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Abstract: A breathing crack is a typical form of structural damage attributed to long-term dynamic
loads acting on engineering structures. Traditional linear damage identification methods suffer
from the loss of valuable information when structural responses are essentially non-linear. To deal
with this issue, bispectrum analysis is employed to study the non-linear dynamic characteristics of
a beam structure containing a breathing crack, from the perspective of numerical simulation and
experimental validation. A finite element model of a cantilever beam is built with contact elements
to simulate a breathing crack. The effects of crack depth and location, excitation frequency
and magnitude, and measurement noise on the non-linear behavior of the beam are studied
systematically. The result demonstrates that bispectral analysis can effectively identify non-linear
damage in different states with strong noise immunity. Compared with existing methods, the
bispectral non-linear analysis can efficiently extract non-linear features of a breathing crack, and
it can overcome the limitations of existing linear damage detection methods used for non-linear
damage detection. This study’s outcome provides a theoretical basis and a paradigm for damage
identification in cracked structures.

Keywords: bispectrum; breathing crack; finite element analysis; non-linear dynamics; second harmonic

1. Introduction

Preventing damage from occurring in engineering structures is difficult, due to the
long-term effects of loads and environmental factors [1]. A typical example of damage
is a crack. This not only affects the integrity of an engineering structure, but also poses
a serious threat to its safety and service life [2]. In particular, the presence of cracks in
beam structures is found in numerous cases, making basic research into the mechanical
behavior of such beams [3] of great significance for diagnosing any structural damage and
developing health-monitoring technology.

Traditional damage-detection methods based on signal-processing techniques, typi-
cally Fourier transform and power-spectrum analysis, are mostly applied by assuming that
engineering structures behave in a linear manner [4]. However, a vast amount of damage
that occur in actual engineering structures cause non-linear dynamic behaviors [5–8]. The
non-linear dynamic behaviors are mainly represented by two types: (i) progressive degra-
dation or deterioration of structural properties with time evolution. The yielding of frame
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structures under seismic action is an example of this type of non-linear damage [9–11]; (ii)
generation of secondary vibrational resource complicating structural dynamic behavior.
This type of non-linear damage is exemplified by breathing cracks [12–14] and material
stratification [15,16]. Wavelet-based time-frequency methods are representative techniques
for characterizing structural progressive degradation or deterioration, the first type of
non-linear damage, with its ability to detect the relationship between frequencies and its
time dependence, and has a certain noise robustness [17–22]. Nevertheless, the method
suitable for characterizing the second type of non-linear damage, particularly the breathing
crack, is pretty absent while desirable.

The essence of traditional power-spectrum analysis [23], which plays an important
role in signal processing, is the analysis of second-order signal statistics. Power-spectrum
analysis can only provide information about amplitude-frequency characteristics of signals,
but cannot provide high-order statistical information, nor can it effectively suppress the
influence of noise. Unlike power-spectrum analysis, bispectral analysis has been explored
in applications of non-linear analysis. Collis et al. [24] proved that certain information,
unavailable through the examination of second-order statistics such as the spectrum or
correlation function, can be obtained by higher-order spectra.

Li et al. [25] applied bispectral analysis for the diagnosis of rotor crack. Yiakopoulos
et al. [26] showed that bispectral analysis could effectively extract rolling bearings’ ground-
fault characteristics.

In general, bispectrum-based damage diagnosis relies on the correlation between
spectral peaks and damage types. Commonly used are the horizontal, diagonal, and
central frequency sections of a slice spectrum [27–29], and the cepstrum, after the cluster
lines are simplified to a single spectral line [30,31].

Moreover, some studies have proved that damage types can be identified according
to the spectrum-peak frequency of the bispectrum, and that the degree of damage can
be identified by texture features [32]. In existing research and engineering applications,
the bispectrum is mostly used in damage detection in rotating machinery such as bear-
ings [33,34], but has rarely been used for damage detection in civil engineering structures.
Thus there is a strong incentive to explore the advantages of the bispectrum in non-linear
damage detection in civil engineering structures.

For this paper, a finite element model of a beam with a breathing crack was built, using
contact elements to simulate the opening and closing characteristics of the breathing crack.
Subsequently, the non-linear characteristics of the breathing cracked beam under harmonic
load, the influence of excitation frequency and magnitude, crack position and depth, and
noise on the non-linear characteristics of the structure were studied systematically.

The results show that the bispectral analysis method demonstrates sensitivity to the
non-linear features of the cracked beam, and can effectively overcome the limitations of
existing linear damage-detection methods in non-linear damage detection.

