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Abstract: We propose a novel generative adversarial network (GAN)-based image denoising method
that utilizes heterogeneous losses. In order to improve the restoration quality of the structural
information of the generator, the heterogeneous losses, including the structural loss in addition to
the conventional mean squared error (MSE)-based loss, are used to train the generator. To maximize
the improvements brought on by the heterogeneous losses, the strength of the structural loss is
adaptively adjusted by the discriminator for each input patch. In addition, a depth wise separable
convolution-based module that utilizes the dilated convolution and symmetric skip connection is
used for the proposed GAN so as to reduce the computational complexity while providing improved
denoising quality compared to the convolutional neural network (CNN) denoiser. The experiments
showed that the proposed method improved visual information fidelity and feature similarity index
values by up to 0.027 and 0.008, respectively, compared to the existing CNN denoiser.

Keywords: image denoising; convolutional neural network; generative adversarial network; image
restoration; structural loss

1. Introduction

Image denoising has been studied for several decades and studies on image denoising
continue to be actively conducted due to its high utilization value in various applications.
Specifically, image denoising plays an important role in improving the performance of
image enhancement, feature extraction, and object recognition.

The ultimate goal of image denoising is to remove image noise while preserving
structural information, such as the edges and details of a given noisy image. For structural
information-preserving denoising, various denoising methods have been proposed. These
conventional denoising methods can be categorized as model-based optimization methods
and deep learning-based methods [1].

Model-based optimization methods [2–8] have been extensively studied and widely
used for image denoising. The most popular model-based optimization methods are
anisotropic diffusion (AD) [2], total variation (TV) [3], bilateral filter (BF) [4], non-local
means filter (NLM) [5], block-matching and 3D filtering (BM3D) [6], and weighted nuclear
norm minimization (WNNM) [7]. In the case of AD and TV, noise elimination is performed
based on the pixel-wise similarity between the current pixel and its neighboring pixels
in a given noisy image. NLM, BM3D, and WNNM restore a given noisy image by using
non-local similarity (NSS) which is based on the patch-wise similarity between the current
patch and the other patches in a given noisy image. These NSS-based denoising methods
significantly improve the quality of image denoising compared to the pixel-similarity based
methods, but the computational complexity is also greatly increased.

Recently, deep learning methods [1,9–16] using clean-noisy image pairs have been
widely exploited due to the rapid development of deep learning technology. In [9], the
multi-layer perceptron (MLP) for image denoising was proposed. In addition to this,

Sensors 2021, 21, 1191. https://doi.org/10.3390/s21041191 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-6233-4394
https://orcid.org/0000-0002-4809-956X
https://doi.org/10.3390/s21041191
https://doi.org/10.3390/s21041191
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21041191
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/4/1191?type=check_update&version=2


Sensors 2021, 21, 1191 2 of 16

various deep learning methods based on the convolutional neural network (CNN) have
been proposed. The most popular CNN-based methods are denoising convolutional
neural networks (DnCNN) [10], and image restoration convolutional neural networks
(IRCNN) [1]. These CNN-based methods greatly enhance the performance of image
denoising compared to the model-based optimization methods by using the CNN-based
end-to-end transformation.

Of the existing image denoising methods, BM3D, WNNM, DnCNN, and IRCNN
provide excellent performances of image denoising, but are all still limited in terms of
the effective preservation of structural information, such as texture and weak edges. In
addition, CNN-based methods have very high computational complexities, requiring the
multiplication of several tens of thousands for the convolution processes.

In this paper, we propose a new generative adversarial network (GAN)-based denoiser
to improve the quality of detail preservation by using the heterogeneous losses, consisting
of the structural loss and the mean squared error (MSE)-based loss. The balance of these
losses is adjusted by the gradient fidelity between the original and restored images, which
is estimated by the discriminator of the GAN [17] during the training process. As a result,
it is possible to maintain the quality of noise suppression while restoring the structural
information to be most similar to that of the original image from the viewpoint of the
discriminator. In addition, we greatly reduce the computational complexity of the proposed
GAN denoiser compared to that of the existing CNN denoisers. The main contributions of
this work are summarized as follows:

A new GAN denoiser is proposed to improve the restoration quality of structural
information by incorporating the discriminator-based gradient fidelity, and the MSE-based
loss. Specifically, unlike existing methods, the proposed discriminator uses gradient values
as an input to effectively estimate the structural fidelity between the original and restored
images. The balancing parameter for the gradient fidelity with the MSE-based loss is
adjusted depending on the estimation result by the discriminator. This means that the
balancing power for heterogeneous losses can be adjusted by considering the optimal
denoising direction of the input image and it leads the best reproduction of the structural
information of the original image. In addition to the heterogeneous losses, we propose
a new structure of GAN denoiser that can reduce the computational complexity while
providing improved denoising performance by using the capsulized depth-wise separable
convolution (DSC) [18] with the dilated convolution and symmetric skip connection (DSDC)
compared to the existing CNN denoisers [1,10,11].

2. Materials and Methods
2.1. Overall Architecture

Figure 1 shows the overall architecture of the proposed GAN denoiser. The proposed
method consists of a generator (G) and a discriminator (D), same as the conventional
GAN [17]. In our work, we utilize this training approach with the heterogeneous losses,
which will be described in Section 2.3.

As shown in Figure 1, in the proposed GAN denoiser, the G and the D have 13 convo-
lution layers. To improve the denoising quality of the proposed network, we use multiple
symmetric skip connections (DSDCs) that are the element modules of the proposed network
and contain the dilated convolution–based depth-wise separable convolution (DSC) [18]
and symmetric skip connection between two dilated convolutions having the same dila-
tion size as shown in Figure 1c. The G uses the CNN structure based on an end-to-end
transformation. In the case of the D, the two fully connected layers are added to the last
convolution layer so that the scalar probability value indicating whether the input image is
a noise-free image can be derived. For the input of the G and the D, gradients of a given
input are used, as shown in [19]. The gradients are extracted from eight neighborhoods of
a current pixel, and there are three kinds of color channels. Therefore, the total 24 feature
channels are used as inputs for the G and the D. In the case of the G, this gradient input can
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increase its denoising performance [19]. In the case of the D, this can help the D estimate
the fidelity of structural information between the restored and the noise-free images.

