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Abstract: It is difficult to find correct correspondences for infrared and visible image registration
because of different imaging principles. Traditional registration methods based on the point feature
require designing the complicated feature descriptor and eliminate mismatched points, which results
in unsatisfactory precision and much calculation time. To tackle these problems, this paper presents
an artful method based on constrained point features to align infrared and visible images. The
proposed method principally contains three steps. First, constrained point features are extracted by
employing an object detection algorithm, which avoids constructing the complex feature descriptor
and introduces the senior semantic information to improve the registration accuracy. Then, the
left value rule (LV-rule) is designed to match constrained points strictly without the deletion of
mismatched and redundant points. Finally, the affine transformation matrix is calculated according
to matched point pairs. Moreover, this paper presents an evaluation method to automatically estimate
registration accuracy. The proposed method is tested on a public dataset. Among all tested infrared-
visible image pairs, registration results demonstrate that the proposed framework outperforms five
state-of-the-art registration algorithms in terms of accuracy, speed, and robustness.

Keywords: infrared-visible registration; object detection; constrained points; LV-rule; evaluation method

1. Introduction

Multi-modal image fusion can offer a composited and detailed scene representation to
improve the accuracy of decision-making in subsequent tasks [1]. This technique is widely
applied in the fields of medical diagnosis [2,3], remote sensing image processing [4,5],
and surveillance [6,7]. Image registration is an essential step to ensure fusion operation,
which aligns two or more images from different times, sensors, and views by finding a
credible spatial transformation [8]. However, due to the complementary information and
different imaging principles of multi-sensor images, the mutual information of infrared
and visible images is less [9]. It is a challenge to find correspondences for infrared-visible
image registration [10]. Therefore, this paper aims to design a framework for realizing
high-precision infrared-visible registration.

Numerous methods have been proposed to improve the accuracy, speed, and robust
performance of image registration. These methods can be generally divided into intensity-
based, deep learning-based, and feature-based methods [11].

The intensity-based methods register images by constructing a similarity measure-
ment function. Normalized cross-correlation (NCC) [12], phase correlation (PC) [13,14],
and mutual information (MI) [15,16] are three classical functions used in intensity-based
methods. However, methods based on these conventional functions cannot deal with obvi-
ous structure inconsistency in multispectral or multi-modal images. To handle the problem,
Chen et al. [17] proposed a normalized total gradient (NTG) function that obtains good re-
sults in the multi-spectral image registration and spectral color measurement [18]. Despite
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its advantage, computing costs are increased. In general, these intensity-based methods
are sensitive to image distortion, appearance change caused by noise, varying illumination,
and different imaging sensors. The pixel information varies greatly between infrared
and visible images. Thus, intensity-based methods are not suitable for infrared-visible
image registration.

Many deep learning network models have been proposed for image registration in
recent years. Fan et al. [19] designed a BIRNet to align two brain images, which employs a
novel hierarchical dual-supervised fully convolutional neural network (FCN) [20] to train
data and a basic U-Net [21] model to improve accuracy and efficiency. Wang et al. [22]
developed a deep learning method to register remote sensing images by directly learning
the mapping between patch-pairs and labels. In general, these deep learning-based meth-
ods have served for medical and remote sensing image registration [23,24]. However, the
optical characteristics, geometric characteristics, and spatial location expressed by infrared
and visible images are very different [25]. Methods based on deep learning networks
are limited when applied to wide baseline image registration and it is difficult to get the
spatial relationships between two or more points with convolutional neural networks
(CNNs). Therefore, deep learning methods face many challenges of achieving excellent
infrared-visible image registration [11].

