill of components. 

The casing, common to the two device, has been 3D printed by stereo‐lithography. 
STL files of device’s external case (composed by two pieces, see Figure SI5) can be found 
at the repository (“Device_External_Case STL.zip”) with additional details for assembling 
(“Assembly_Details.pdf”). 

Once fabricate the printed circuit boards and the external case, the assembly was per‐ 
formed as follow: ‐ four magnets are inserted and glued in the holes if the bottom part of 
the case; 
‐ two SMD dual‐in‐line pin connectors (slightly trimmed to fit in case) are glued on the 
bottom case; 
‐ with conductive ink/paste are connected the pins with the magnets, to guarantee the 
electric connection mediated by magnetic interlocking; 
‐ the sensor board (EMG or ECG) is inserted in the pins, and soldered to them 
‐ the control board is staked on the Sensor board, including in the middle a small 50 mAh 
LiPo battery 
‐ the battery is soldered to the control board 
‐ the top part of the case is mounted and the device is ready for operations. 



Each device is programmed with a specific firmware. Also the USB‐BT dongle for PC 
Bluetooth connection (CY5677 CySmart BLE USB Dongle, by Cypress) need a specific 
firmware reprogramming. Devices’ firmware and dongle’s firmware are all developed 
with PSoC Creator 4.2 (Cypress), and are freely available at the repository 
(“EMG_BLE_Device.zip”, “EGG_BLE_Device.zip”, “Dongle_BLEcentral.zip”). 

Once programmed the devices can be connected with the PC for data transmission 
and acquisition. The graphic user interface software, developed in Visual Basic .NET 2017 
(Microsoft), is freely available at the repository (“TestChart_ECG+EMG.zip”). 

Finally, DXF files for ECG and EMG tattoo printing/cutting can be found at the re‐ 
pository (“TattooLayout.zip”). Assembly of the tattoo electrodes can be done by following 
the process reported in Figure SI2. 



 
 

Figure 5. EMG /ECG BT device overview and pictures at different stage of assembly. 



 
 

Figure 6. Bluetooth control board schematics and layout. 



 
 

Figure 7. EMG sensor board schematics and layout ‐ Signal conditioning schematic was partially based on the schematics avail- 
able in https://www.instructables.com/id/Muscle-EMG-Sensor-for-a-Microcontroller/. 



 
 

Figure 8. ECG sensor board schematics and layout – ECG signal conditioning is based on MAX30003 analog frontend. 
 

ECG Comparison - Details 



 
Figure 9. a) Detail of ECG acquisition from tattoo electrodes by BLE device and reference device with standard electrodes; 
(b) Power spectrum at mean squared amplitude(MSA) of the ECG signal calculated on 60 seconds sample, both for tattoo 
electrode + BLE device and reference device; (c) same spectrum with different logarithmic scaling, for clarity of compari‐ 
son. 



Supporting Information Video 
List of videos: 

1. SV#1 Video of tattoo stretching test while shaking 
2. SV#2 Tattoo electrodes release on skin with sponge and EMG signal acquisition 
3. SV#3 EMG demo with shaking 
4. SV#4 EMG RC car control demo 
5. SV#5 ECG comparative demo 

 
High resolution SI Video also available for download from here: 
https://gitlab.iit.it/Virgilio.Mattoli/tattoo-electrode-device/-
/tree/master/SI%20Videos 