Figure 1. Overall architecture of the proposed GAN denoiser: (a) generator, (b) discriminator, and (c) element module of the
proposed method (depth-wise separable convolution using dilated convolution and symmetric skip connection (DSDC)).

2.2. Architecture of the Proposed Network
2.2.1. Generator

The general CNN architecture that uses the end-to-end transformation is used for the
G in the same way as the existing CNN denoisers [1,10]. Batch normalization (BN) [20]
and the ReLU [21] are selectively applied to each layer as in shown Table 1. In this table,
Conv in the 13th layer represents the general convolution operation. P_conv and D_conv
represent a point-wise convolution and a depth-wise convolution, respectively.

Table 1. The structure of a generator.

Layer Operations Dimension [SR, SC, FD1, FD2]

1st layer P_conv + D_conv + bias + ReLU
P_conv: 1 × 1 × 24 × 96
D_conv: 3 × 3 × 96 × 1

2nd~12th layers P_conv + K dilated D_conv
+ BN + ReLU

P_conv: 1 × 1 × 96 × 96
D_conv:3 × 3 × 96 × 1

13th layer Conv + bias Conv: 3 × 3 × 96 × 3
Total number of weights 116,640 (62% of the number of weights for IRCNN [1])

When the D_conv is applied, the dilated convolution [22] is used to increase the
receptive field of convolution operation. Since each feature channel to which the D_conv
is applied already contains the combined result of the previous FD1 feature maps, the
dilated convolution is a very effective approach for enhancing the denoising performance.
Compared to the existing networks that increase the size of the dilation in half of the
entire layers and then decrease it in the rest layers [1,10,19], the proposed method uses
the DSDC module to create multiple cycles that repeat the expansion and contraction of
the dilation size to prevent the artifacts that may occur as the size of the dilation becomes
too large. Also, the symmetric skip connection can increase the efficiency of information
transfer between dilated convolutions. In our method, the number of layers, FD1, and FD2
were set to 13, 96, and 96, respectively, by considering the total number of weights for
convolution and the quality of image denoising. Specifically, we determined the numbers
of layers and FD1, FD2 values so that only the smaller number of parameters than existing
CNNs can be used while providing a comparable to or better denoising quality than
the existing CNNs [1,10,19]. Even if the number of convolution layers, FD1, and FD2, are
increased, the computational complexity of the proposed method is much smaller than
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that of the conventional CNN denoisers [1,10] which use the general convolution process
because the decrease in computational complexity by the DSC overwhelms the increase
in the computational complexity by the increase in the number of layer, FD1, and FD2. In
particular, the selected values of FD1 and FD2 are determined by analyzing the variations in
the denoising performance against the increases in FD1 and FD2 values. The generation of
each convolution layer by the DSC and Conv can be formulated as follows:

ŶL =


max

(
WD

L ∗
(

WP
L ∗ XN

)
+ bias0, 0

)
i f L = 1

max
(

BN
(

WD
L ∗

(
WP

L ∗ ŶL−1

))
, 0
) else i f

2 ≤ L ≤ 12
WL ∗ Ŷ12 + bias13 otherwise

, (1)

where L is an index for the convolution layer. ŶL, and biasL are the Lth resultant con-
volution layer and the bias for the Lth convolution, respectively. XN is the input data of
the proposed network. In our work, XN is the 24 kinds of gradients of the input noisy
image, as shown in [19]. WP

L , WD
L , and WL are the weight sets for Lth P_conv, D_conv,

and Conv, respectively, and BN is the batch normalization operator. In addition to this
convolution operation, symmetric skip connection is used as in Figure 1c. For the training
of the proposed network, residual learning [23] that trains the network to convert a given
input data to the residual between a training input data and its ground-truth data, which
denotes image noise is used. Hence, the final restored image by the G can be calculated by:

Ŷf = IN + Ŷ13, (2)

where IN and Ŷf are the noisy and final restored images, respectively. Ŷ13 is the final result
of the G and denotes the negative value of image noise.

2.2.2. Discriminator

In the general GAN [17], the following adversarial min-max problem is used for training:

min
G

max
D

EIGT∼Ptrain(IGT)

[
log D

(
IGT)]

+EIN∼PG(IN)

[
log
(
1 − D

(
G
(
IN)))], (3)

where IGT and IN are a ground-truth image and an input noisy image, respectively. Ptrain
and PG are the data distributions of the ground-truth image and resultant image by the G.
D (·) denotes the output of the D, which indicates the probability that the current input is
the ground-truth. The G(IN) denotes the output of the G for a given noisy image, thus, it is
the restored image from a noisy image by the G. Therefore, the D is trained so that D(IGT)
is close to 1 and so that D(G(IN)) is close to 0.

We utilize this training process of the general GAN for the training of the proposed
method. The general CNN denoiser [1,10] is trained using MSE between the ground-truth
and restored images. In this case, some small structural information, such as weak edges or
texture, can be lost because the training is performed only in the direction of reducing MSE
of the entire image. We alleviate this problem by incorporating MSE and the gradient-based
structural loss that can be adjusted by the result of the D. In the proposed method, the D
uses the gradients of a given ground-truth image (XGT) and the gradients of the restored
images (XY) as an input as shown in Figure 1b so that it can estimate the restoration quality
of gradient information of the G. (IGT and G(IN) in Equation (3) is changed to XGT and XY,
respectively.) For example, a high D(XGT) and a low D(XY) indicate that the performance
of gradient information restoration of the G is lower than the classification accuracy of the
D. For this case, the strength of structural loss is increased for the training of the G, while
in the opposite case, MSE-based loss is increased for the training of the G. Through this
training strategy, the proposed GAN reproduces the structural information most similar
to that of the ground-truth image while maintaining the quality of noise suppression in
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smooth regions. This loss function and training process used for the proposed method will
be described in detail in Section 2.3.