Feature-based methods are very popular owing to their strong robustness, flexibility,
and the ability of wide applications. These methods determine spatial transformation
parameters according to the correspondence features. Point features [26], edge features [27],
and morphological region features [28] are three dominant features. Since points are
easier to extract and describe with a simplified form than the other two features, the point
feature becomes the commonly used feature [11]. The Harris corner is a representative
point feature due to its illumination insensitivity and rotation invariance. The corner
feature is applied in remote sensing image registration [29,30]. Pei et al. [31] improved
the Harris corner to solve the corner clustering problem and accelerate the registration
speed. Scale invariant feature transform (SIFT) is another representative point feature
for its robustness to the change of scale, illumination, and rotation [32,33]. Lv et al. [34]
developed a strategy by combining the gradient information and the SIFT feature to
improve the registration accuracy. With the development of computer technology and
the increasing requirement of image registration tasks, some modified SIFT descriptors
have been presented continuously. The speed up robust feature (SURF) based on SIFT
is proposed to reduce the computation and align the color images [35,36]. Ke et al. [37]
designed a PCA-SIFT descriptor that unites a principal component analysis algorithm and
SIFT to decrease dimensions and memory footprints of feature descriptors and increase
the matching speed. To acquire accurately matched points for remote sensing images,
Ma et al. [38] presented an enhanced feature-matching method named PSO-SIFT. However,
the extraction speed of the abovementioned features cannot satisfy real-time video stream
processing. Rosten and Drummond [39] provided a feature descriptor called “features
from accelerated segment test” (FAST) to obviously speed up the speed of feature detection.
Rublee et al. [40] presented the ORB algorithm, which introduces the orientation to the
FAST method to enhance the robustness of the environmental variation. As mentioned
above, various kinds of point features are proposed for image registration. Traditional
point feature registration methods guarantee accuracy by constructing complex feature
descriptors or accelerating the speed by simplifying the descriptors. Thus, it is worth
researching how to balance accuracy and speed of image registration.

How to qualitatively and quantitatively evaluate the registration algorithms is also
significant. Torabi et al. [41] presented a simple and accurate evaluation strategy by
calculating the overlap ratio of binary polygons. The method is used to estimate registration
accuracy of infrared-visible images [42]. The drawback of this method is that it needs
to manually select matched points to construct polygons, which takes plenty of time
and energy.
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The information of infrared and visible images is often quite diverse because of their
imaging principles. Therefore, many methods have difficulty achieving satisfactory regis-
tration results of infrared-visible images. This paper proposes a framework based on the
constrained point feature for high precision and speed registration of infrared-visible im-
ages. Constrained points are first captured by utilizing an object detection algorithm. Then
the LV-rule is presented to match constrained points. Finally, the transformation matrix
is determined depending on the matched points, which is used to align the infrared and
visible images. Furthermore, we put forward an intelligent method based on reference [41]
to automatically evaluate the registration accuracy.

Our contributions in this paper are summarized as follows:

1. An infrared-visible image registration framework based on the constrained point
feature is proposed. Constrained points are obtained by adopting an object detection
algorithm to avoid designing the complex feature descriptor and introduce the senior
semantic information to improve the registration accuracy.

2. The LV-rule is designed to match constrained points strictly without eliminating the
mismatched and redundant points, which increases the registration speed.

3. An automatic method is presented to evaluate the accuracy of infrared-visible image registration.

The rest of this article is structured as follows: Section 2 analyzes the practicability
of the proposed method, gives approaches to extract and match constrained points, and
describes the evaluation criteria. Section 3 provides the experimental results and analysis,
including the feature points extraction and matching experiment and the image registration
experiment. Section 4 discusses the research work and the results of the experiments.
Section 5 presents the conclusions of our method.

2. Methodology

This paper proposes a method based on the constrained point feature to carry out
accurate and fast infrared-visible image registration. The definition of the constrained point
feature is explained in detail as follows. The detection result of each object is a bounding
box with four corner points. The coordinates of the four points are constrained by the
location information of the object. Therefore, the corner of the bounding box is defined as
the constrained point feature, which also can be called the constrained point.

2.1. The Workflow of the Proposed Method

The proposed method aligns the infrared and visible images base on constrained
points, which are captured by utilizing the object detection approach. As shown in Figure 1,
the proposed framework mainly consists of three parts.

1. Extracting the constrained point feature: Instead of designing the complex feature
descriptor, the constrained point feature is extracted from the object bounding box
obtained by the object detection method. Bounding boxes contain the location infor-
mation which is considered the senior semantic information to increase the registra-
tion accuracy. We employ a high-precision and fast object detection method named
YOLOv3 [43,44] to acquire constrained points. To obtain accurate detection results,
the YOLOv3 model is first retrained. Detailed information about retraining YOLOv3
model is introduced in Section 2.3. Then, the testing images are sent to the retrained
YOLOv3 model to get object bounding boxes.