Table 2 shows the structure of the proposed D. The D is composed of 13 convolution
layers as in G, and BN and ReLU are applied between the two consecutive convolution
layers. After the 13th convolution layer, two dense layers are connected. Finally, the
sigmoid activation function is applied to extract the scalar probability value that the input
image is the original noise-free image. Because the G is intended to deduce the original
pixel value from a noisy input patch, whereas the D is intended to determine the probability
that the input patch is the original patch, we consider that the problem difficulty of the G is
higher than that of the D. Hence, we set the size of the future channel of the D (FD1 and
FD2) to 1/3 that of the G, so that we can balance the performances between the G and the D.

Table 2. The structure of a discriminator.

Layer Operations Dimension [SR, SC, FD1, FD2]

1st layer P_conv + D_conv + bias + ReLU
P_conv: 1 × 1 × 24 × 32
D_conv: 3 × 3 × 32 × 1

2nd~12th layers P_conv + K dilated D_conv
+ BN + ReLU

P_conv: 1 × 1 × 32 × 32
D_conv:3 × 3 × 32 × 1

13th layer Conv + bias Conv: 3 × 3 × 32 × 3
14th layer 1024 dense (fully connected) 1 N × 1024
15th layer 1024 dense + sigmoid 1024 × 1

1 N: the number of pixels in the resultant image of the 13th layer.

2.3. GAN-Based Heterogeneous Losses Function

The GAN-based denoiser is described in Section 2.2.2. In the general GAN, training
for G and D is performed using the results of G and D as described in Equation (3). For
the proposed D, the training is performed in the same way as the training of the general
GAN by maximizing loss described in Equation (3). For the proposed G, the training using
Equation (3) can also be applied. However, this training approach is not suitable for the G
(CNN denoiser) that transforms a given noisy image to a denoised image in an end-to-end
manner. This is because the purpose of the GAN is to understand or learn an intended
context of a given image and reproduce the intended context, not to accurately restore each
pixel value. Hence, we propose a new heterogeneous losses function, which consists of
MSE-based loss (Lossresidual), GAN loss (LossGAN), and structural loss (Lossstruct). Lossstruct
is calculated from the fidelity of structural information between the original image and
restored image by the G, which is estimated by the D. These are used as an auxiliary loss to
Lossresidual in order to improve the preservation quality of structural information while also
increasing the overall performance of noise suppression during the training process in a
stable manner as follows:

L =
NT

∑
i
(Lossresidual(i) + LossGAN + α(i) · Lossstruct(i)), (4)

where i and NT denote the index for training patch pairs and the total number of training
patch pairs, respectively. L is the final loss value for the training. Lossresidual denotes the
residual loss, that is, MSE between the resultant image by the G and the ground-truth data.
In our work that utilizes the residual learning, the target data of the training is the residual
(difference) of an input noisy image and a noise-free image, which represents the negative
value of image noise. LossGAN is the general GAN loss denoted in Equation (3). Lossstruct
denotes the structural loss, that is, the dissimilarity between the gradients of a noise-free
image and a resultant image by the G. α is the balancing factor for Lossstruct, which can
be controlled by the results of the proposed GAN. In our method, α indicates the inverse
fidelity of structural information between the original image and the produced image by
the G. The α value was determined as the value obtained by dividing the output of the D
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for the gradient values of IGT and the output D for the gradient values of resultant image
by G. More specifically, the meaning of the value α can be said to be an index that evaluates
how well the generator has preserved structural information after denoising from the point
of view of a discriminator. Therefore, as the difficulty of restoring structural information
increases, the α value increases, and the Lossstruct is more reflected in the update of the
convolution coefficient than the Lossresidual. This value will be explained in detail in a
later paragraph.

Lossresidual(i) =
∥∥Ŷ13(i)− R

(
IN(i)

)∥∥2,

R
(
IN(i)

)
= IGT(i)− IN(i),

(5)

As shown in this equation, the Lossresidual is calculated by using MSE between results
by the G and the residual (IGT − IN) image. The Lossresidual plays a key role in improving
the overall performance of noise suppression in a stable manner during the training process.
However, as mentioned before, some weak structural information, such as texture or weak
edges, can be lost because the training of the G is performed in order to improve the overall
pixel-wise similarity between the IGT and the restored image by the G. In order to alleviate
this, Lossstruct and LossGAN are added to Lossresidual. LossGAN is defined as follows:

LossGAN(i) =
(

log D
(

XGT(i)
)
+
(

1 − log D
(

XY(i)
)))

, (6)

where XGT and XY are the gradient values of IGT and Ŷf, as shown in Figure 2, respectively.
In addition to LossGAN, Lossstruct is defined as follows:

Lossstruct(i) =

 ND

∑
Dir=1

∥∥∥XY(i, Dir)− XGT(i, Dir)
∥∥∥2∣∣∣XY(i, Dir)

∣∣∣ · ∣∣∣XGT(i, Dir)
∣∣∣+ λ

, (7)

where Dir indicates the direction of gradient values. λ is the offset value and was empiri-
cally set to 32. ND was set to 24 because gradients on eight neighborhoods of the current
pixel in three color channels were used. Considering that the gradient of a given image is
the most basic and important information used to derive structural information, Lossstruct
can effectively reflect the loss of structural information. Figure 3 shows example results
of the normalized Lossresidual and Lossstruct of training patches. As shown in this figure,
compared with the energy distribution of Lossresidual, the energy distribution of Lossstruct
is concentrated in the texture or edge areas, having a relatively high amount of structural
information in a training patch.

Figure 2. The proposed GAN-based training model using the gradient fidelity-based heterogeneous
loss function.
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Figure 3. Examples of Lossresidual and Lossstruct: 1st row: original patches, 2nd row: resultant patches
by the G, 3rd row: normalized Lossresiduals, 4th row: normalized Lossstructs.

Therefore, if the balance between Lossresidual and Lossstruct can be adjusted depending
on the characteristics of the patch, the qualities of noise suppression and the preservation of
structural information can be maximized. Hence, we tried to set the ideal training direction
using α as the balancing value. To estimate the characteristics of the patch, we utilized the
result of D as shown in Equation (4). As mentioned in Section 2.2.2, the D provides two
probabilities (D(XGT), D(XY)) ranging from 0 to 1. These values represent the fidelity of
structural information between IGT and Ŷf, that are the original patch and restored patch
by the G. By using these probabilities, α can be defined as follows:

α(i) = κ ×
D
(

XGT(i)
)
+ 1

D
(

XY(i)
)
+ 1

, (8)

where κ is the scaling factor and was set to 3 through the extensive experiments. In our method,
1 in numerator and denominator is the offset value. If the value of D(XGT(i)) is large and the
value of D(XY(i)) is small, this indicates that it is easy to distinguish the XGT(i) from the XY(i)
from the viewpoint of the D. In other words, the restoration result of the gradients information
by the G for the corresponding ith input training pair is not accurate, indicating that the G
provides a restored image that has a low fidelity of structural information with respect to XGT.
In this case, α is increased (to be closed to κ × ((1 + 1)/(0 + 1)) = κ × 2) so as to increase the
strength of Lossstruct. As a result, the training is concentrated on improving the fidelity of the
structural information. In the opposite case, the accuracy of gradient restoration of the G is high,
which leads to a decrease in α (to be closed to κ × ((0.5 + 1)/(0.5 + 1)) = κ × 1). In this case, the
training is focused on smoothing-based noise suppression. Consequently, the strength of
Lossstruct can be continuously updated depending on the fidelity between the gradient of
the IGT and Ŷf, and this fidelity can be estimated by the D. The patch including a texture
region with high energy is generally more difficult to restore than the patch including a
smooth region or a region having clear boundaries, thus, it is likely to have a low fidelity
of structural information (as it is easy to be smoothed). These characteristics are well
reflected by α value. Figure 4 shows examples of IGT and Ŷf paired with their α values. As
shown in this figure, the patches with relatively low energy (Figure 4a), including unclear
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boundaries, have low α values, thus the loss function with a strong Lossresidual value is used
for training. For this case, the strong noise suppression is performed. For the patches with
clear boundaries (Figure 4b), a moderate strength of Lossstruct is used for training. Finally, for
the patches with texture areas (Figure 4c), a high α value is applied and a strong Lossstruct is
used for training. Hence, the texture region that is easy to be smoothed by a denoiser can be
effectively preserved. The utilization effectiveness of the α for improving the preservation
quality of structural information will be analyzed in the experimental results.

Figure 4. Examples of original (left) patches and resultant patches (right) by G with α values. (noise
level: σn = 25) (a) α < = κ × 1.100 (b) κ × 1.100 ≤ α < κ × 1.600 (c) κ × 1.600 ≤ α.

3. Simulation Results

Simulations for testing were performed with widely-used color testing sets, which are
Kodak, misc1 (CIPR_M), and Cannon datasets (CIPR_C) from the CIPR image databases
(CIPR) [24]. In addition, images captured from the IEC62087 (IEC) [25], football se-
quences [26], and CBSD68 dataset that is the color version of the grayscale BSD68 dataset
were also used as test image sets. For the image noise model, additive white Gaussian
noise (AWGN) with typical values of 15, 25, and 35 σns was used [1,10,19,27].

The color versions of NLM (NLMC) [5], block-matching, and 3D filtering (BM3DC) [6],
which are popular image denoising methods, were used as benchmark methods. The weighted
nuclear norm minimization (WNNM) [7] and Multi-channel WNNM (MCWNNM) [8] which
are the recent state-of-the-art image denoising methods were also used as a benchmark
method. All of these methods were simulated using publicly available MATLAB code.
Other benchmark methods were the color versions of MLP [9], DnCNNC [10], IRCNNC [1],
and MemNetC [11] which are recent CNN denoisers. For the generation of denoised results
of MLP, DnCNNC, and IRCNNC, we used the already trained parameters provided by
publicly available MATLAB code. For the case of MemNetC, we trained the model by
using same environments with the proposed method. The training environments will be
described below.

An Adam solver [28] was used for the training of parameters in the proposed CNN
denoiser. The initial step size for each iteration of training was set to 3 × 10−2, and the step
size was decreased to 9/10 for every 2000 iterations. The training was terminated when
the loss function defined in Equation (4) no longer decreased. For the training images, we
used a total of 4000 images, of which 500 were selected from the Berkeley Segmentation
Dataset [29], 3000 were selected from the ImageNet database (3000 of the front images out
of a total of 5500 images in ILSVRC2017 Object detection test dataset) [30], and 500 were
selected from the Waterloo Exploration Database [31] (500 of the front images out of a total
of 4744 images). The size of the training patch was set to 70 × 70 pixels considering the
receptive field of our method, and training patches were randomly cropped from the four
corners and centers of the training images. The mini-batch size for each iteration was set to
20. The proposed method was implemented using the tensor flow [32].