2. Matching constrained points: The LV-rule is constructed to match constrained points,
which avoids the elimination operation of mismatched and redundant point pairs to
decrease the matching time.

3. Calculating the transformation matrix and registering image: An affine transformation
model is used to get the spatial transformation of infrared and visible images. The
affine transformation matrix P is calculated depending on the matched point pairs.
The matrix is used to obtain the aligned image.
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Figure 1. The flowchart of the proposed method. (IR means the infrared image and VIS means the visible image in
this article).

2.2. The Practicability Analysis of the Proposed Method

For the image registration task, the spatial mapping relationship between two images
can be expressed as follows:

g(w, z) = Trans( f (x, y)) (1)

where f (x, y) and g(w, z) represent the float (infrared) and reference (visible) images,
respectively. (x, y) and (w, z) refer to the coordinates corresponding to the pixels of the
two modal images, respectively. Trans() is the transformation model. Therefore, the
image registration task can be described as a problem for solving the transformation
model Trans().

Affine transformation [9] is commonly used because it can maintain the fixed linear
state and parallel relation in the image before and after transformation. The affine transfor-
mation model includes four types of image transformations: translation, rotation, scaling,
and shearing. The affine transformation model is shown in [18]

ΦR = P ∗ΦF (2)

The explicit expression of Equation (2) is(
w1 w2 w3 w4 · · · wi · · · wn

z1
~
z2

~
z3 z4 · · · zi · · · zn

)
=

(
p11 p12 p13
p21 p22 p23

)
∗

 x1 x2 x3 x4 · · · xi · · · xn
y1 y2 y3 y4 · · · yi · · · yn
1 1 1 1 · · · 1 · · · 1

i = 1, 2, 3, · · · n (3)

where P is the affine transformation matrix, ΦR is the feature points set of the reference
image, ΦF is the feature points set of the float image, and n is the number of points.

There are 6 parameters of the affine transformation matrix P. Thus, if the affine
transformation matrix P has a unique solution, the rank of the matrix ΦF should be 3.
That is,

rank(ΦF) = 3 (4)
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In other words, at least three feature points are not on the same line. Obviously, the
proposed registration method satisfies the above condition because each object bounding
box contains four corners, three of which are not available on an identical straight line.
This verifies the theoretical feasibility of the proposed framework in this paper.

For a pair of correctly matched points (xi, yi) and (wi, zi), Equation (3) can be described as{
wi = p11xi + p12yi + p13
zi = p21xi + p22yi + p23

(5)

Therefore, it is not difficult to solve the parameters of the matrix P. The key step to
carrying out high precision registration of infrared-visible images is obtaining valid and
accurately matched feature point pairs.

2.3. Extracting the Constrained Points

This paper presents an artful method to extract the constrained point feature by
utilizing the object algorithm. Object detection methods can be used to obtain bounding
boxes and capture constrained points without requesting intricate feature descriptors. The
position information contained in the object bounding box is considered high-level semantic
information, which guarantees the precision of image registration. Therefore, in the
proposed framework, an accurate detection method that can obtain exact object bounding
boxes is required. YOLOv3 is a very strong detector that excels at producing decent boxes
for objects. Meanwhile, YOLOv3 has high detection accuracy and speed [44,45]. Thus, this
study adopted the YOLOv3 model to obtain the object bounding boxes.

The pre-trained model of YOLOv3 was first used to detect objects for infrared and
visible images. The pre-trained YOLOv3 model was trained on the COCO dataset. Figure 2
shows the comparison of the detection results between the pre-trained YOLOv3 model
and the retrained YOLOv3 model, where the carmine box is the object detection result, the
red circle is the missing object, and the yellow circle is the false object. It can be seen from
Figure 2 that the pre-trained YOLOv3 model resulted in missing and false objects. In order
to get precise detection results and accurately capture the constraint points, the YOLOv3
model was retrained.

Figure 2. Object detection results: (a) detection results of the pre-trained model and (b) detection
results of the retrained model.
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The YOLOv3 model was retrained depending on a GPU (NVIDIA GeForce GTX 1070).
We trained the YOLOv3 model on the LITIV dataset, a public dataset for infrared-visible
image registration and object tracking [41]. The size of the images was 320 × 240. A total
of 1200 infrared images were selected as training samples to get the IR weight model. A
total of 1200 visible images were selected as training samples to get the VIS weight model.
Training samples were marked using the label tool provided by [44]. At the training stage,
the batch size was set to 16.