The performances of the proposed method with the five benchmark methods were
evaluated in two ways: First, the qualities of image denoising were compared using the
PSNR, structural similarity index (SSIM) [33], visual information fidelity (VIF) [34], and
feature similarity index (FSIM) [35] values. Although PSNR is the most widely used



Sensors 2021, 21, 1191 9 of 16

objective evaluation method for image quality, it is limited in evaluating the loss of small
structural information or perceptual image quality, because it is calculated by considering
only the squared difference between the original pixel value and the resulting pixel value.
In order to alleviate this, SSIM, which can consider the similarity of structural information
between the resultant and ground-truth images, is proposed. However, SSIM is also based
on MSE [36], so the difference of pixel values can dominate its resulting value rather than
the fidelity of structural information for some images. Therefore, we added VIF and FSIM,
which are widely used for various image processing applications [37–44] to the PSNR and
SSIM as the image quality evaluation metric to accurately evaluate the quality of structural
information preservation. VIF, which is based on image information fidelity measures the
similarity between images by the amount of information that can be extracted by the brain
from a given image. The value of VIF is equal to 1 when the resultant image is a copy
of the ground-truth image. FSIM provides the feature similarity index by measuring the
similarity of low-level features between resultant and ground-truth images. By using VIF
and FSIM, we could more accurately evaluate the improvements obtained through the
usage of GAN-based heterogeneous losses.

3.1. Comparisons of Denoising Quality

Table 3 shows the PSNR, SSIM, VIF, and FSIM values for the five benchmark methods
and the two kinds of proposed methods, which are Pro_w/o_D (DSDC3) and Pro_wtih_D.
The Pro_w/o_D (DSDC3) is the proposed G which uses the three DSDCs as shown in
Figure 1a and does not use the D and Lossstruct during training, and the Pro_wtih_D is the
proposed G which uses the D with Lossstruct during training. As shown in this table, except
the MemNetC which requires the tremendous computational complexity, the Pro_w/o_D
provided the best PSNR and SSIM values for most noise levels and image sets while using
a much smaller number of convolution weights than the DnCNNC and IRCNNC. (The
comparison of computational complexity will be analyzed in detail in Section 3.2). This
demonstrated that the proposed DSDC3 network, which has a cascade structure of the
three DSDCs, is a very effective convolution approach to image denoising. The MemNetC
provided slightly higher denoising quality than the proposed DSDC3 network, but it
has a much higher computational complexity. For the fair comparison, we compared
the proposed method with the MemNetC by increasing the number of DSDC. Table 4
shows the PSNR and SSIM values of the proposed DSDC5 network (Pro_w/o_D_DSDC5)
that uses the five DSDCs, and MemNetC. As shown in this table, the proposed method
provided slightly higher or comparable denoising quality while it still has a much smaller
computational complexity than the MemNetC, which will be analyzed in a later paragraph.

In the Pro_w/o_D, since only the Lossresidual was used for the loss function, there was
a problem in that some weak structural information could not be effectively preserved.
Compared to the Pro_w/o_D, the Pro_wtih_D that uses Lossstruct in addition to Lossresidual,
and the D provided slightly lower PSNR and SSIM values, but provided higher VIF and
FSIM values that more accurately estimated the fidelity of structural information between
the ground-truth and resultant images. To evaluate the utilization effectiveness of the α, we
compared the denoising performances of the Pro_wtih_D that adjusts α value by using the
results of the D as in Equation (8) and Pro_wtih_D without α that fixes the value of α to 1.
As shown in Table 5, the Pro_wtih_D without α provided lower VIF and FSIM values that
indicate the quality of structural information preservation than those of the Pro_wtih_D.
This is because the D-based α-value adjustment allows training to be performed in the
direction optimized for the characteristics of the input training data and the G.
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Table 3. PSNRs, SSIMs, VIFs, and FSIMs of the benchmark and proposed methods.

Noise Level σn = 15 σn = 25 σn = 35

Image Set
(Number of Image Set)

Kodak
(24)

CIPR_M
(14)

CIPR_C
(18)

IEC
(20)

Football
(90)

CBSD
(68) AVG Kodak

(24)
CIPR_M
(14)

CIPR_C
(18)

IEC
(20)

Football
(90)

CBSD
(68) AVG Kodak

(24)
CIPR_M

(14)
CIPR_C

(18)
IEC
(20)

Football
(90)

CBSD
(68) AVG

Noisy
images

PSNR [dB] 24.610 24.607 24.607 24.609 24.611 24.609 24.609 20.172 20.177 20.170 20.172 20.174 20.172 20.173 17.249 17.253 17.251 17.250 17.249 17.249 17.250
SSIM 0.682 0.654 0.627 0.606 0.663 0.726 0.660 0.485 0.455 0.418 0.391 0.449 0.544 0.457 0.360 0.334 0.298 0.270 0.319 0.421 0.334
VIF 0.542 0.553 0.533 0.535 0.528 0.559 0.542 0.382 0.395 0.377 0.379 0.367 0.397 0.383 0.292 0.307 0.291 0.296 0.279 0.306 0.295

FSIM 0.959 0.894 0.953 0.949 0.875 0.886 0.919 0.907 0.808 0.895 0.887 0.769 0.792 0.843 0.854 0.735 0.834 0.826 0.681 0.716 0.774

Model-based
optimization methods

NLMC

PSNR [dB] 31.568 32.507 33.724 34.808 32.693 30.472 32.629 28.933 30.087 31.141 31.979 30.325 27.961 30.071 27.231 28.303 29.220 29.955 28.683 26.394 28.297
SSIM 0.887 0.916 0.932 0.935 0.880 0.886 0.906 0.812 0.870 0.889 0.891 0.819 0.805 0.847 0.760 0.828 0.847 0.850 0.779 0.750 0.802
VIF 0.472 0.529 0.514 0.518 0.435 0.490 0.493 0.327 0.404 0.388 0.386 0.310 0.349 0.361 0.255 0.332 0.318 0.317 0.253 0.276 0.292

FSIM 0.972 0.963 0.981 0.977 0.921 0.922 0.956 0.945 0.939 0.963 0.957 0.883 0.867 0.926 0.925 0.921 0.946 0.938 0.869 0.839 0.906