YOLOv3, SSD, and Faster R-CNN are three dominant deep learning object detection
algorithms [46,47]. We compared the detection performance of YOLOv3 to SSD and
Faster R-CNN. Mean accuracy (MA) was used to evaluate the detection accuracy, which is
expressed as follows:

MA =

NI
∑

i=1
A(i)

NI
× 100% i = 1, 2, 3, · · · , NI (6)

A =
the number o f objects detected correctly in an image

the number o f objects in an image
(7)

where NI is the number of testing images.
A total of 300 infrared and 300 visible images of the LITIV dataset were used to test

detection accuracy and speed. Table 1 provides the comparison of the MA and time values
for SSD, Faster R-CNN, and YOLOv3. The time value expresses the average running time to
detect an image. As can be seen from Table 1, for infrared images, the MA value of YOLOv3
was equal to Faster R-CNN and improved 0.72% more than SSD; for visible images, the MA
value of YOLOv3 increased 1.34% and 0.5% more than SSD and Faster R-CNN, respectively.
The time value of YOLOv3 was much less than SSD and Faster R-CNN. In summary, these
three methods all had fine performance to detect objects, but YOLOv3 had higher detection
accuracy and faster detection speed than SSD and Faster R-CNN. As a result, this paper
adopted the YOLOv3 network to obtain object bounding boxes.

Table 1. The comparison of the MA and time values of SSD, Faster R-CNN, and YOLOv3. The bold
indicates the best value, ↑ denotes larger is better, and ↓ represents smaller is better.

Method MA (IR)↑ MA(VIS)↑ Time (IR)↓ Time (VIS)↓
SSD 99.11% 98.33% 0.1170 s 0.1236 s

Faster R-CNN 99.83% 99.17% 0.3369 s 0.3523 s
YOLOv3 99.83% 99.67% 0.0362 s 0.0363 s

While extracting constrained points, the retrained IR and VIS YOLOv3 models were
separately sent to the YOLOv3 network to detect objects in infrared and visible images. The
four corners of each object bounding box were defined as the constrained points. Figure 3
exhibits the extraction results of constraint points from a pair of infrared and visible images.
The YOLOv3 network provided accurate position information of objects, which ensured
the registration accuracy.

2.4. Matching the Constrained Points

This paper provides an LV-rule method for matching constrained points, which avoids
eliminating the mismatched and superfluous points and improves matching accuracy and
speed. Next, we specifically introduce the LV-rule matching method.

As shown in Figure 4, xi1 = xi2,wi1 = wi2,(xi1, yi1), and (wi1, zi1) are the left-top
corner points of the object bounding boxes in the infrared and visible images, respectively.
xi1 and wi1 are separately defined as the left values of infrared and visible images.
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Figure 3. The constrained points extraction results of infrared (Left) and visible (Right) images. (The
carmine-colored boxes are object bounding boxes, and the green circles are constrained points).

Figure 4. The coordinate description of the object bounding boxes in infrared (Left) and visible
(Right) images.

The core idea of matching constrained points is that the object bounding box with
the minimum left value of the visible image corresponds to the object bounding box with
the minimum left value of the infrared image. Therefore, all left values of an image are
sorted to get the order of bounding boxes. The object bounding boxes are matched one by
one from the order. Since the corner position relationship of each object bounding box is
fixed, the constrained points are matched according to the matched object bounding box
pairs. The above registration idea is defined as the LV-rule. The mathematical model of the
LV-rule matching method is described as follows.

The set of the object bounding boxes from an image is represented as

Φ2×N = (φ1, φ2, φ3, · · · φi, · · · φn) i = 1, 2, 3, · · · , n (8)

φi = (xi1 yi1; xi2 yi2; xi3 yi3; xi4 yi4) (9)

where φi refers to the coordinate information of an object bounding box, n is the number of
the object bounding boxes of an image, and N = 4n is the number of constrained points of
an image. Thus, Φ2×N is a 2× N matrix.