BM3DC

PSNR [dB] 34.415 33.997 35.793 37.745 35.444 33.513 35.151 31.824 31.945 33.697 35.298 32.976 30.705 32.741 30.044 30.436 32.074 33.489 31.282 28.880 31.034
SSIM 0.934 0.940 0.958 0.964 0.943 0.937 0.946 0.893 0.914 0.938 0.942 0.904 0.890 0.913 0.853 0.889 0.917 0.920 0.866 0.845 0.882
VIF 0.589 0.598 0.597 0.603 0.570 0.613 0.595 0.450 0.480 0.481 0.482 0.430 0.467 0.465 0.357 0.398 0.401 0.400 0.339 0.372 0.378

FSIM 0.985 0.975 0.988 0.987 0.965 0.961 0.977 0.971 0.960 0.978 0.975 0.938 0.932 0.959 0.954 0.946 0.968 0.963 0.912 0.903 0.941

WNNM

PSNR [dB] 32.484 33.657 34.932 36.286 33.847 31.272 33.746 30.117 31.446 32.647 33.858 31.454 28.772 31.383 28.653 29.997 31.026 32.172 29.953 27.276 29.846
SSIM 0.909 0.933 0.949 0.952 0.914 0.907 0.927 0.858 0.905 0.924 0.925 0.862 0.849 0.887 0.817 0.880 0.900 0.900 0.824 0.800 0.854
VIF 0.527 0.577 0.543 0.537 0.487 0.552 0.537 0.391 0.457 0.429 0.418 0.350 0.408 0.409 0.310 0.383 0.358 0.346 0.273 0.323 0.332

FSIM 0.978 0.971 0.983 0.980 0.943 0.940 0.966 0.957 0.954 0.970 0.964 0.904 0.899 0.941 0.934 0.938 0.957 0.948 0.874 0.864 0.919

MC-
WNNM

PSNR [dB] 33.943 34.022 35.716 37.120 34.872 32.918 34.765 31.367 31.890 33.497 34.620 32.231 30.245 32.308 29.726 30.484 31.917 32.879 30.593 28.564 30.694
SSIM 0.931 0.939 0.956 0.959 0.933 0.933 0.942 0.882 0.910 0.932 0.932 0.880 0.881 0.903 0.839 0.886 0.909 0.907 0.837 0.833 0.869
VIF 0.579 0.597 0.586 0.577 0.538 0.604 0.580 0.434 0.477 0.467 0.452 0.386 0.455 0.445 0.345 0.402 0.392 0.374 0.300 0.363 0.363

FSIM 0.983 0.974 0.987 0.984 0.958 0.959 0.974 0.965 0.957 0.975 0.970 0.921 0.924 0.952 0.946 0.942 0.964 0.955 0.890 0.892 0.931

Discriminativelearning
methods

(CNN-based methods

MLP

PSNR [dB] - - - - - - - 31.329 31.397 32.838 33.918 31.618 29.135 31.706 29.942 29.989 31.400 32.422 30.220 27.647 30.270
SSIM - - - - - - - 0.881 0.908 0.925 0.929 0.875 0.874 0.899 0.845 0.886 0.904 0.905 0.841 0.830 0.869
VIF - - - - - - - 0.378 0.446 0.392 0.368 0.366 0.415 0.394 0.304 0.373 0.323 0.299 0.288 0.331 0.320

FSIM - - - - - - - 0.909 0.937 0.935 0.930 0.904 0.913 0.921 0.881 0.920 0.919 0.912 0.877 0.882 0.899

Dn-
CNNC

PSNR [dB] 34.592 32.738 35.117 37.524 35.072 33.885 34.822 32.142 31.306 33.337 35.304 32.868 31.224 32.697 30.572 30.220 32.032 33.744 31.437 29.577 31.264
SSIM 0.939 0.936 0.956 0.963 0.939 0.942 0.946 0.901 0.913 0.936 0.942 0.898 0.902 0.915 0.867 0.894 0.918 0.922 0.865 0.865 0.888
VIF 0.598 0.587 0.582 0.597 0.560 0.627 0.592 0.461 0.478 0.470 0.478 0.423 0.485 0.466 0.375 0.406 0.399 0.402 0.342 0.397 0.387

FSIM 0.985 0.972 0.987 0.985 0.960 0.964 0.976 0.971 0.957 0.977 0.973 0.932 0.938 0.958 0.957 0.944 0.967 0.962 0.908 0.915 0.942

IR-
CNNC

PSNR [dB] 34.686 34.146 35.785 37.659 35.309 33.855 35.240 32.154 32.096 33.716 35.346 32.964 31.140 32.903 30.552 30.690 32.275 33.750 31.476 29.475 31.370
SSIM 0.939 0.940 0.958 0.964 0.942 0.942 0.947 0.902 0.917 0.938 0.943 0.902 0.900 0.917 0.868 0.896 0.920 0.923 0.867 0.863 0.889
VIF 0.598 0.605 0.591 0.599 0.567 0.625 0.598 0.462 0.490 0.477 0.480 0.429 0.480 0.470 0.374 0.413 0.401 0.399 0.341 0.392 0.387

FSIM 0.985 0.975 0.988 0.985 0.963 0.964 0.977 0.972 0.961 0.978 0.974 0.936 0.937 0.960 0.958 0.947 0.969 0.962 0.910 0.913 0.943

Mem-
NetC

PSNR [dB] 34.841 34.414 35.540 37.731 35.435 33.794 35.293 32.474 32.594 34.100 35.604 33.308 31.354 33.239 30.846 31.152 32.643 34.042 31.718 29.689 31.682
SSIM 0.940 0.943 0.959 0.964 0.943 0.943 0.949 0.906 0.921 0.942 0.945 0.910 0.905 0.922 0.872 0.900 0.923 0.925 0.872 0.868 0.893

VIF 0.606 0.615 0.598 0.605 0.577 0.630 0.605 0.478 0.506 0.492 0.495 0.448 0.495 0.486 0.389 0.428 0.416 0.413 0.353 0.403 0.400

FSIM 0.986 0.977 0.988 0.986 0.965 0.965 0.978 0.974 0.964 0.980 0.978 0.944 0.942 0.964 0.960 0.951 0.971 0.965 0.916 0.918 0.947

Pro_w/o_D
(DSDC3)

PSNR [dB] 34.870 34.405 35.995 37.886 35.514 34.004 35.446 32.319 32.337 33.913 35.526 33.138 31.290 33.087 30.785 31.070 32.549 34.052 31.679 29.666 31.634
SSIM 0.941 0.943 0.959 0.965 0.944 0.944 0.949 0.903 0.918 0.939 0.943 0.904 0.903 0.918 0.872 0.900 0.923 0.926 0.870 0.867 0.893
VIF 0.607 0.615 0.601 0.607 0.581 0.632 0.607 0.467 0.491 0.480 0.481 0.432 0.488 0.473 0.382 0.421 0.409 0.405 0.344 0.400 0.394

FSIM 0.986 0.977 0.988 0.986 0.966 0.966 0.978 0.972 0.961 0.979 0.975 0.938 0.940 0.961 0.959 0.950 0.970 0.963 0.911 0.916 0.945

Pro_wtih_D
(DSDC3)

PSNR [dB] 34.796 34.251 35.868 37.743 35.386 33.958 35.334 32.275 32.296 33.832 35.409 33.086 31.250 33.025 30.729 30.957 32.470 33.940 31.654 29.631 31.564
SSIM 0.940 0.942 0.958 0.964 0.942 0.943 0.948 0.902 0.917 0.938 0.941 0.902 0.902 0.917 0.870 0.898 0.921 0.924 0.870 0.867 0.892
VIF 0.608 0.615 0.603 0.607 0.580 0.632 0.607 0.469 0.495 0.485 0.486 0.437 0.489 0.477 0.383 0.421 0.410 0.409 0.350 0.400 0.396

FSIM 0.986 0.977 0.988 0.986 0.965 0.966 0.978 0.973 0.963 0.979 0.975 0.940 0.941 0.962 0.959 0.951 0.969 0.964 0.916 0.919 0.946

DSDC3: consists of three DSDCs as shown in Figure 1a.
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Table 4. PSNR and SSIM values of the MemNetC and the proposed method using the increased
number of DSDCs (DSDC5 network).

Image Set Kodak CIPR_M CIPR_C AVG

σn = 25
MemNetC

PSNR [dB] 32.474 32.594 34.100 33.06
SSIM 0.906 0.921 0.942 0.92

Pro_w/o_D_
DSDC5

PSNR [dB] 32.424 32.502 34.052 32.99
SSIM 0.905 0.920 0.942 0.92

σn = 35
MemNetC

PSNR [dB] 30.846 31.152 32.643 31.55
SSIM 0.872 0.900 0.923 0.90

Pro_w/o_D_
DSDC5

PSNR [dB] 30.860 31.168 32.654 31.56
SSIM 0.874 0.901 0.925 0.90

DSDC5: consists of five DSDCs.

Table 5. PSNRs, SSIMs, VIFs, and FSIMs of the Pro_wtih_D and Pro_wtih_D without α in Equation (8).

Image Set Kodak CIPR_M CIPR_C AVG

σn = 15

Pro_wtih_D

PSNR [dB] 34.796 34.251 35.868 34.972
SSIM 0.940 0.942 0.958 0.947
VIF 0.608 0.615 0.603 0.609

FSIM 0.986 0.977 0.988 0.984

Pro_wtih_D
without α

PSNR [dB] 34.828 34.398 35.956 35.061
SSIM 0.940 0.942 0.959 0.947
VIF 0.603 0.611 0.595 0.603

FSIM 0.986 0.976 0.988 0.983

σn = 25

Pro_wtih_D

PSNR [dB] 32.275 32.296 33.832 32.801
SSIM 0.902 0.917 0.938 0.919
VIF 0.469 0.495 0.485 0.483

FSIM 0.973 0.963 0.979 0.972

Pro_wtih_D
without α

PSNR [dB] 32.286 32.351 33.871 32.836
SSIM 0.903 0.918 0.939 0.920
VIF 0.466 0.493 0.480 0.480

FSIM 0.972 0.962 0.979 0.971

σn = 35

Pro_wtih_D

PSNR [dB] 30.726 30.957 32.473 31.385
SSIM 0.871 0.898 0.921 0.897
VIF 0.383 0.421 0.411 0.405

FSIM 0.959 0.951 0.969 0.960

Pro_wtih_D
without α

PSNR [dB] 30.747 30.968 32.468 31.394
SSIM 0.871 0.899 0.922 0.897
VIF 0.381 0.420 0.408 0.403

FSIM 0.958 0.950 0.969 0.959

Figures 5 and 6 showed the resultant images by the benchmark methods, the Pro_w/o_D,
and the Pro_wtih_D for noise level, σn = 35. Figure 5 showed resultant images by the
benchmark methods, the Pro_w/o_D, and the Pro_wtih_D. As in Figure 5, the deep
learning-based methods provided the better qualities of noise elimination. Among the deep
learning-based methods, the Pro_wtih_D most effectively preserved the small details that
are spread throughout the statue face. In addition, the Pro_wtih_D showed an outstanding
result in the preservation of rough textures around metal ball. In Figure 6, the Pro_wtih_D
showed the best quality of detail preservation in animal’s tail and the ear compared with
the benchmark methods. This is because the training of the Pro_wtih_D was performed in
order to best reproduce the structural information of the restored image by the G as close
as possible to the noise-free image by adjusting the strength of Lossstruct depending on the
result of the D.
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Figure 5. Denoised results of the benchmark and proposed methods for AWGN (noise level: σn = 35). (a) Original image
(cropped from 4th (1st row), 15th (2nd row) and 22th (3rd row) images in Kodak image set) (b) Noisy image, (c) Image
by NLMC, (d) Image by BM3DC, (e) Image by WNNM, (f) Image by DnCNNC, (g) Image by IRCNNC, (h) Image by
MemNetC, (i) Image by the proposed method without D (Pro_w/o_D (DSDC3)), and (j) Image by the proposed method
with D (Pro_wtih_D (DSDC3)).