The set of all left values from one image is written as

Ψ = (x11, x21, x31, · · · , xi1, · · · , xn1) i = 1, 2, 3, · · · , n (10)

The matrix of sorted left values Ψ̃ is given by

Ψ̃ = S(Ψ) (11)

in which S is a function to sort the left values.
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The sets of sorted left values and matched object bounding boxes from infrared and
visible images are denoted as{

Ψ̃IR =(x̃11, x̃21, x̃31, · · · , x̃i1, · · · , x̃n1)

Ψ̃VIS = (w̃11, w̃21, w̃31, · · · , w̃i1, . . . , w̃n1)
i = 1, 2, 3, · · · , n (12)

{
Φ̃2×N

IR =
(
φ̃1, φ̃2, φ̃3, · · · φ̃i, · · · φ̃n

)
Φ̃2×N

VIS = (ϕ̃1, ϕ̃2 , ϕ̃3, · · · ϕ̃i, · · · ϕ̃n)
i = 1, 2, 3, · · · , n (13)

where x̃i1 matches with w̃i1, x̃11 ≤ x̃21 ≤ x̃31 · · · ≤ x̃i1 · · · ≤ x̃n1, φ̃i matches with ϕ̃i, φ̃i is a
bounding box corresponding with left value x̃i1 in the infrared image, and ϕ̃i is a bounding
box corresponding with the left value w̃i1 in the visible image.

According to Formulas (9) and (13), the matched constrained points of infrared and
visible images can be expressed as

Φ̃2×N
VIS =

( ~
x11

~
x12

~
x13

~
x14

~
x21

~
x22

~
x23

~
x24 · · ·

~
xi1

~
xi2

~
xi3

~
xi4 · · ·

~
xn1

~
xn2

~
xn3

~
xn4

~
y11

~
y12

~
y13

~
y14

~
y21

~
y22

~
y23

~
y24 · · ·

~
yi1

~
yi2

~
yi3

~
yi4 · · ·

~
yn1

~
yn2

~
yn3

~
yn4

)

Φ̃2×N
VIS =

( ~
w11

~
w12

~
w13

~
w14

~
w21

~
w22

~
w23

~
w24 · · ·

~
wi1

~
wi2

~
wi3

~
wi4 · · ·

~
wn1

~
wn2

~
wn3

~
wn4

~
z11

~
z12

~
z13

~
z14

~
z21

~
z22

~
z23

~
z24 · · ·

~
zi1

~
zi2

~
zi3

~
zi4 · · ·

~
zn1

~
zn2

~
zn3

~
zn4

) i = 1, 2, 3, · · · , n (14)

2.5. Evaluation Criteria

In this paper, a registration error (RE) is defined to qualitatively evaluate the ac-
curacy of image registration, and the root mean squared error (RMSE) is used as a ref-
erence to demonstrate the effectiveness of the new evaluation method. In addition, an
effective registration rate (ERR) is defined to qualitatively evaluate the robustness of the
proposed framework.

2.5.1. Registration Error

This paper establishes a new evaluation system based on the literature [41]. The
bounding boxes obtained by the object detection algorithm are used to get the threshold
polygon for evaluating the registration accuracy. Compared with the reference [41], the
advantage of our evaluation method is that the evaluation polygon is not required to be
marked manually, and the final registration error value can be obtained automatically. The
threshold polygons of one pair of infrared and visible images are shown in Figure 5.

Figure 5. Example of evaluation polygons obtained by proposed evaluation method: (a) object detection results of the
infrared image, (b) the threshold polygons image of the infrared image, (c) object detection results of the visible image, and
(d) the threshold polygon image of the visible image.
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An overlap ratio parameter OR is defined to represent the overlap degree of the
evaluation rectangle corresponding to the registered and reference images.

OR =

a
∑

i=1

b
∑

j=1
Λ
(
ri,j, vi,j

)
a
∑

i=1

b
∑

j=1
Υ
(
ri,j, vi,j

) (15)

Λ
(
ri,j, vi,j

)
=

{
1, (ri,j = 1, vi,j = 1)
0, others

(16)

Υ
(
ri,j, vi,j

)
=

{
0, (ri,j = 0, vi,j = 0)
1, others

(17)

where ri,j is the pixel value at the coordinate (i, j) in the threshold polygon image corre-
sponding to the registered infrared image, vi,j is the pixel value at the coordinate (i, j) in
the threshold polygon image corresponding to the visible image, and a× b is the size of
the test image.

The relationship between the registration error RE and the overlap ratio OR is
expressed as

RE = 1−OR (18)

2.5.2. Root Mean Squared Error

The root mean squared error (RMSE) [48] is used to evaluate the accuracy of the proposed
registration framework and verify the availability of the presented evaluation method.

RMSE =

√√√√ 1
N

N

∑
i=1

(x′i − xi)
2 + (y′i − yi)

2 (19)

where N is the number of verification points, (xi, yi) are the coordinates of the validation
points in the reference image, and

(
x′i , y′i

)
are the coordinates of the corresponding points in

the registered image. The constrained point is applied to the validation points in this paper.

2.5.3. Effective Registration Rate

The effective registration rate (ERR) is given to evaluate the robustness of image
registration methods. When the RE value of the registered image pair is larger than the
unregistered image pair, the registration work is effective. Otherwise, the registration work
is considered a failure.

ERR =

(
1
M

M

∑
i=1

σ(REi)

)
× 100% (20)

σ(REi) =

{
1, REi > REi
0, others

(21)

where M is the number of test images, REi denotes the RE value of the ith registered image
pair, and REi denotes the RE value of the corresponding unregistered image pair.

3. Experiments and Results

The proposed method was tested on the LITIV dataset. The LITIV dataset was divided
into single person, two people, and three people scenarios, and we selected 100 pairs
of images from each of the three scenes. In this section, the superiority of the proposed
method was proved from two aspects: (1) results of feature point extraction and matching
and (2) results of image registration.
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3.1. Experimental Results of Feature Point Extraction and Matching

As exhibited in Figures 6–8, we compared the proposed method with SIFT, PSO-SIFT,
and OS-SIFT methods in terms of feature point extraction and matching [38,49,50]. SIFT is
a classical method to remove mismatched points using the FSC algorithm, and PSO-SIFT
and OS-SIFT are two advanced methods improved based on SIFT.

In terms of the feature point extraction, the SIFT, PSO-SIFT, and OS-SIFT methods can
all extract lots of feature points. However, a large number of redundant points are produced
in visible images, which brings much misguided feature information for the matching
operation. It should be noted that the proposed method acquires an equal number of
constraint points of infrared and visible images, which offers certain protection for accurate
matching. In the aspects of feature point matching, it is difficult to get matched point pairs
with the SIFT method. The PSO-SIFT method can obtain several correct matched point pairs,
but sometimes these matched point pairs are too few to satisfy the requirement of affine
transformation matrix solving. The OS-SIFT method rarely gets enough correct matched
points pairs to finish infrared-visible image registration. In addition, these methods need to
delete mismatched and superfluous point pairs, which increases the matching time. Unlike
the SIFT, PSO-SIFT, and OS-SIFT methods, our method can exactly match all constrained
points without eliminating redundant point pairs. Meanwhile, the proposed method can
obtain enough matched point pairs to get a unique affine transformation matrix.

Figure 6. Experimental results of feature point extraction and matching in the single person scenario: (a) SIFT, (b) PSO-SIFT,
(c) OS-SIFT, and (d) our method.

Figure 7. Experimental results of feature point extraction and matching in the two people scenario: (a) SIFT, (b) PSO-SIFT,
(c) OS-SIFT, and (d) our method.

Figure 8. Experimental results of feature point extraction and matching in the three people scenario: (a) SIFT, (b) PSO-SIFT,
(c) OS-SIFT, and (d) our method.
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3.2. Experimental Results of Image Registration

In this section, we compare the registration results of the proposed method with
five methods. SIFT, PSO-SIFT, and OS-SIFT are feature-based approaches. PSO-SIFT and
OS-SIFT are modified based on SIFT. NTG and BlockNTG are intensity-based methods.
BlockNTG is improved based on NTG [17,18]. The registration results of these methods are
qualitatively and quantitatively analyzed as follows.