Figure 6. Denoised results of the benchmark and proposed methods for AWGN (noise level: σn = 35). (a) Original image
with two enlarged patches (cropped from 20th image in CBSD68 image set) (b) Noisy image, (c) Image by NLMC, (d) Image
by BM3DC, (e) Image by WNNM, (f) Image by DnCNNC, (g) Image by IRCNNC, (h) Image by MemNetC, (i) Image by the
proposed method without D (Pro_w/o_D (DSDC3)), and (j) Image by the proposed method with D (Pro_wtih_D (DSDC3)).
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3.2. Comparisons of Computational Complexity

As shown in Section 3.1, of the benchmark methods, DnCNNC, IRCNNC, and MemNetC
which are CNN-based denoisers, showed improved quality of denoising results than
the other benchmark methods. In addition, the proposed method (Pro_w/o_D and
Pro_wtih_D) is also a CNN denoiser. Thus, among the benchmark methods, we com-
pared the computational complexities of the proposed method with DnCNNC, IRCNNC,
and MemNetC. The Pro_w/o_D and the Pro_wtih_D have the same number of weights for
their networks, since the use of the D is only applied during the training. This indicates that
the computational complexity of the proposed G is equal to the computational complexity
of the proposed method.

Since addition and subtraction operations require a very small amount of hardware
resources compared to multiplication, the number of multiplications for convolution
operations dominantly determines the computational complexity of the entire network.
Hence, we compared the number of multiplications for each method for the comparison
of the computational complexities of the benchmark and proposed methods, as shown
in Table 6. As shown in this table, the proposed method (DSDC3) greatly reduced the
number of multiplications to 20.96% and 62.12% compared to the DnCNNC and IRCNNC,
respectively, while providing higher PSNR and SSIM values for the various test image
sets and noise levels. Compared with the MemNetC, the number of multiplications of the
proposed methods using DSDC3 and DSDC5 are 2.34% and 3.96% of the MemNetC. In
addition to the comparison of the number of multiplications, we compared the processing
times (CTs) of the benchmark and the proposed methods. The CTs of each method were
measured by using tensorflow on a PC with an Intel I7 7700 processor at 3.60 GHz, 16 GB
DDR3s, and an Nvidia Titan X (Pascal) GPU. As shown in Table 7, although the proposed
method (DSDC3) has fewer number of multiplications than the DnCNNC and IRCNNC,
the CT of the proposed method was slightly larger than the DnCNNC and IRCNNC. This is
due to the fact that the proposed method has more convolution stages (because of DSC) in
situations where each convolution layer was completely parallelized. However, the number
of multiplications has the biggest effect on the cost for the HW implementation. Hence,
the reduced number of multiplications of the proposed method could be an advantage in
hardware design or CPU-based processing systems. In addition, the proposed method
provided a noticeable improvement in denoising performance over the DnCNNC and
IRCNNC. Compared with the MemNetC, the proposed method showed a much lower
CT while providing the better or comparable denoising performance. This reduction of
computational complexity of CNN can enhance the feasibility of CNN implementation in
mobile applications and can increase energy efficiency.

Table 6. Comparison of the number of multiplications.

Parameter DnCNNC IRCNNC MemNetC

The number of weights

(3 × 3 × 3 × 64) +
(3 × 3 × 64 × 64 × 15) +

(3 × 3 × 64 × 3) =
556416

(3 × 3 × 3 × 64) +
(3 × 3 × 64 × 64 × 5) +

(3 × 3 × 64 × 3) =
187776

3 × 3 × 3 × 64 + 3 × 3 × 64 × 64
× (2 × 6 × 6 + 6) + 3 × 3 × 64 ×
64 × (7 + 8 + 9 + 10 + 11 + 12) =

4978368

Parameter Pro_w/o_D (DSDC3) Pro_w/o_D (DSDC5)

The number of weights
1 × 1 × 24 × 96 + 12 × (3 × 3 × 96) +

11 × (1 × 1 × 96 × 96) + 3 × 3 × 96 × 3 =
116640

1 × 1 × 24 × 96 + 20 × (3 × 3 × 96)
+ 19 × (1 × 1 × 96 × 96) + 3 × 3 × 96 × 3 = 197280

Table 7. Comparison of the processing time per pixel (CT).

Method DnCNNC IRCNNC MemNetC Pro_w/o_D (DSDC3) Pro_w/o_D (DSDC5)

CT (MS) 0.16 0.08 1.29 0.21 0.32
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4. Conclusions

In this paper, we proposed a novel GAN denoiser that uses heterogeneous losses,
consisting of MSE-based loss and structural loss, for its training in order to improve
the quality of detail preservation while maintaining the quality of noise suppression.
In addition, a DSC-based module that utilizes the dilated convolution and symmetric
skip connection was used for the proposed GAN denoiser in order to greatly reduce
the computational complexity of the proposed network while maintaining or slightly
increasing the denoising performance. In the proposed method, training was carried out
so as to improve the quality of detail preservation using the GAN structure. By adjusting
the strength of the proposed structural loss depending on the gradient fidelity between the
original and restored images, which is calculated by the discriminator, we could reproduce
the structural information most similar to that of the original image while maintaining the
quality of noise suppression in smooth regions.

The advantages of the proposed method were verified on various test images and
by noise levels. The proposed method showed the best denoising quality by providing
various image quality indexes that were superior to those of the benchmark methods while
greatly reducing the computational complexity.
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