3.2.1. Qualitative Analysis of the Registration Experiment Results

As shown in Figures 9–11, the proposed framework was compared with five regis-
tration algorithms in three different scenarios. Float and reference images were infrared
and visible images, respectively. The images in the W/O. R columns represent images
without registration. The images in the (a), (b), and (c) rows qualitatively express the
registration accuracy. The image pairs in the (a) rows represent the degree of alignment
between the registered infrared image and the visible image. Gradient image pairs in the
(b) rows give the accuracy of edge alignment between the registered infrared image and the
visible image. Evaluation box pairs in the (c) rows reflect the degree of overlap between the
registered infrared and visible images. The carmine and green lines denote the gradient of
the infrared and visible images, respectively. The carmine, green, and white areas express
pixels of boxes of the registered infrared image, visible image, and the overlap pixels area,
respectively. As observed from Figures 9–11, our method achieved better image alignment,
edge alignment, and greater box overlap in these scenarios compared to other methods. The
SIFT method was ineffective in all scenarios. The PSO-SIFT method sometimes obtained
good registration. The OS-SIFT method was unable to register infrared-visible images
well. The NTG method only achieved satisfactory registration in the three people scenario.
The BlockNTG method did not get accurate registration in these scenarios. However, the
qualitative analysis could not evaluate the proposed method specifically, so we conduct a
quantitative evaluation next.

Figure 9. Registration results of different methods in the single person scenario: (a) the image pairs, (b) the gradient image
pairs, and (c) the evaluation box pairs.

Figure 10. Registration results of different methods in the two people scenario: (a) the image pairs, (b) the gradient image
pairs, and (c) the evaluation box pairs.
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Figure 11. Registration results of different methods in the three people scenario: (a) The image pairs, (b) the gradient image
pairs, and (c) the evaluation box pairs.

3.2.2. Quantitative Analysis of Experimental Results

As shown in Tables 2–4, in order to validate the robustness, accuracy, and speed,
the ERR, RE average value, RMSE average value, and average running time (Time) were
introduced to evaluate the registration results of different methods. The values of RE
and RMSE maintained the same trend in each scene, which illustrates that the proposed
evaluation method is valid. In these scenarios, the ERR of our method was much higher
than that of the other methods and reached 100%. It is obvious that the proposed method
was robust to the variation of the environment. The RE and RMSE values of our method
were the minimum among these methods under the different scenarios. Moreover, the RE
and RMSE values were close to zero in the single person scenario, which demonstrates that
our method can achieve almost completely accurate registration when images contain less
information. The RE value of our method under the other two scenarios was also quite
small, which indicates that our method can still achieve high precision registration when
the information of images is relatively complex. The Time value acquired from our method
was the least among these methods under the different scenarios, which expresses that our
method has a fast calculation speed. The Time values of our method were 0.0736 s, 0.0727 s,
and 0.0725 s, respectively. In other words, our method can register about 14 pairs of
images per second. The experimental results convincingly prove that the proposed method
obviously outperforms better performance than the methods mentioned in this paper.

Table 2. The comparison of registration results under the single person scenario. The bold indicates
the best value, ↑ denotes larger is better, and ↓ represents smaller is better.

Method ERR↑ RE↓ RMSE↓ Time (s)↓
SIFT 7% 0.9701 744.4887 1.9167

PSO-SIFT 10% 0.5660 39.2626 4.6941
OS-SIFT 0% * * 1.4024

NTG 35% 0.5393 29.8977 18.3363
BlockNTG 39% 0.6922 51.8841 0.1583

Ours 100% 0.0000 5.12E-14 0.0736

*: The registration works of the method under this scene fail. (REi ≤ REi). REi and REi represent the RE values
of the ith registered image pair and unregistered image pair, respectively. The symbols ‘*’ in Table 2 mean the
same thing. The value 5.12E-14 equals 5.12 × 10−14.

Figure 12 provides the statistic bar graphs of RE values under different scenarios. The
RE value was divided into the ranges of (0,0.5) and (0.5,1). The RE value in (0,0.5) and (0.5,1)
represented fine and poor registration results, respectively. As expressed in Figure 12, the
registration results of SIFT and OS-SIFT methods were unsatisfactory in different scenarios.
PSO-SIFT could realize excellent registration sporadically. The number of fine registration
images of the NTG method in the three people scenario was greater than that of the single
person and the two people scenarios, which indicates that the NTG method is more suitable



Sensors 2021, 21, 1188 13 of 16

for a scenario with rich information. The BlockNTG method obtained a few fine registration
results in the single person scenario. Unlike the above five methods, the RE values of our
method were all within the range of (0,0.5) in the three different scenarios, which shows
the advantages of the proposed method in terms of robustness and accuracy.

Table 3. The comparison of registration results under the two people scenario. The bold indicates the
best value, ↑ denotes larger is better, and ↓ represents smaller is better.

Method ERR↑ RE↓ RMSE↓ Time (s)↓
SIFT 2% 0.9190 769.1782 1.9570

PSO-SIFT 9% 0.5625 46.1094 4.5280
OS-SIFT 2% 0.9223 917.1556 1.6875

NTG 53% 0.7677 52.4014 18.7133
BlockNTG 9% 0.8668 110.3254 0.1713

Ours 100% 0.0729 1.8655 0.0727

Table 4. The comparison of registration results under the three people scenario. The bold indicates
the best value, ↑ denotes larger is better, and ↓ represents smaller is better.

Method ERR↑ RE↓ RMSE↓ Time (s)↓
SIFT 6% 0.9022 436.5665 1.9554

PSO-SIFT 6% 0.4674 29.5643 4.7568
OS-SIFT 3% 0.8886 210.6097 1.8521

NTG 82% 0.2854 17.9115 19.1369
BlockNTG 12% 0.9049 448.5638 0.1585

Ours 100% 0.0819 3.0621 0.0725

Figure 12. The statistic bar graphs of RE values under different scenarios: (a) the single person scenario, (b) the two people
scenario, and (c) the three people scenario.

4. Discussion

As described above, the experiments in this paper were conducted on the LITIV
dataset. The experimental results and analysis of the feature point extraction, matching,
and the image registration are provided.

As to the feature point extraction and matching, the proposed method was superior to
the SIFT, PSO-SIFT, and OS-SIFT methods. The advantages of our method are reflected in
the following aspects: (1) The matching precision is enhanced by capturing same number
and sparse constraint points from object bounding boxes, (2) enough matched points
are extracted to ensure the unique affine transformation matrix, and (3) the constrained
points are exactly matched without removing redundant points, and the computing time
is reduced.

As to the image registration, our method surpassed other methods mentioned in
this paper in terms of robustness, accuracy, and speed. The SIFT and OS-SIFT methods
could not achieve satisfactory image registration in different scenarios. The PSO-SIFT
method could only successfully register a few infrared-visible images. The NTG method
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was most appropriate for the three people scenario. The BlockNTG method only obtained
a few fine registration results in the single person scenario. The ERR values acquired by
our method were all the largest among these methods, which means that our method
has strong robustness to the variation of environment. Registered image pairs obtained
by the proposed framework had excellent image alignment, edge alignment, and box
overlap. The RE and RMSE values obtained by our method were the minimum among
these methods, which indicates that our method has high registration accuracy. The
proposed method improves registration accuracy from two aspects. On the one hand,
constrained points are obtained by using the object detection algorithm, which introduces
senior semantic information to ensure the accuracy of image registration. On the other hand,
the proposed LV-rule method matches constrained points strictly one to one. The Time
value of our method was the minimum among these methods under different scenarios,
which illustrates that our method has a fast registration speed. There are two key points to
speeding up registration. First, our method does not locate the feature points directly, but
rather achieves region-level positioning by obtaining the object bounding box, and thus
the speed of feature points extraction is increased. Second, the LV-rule method of matching
points without subsequent mismatched elimination is proposed, and the complexity of the
proposed method is reduced.

In summary, the proposed method shows better performance than the SIFT, PSO-
SIFT, OS-SIFT, NTG, and BlockNTG methods in terms of registration accuracy, speed,
and robustness.

5. Conclusions

An infrared-visible image registration framework based on the constrained point
feature is presented in this paper. An object detection method was employed to obtain
the constrained points, the LV-rule was designed to strictly and exactly match points,
and an intelligent method was explored to evaluate registration accuracy and robustness.
The proposed method was tested on the LITIV dataset and compared to the classic and
state-of-the-art registration algorithms. Experimental results showed that the proposed
method has high registration accuracy, speed, and good robustness to the variation of
environment. Furthermore, the registration idea of this paper can be introduced to other
image registration fields. Accurate and fast image registration lays a foundation for image
fusion, target tracking, object recognition, and other tasks.
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