2. Fundamentals

The effectiveness of traditional damage-detection methods, based on linear hypothe-
ses, is largely limited in non-linear structures. With its capacity to tackle non-linear prob-
lems, bispectrum analysis has the lowest order among the high-order spectrum-analysis
approaches. Its development is based on the power-spectrum-analysis method. Com-
pared with linear damage-detection methods, bispectrum analysis contains richer damage
information and is an effective tool for dealing with non-linear signals.
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2.1. Definition of Bispectrum

It is assumed that the mean value of a real random signal is zero and its k-order
cumulant ckx(τ1, τ2, . . . , τk−1) is stationary. The k-order spectrum is defined as the (k-1)-
dimensional Fourier transform of ckx(τ1, τ2, . . . , τk−1), expressed as

Skx(ω1, ω2 . . . , ωk−1) =
∞

∑
τ1=−∞

. . .
∞

∑
τk−1=−∞

ckx(τ1, τ2, . . . , τk−1) · exp

[
−i

k−1

∑
j=1

ωjτj

]
(1)

The third-order spectrum, i.e., S3x with k = 3, is also called the bispectrum, expressed
as Bx(ω1, ω2). The estimated bispectrum [35,36] can be written as

B(ω1, ω2) = X(ω1)X(ω2)X∗(ω1 + ω2) (2)

where X(k) =
N−1
∑

n=0
x(n)e−i 2π

N nk(0 ≤ k ≤ N − 1) is the Fourier transform determined by

the principal value sequence of {x(n)}; ∗ represents the complex conjugate. B(ω1, ω2) is
a function with two independent frequencies as the independent variables, i.e., ω1 and
ω2, which contain the phase information. Since the bispectrum is symmetric, only the
function parts within the regions of ω1 ≤ ω2, 0 ≤ ω2 ≤ f2/2 and ω1 + 2ω2 ≤ fs need to
be calculated, where fs represents the sampling frequency.

In the following study, the bispectrum is treated by logarithm and normalization in
order to amplify the harmonic components.

2.2. The Features of Bispectral Analysis
2.2.1. Identification of Non-Linear Systems

While the power spectrum represents the distribution of signal energy against fre-
quency, the physical meaning of bispectrum is not explicit. Reference [37] explains the
physical meaning of bispectrum: since the secondary moment of zero delay is the vari-
ance of the signal, and the third moment of zero delay is the skewness of the signal, the
power spectrum is equivalent to the decomposition of signal variance in the frequency
domain, whereas the bispectrum is the decomposition of signal skewness in the frequency
domain. Therefore, the bispectrum can be used to describe the asymmetric and non-linear
characteristics of signals.

2.2.2. Detection of Non-Linear Coupling Features in Signals

Because the bispectrum contains phase information, it can be used to determine
whether non-linearity exists in the signal by detecting the quadratic phase coupling. As-
sume there is a sine wave x(n) = cos(k0n), with the period of N = 2π

k0
. The Fourier

transform determined by the principal value sequence is:

X(k) =
N−1

∑
n=0

x(n)e−i 2π
N nk =

1
2

N−1

∑
n=0

[
e−ik0n(k−1) + e−ik0n(k+1)

]
=

N
2
[δ(k− 1) + δ(k + 1)] (3)

where k = ±1, X(k) 6= 0. The bispectrum is estimated as Bx(k1, k2) = X(k1)X(k2)X∗(k1 +
k2). Since k1 = ±1, k2 = ±1 and k1 + k2 = ±1 cannot hold at the same time, Bx(k1, k2) is
equal to zero. Assume there is a sinusoidal signal with the harmonic y(n) = cos(k0n) +
cos(2k0n), with a period of N = 2π

k0
. The Fourier transform determined by the principal

value sequence is:

Y(k) =
N−1

∑
n=0

y(n)e−i 2π
N nk =

N
2
[δ(k− 1) + δ(k + 1) + δ(k− 2) + δ(k + 2)] (4)

where k = ±1 or k = ±2, Y(k) 6= 0. The bispectrum is estimated as By(k1, k2) =
Y(k1)Y(k2)Y∗(k1 + k2). Obviously, By(k1, k2) has six non-zeros (k1 = 1, k2 = −2),
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(k1 = 1, k2 = 1),(k1 = −1, k2 = −1),(k1 = −1, k2 = 2),(k1 = −2, k2 = 1),(k1 = 2, k2 = −1).
Compared with the case without a harmonic signal, the bispectrum of y(n) is coupled at 6
points. It can be concluded that the frequency coupling features can be obtained by the
bispectrum in the analysis of non-linear signals.

2.2.3. Immunity to Gaussian Noise

Assume there are two vibration signals, x(n) = e(n), y(n) = s(n)+ e(n), where s(n) is
the basic signal containing the second harmonic and e(n) is Gaussian noise. The traditional
power-spectrum estimation method is used to analyze the two vibration signals,

Px(ω) = Pe(ω), (5)

Py(ω) = Ps(ω) + Pe(ω) (6)

Obviously, the ability of power-spectrum estimation to detect the second harmonic is
related to the signal-to-noise ratio (SNR). The lower the SNR, the lower the accuracy of the
second harmonic will be. If bispectral analysis is used, i.e.,

Bx(ω1, ω2) = Be(ω1, ω2), (7)

By(ω1, ω2) = Bs(ω1, ω2) + Be(ω1, ω2) (8)

In general, if the probability density function of noise is approximately symmetric about
the longitudinal axis, Be(ω1, ω2) can be ignored, so then the Equations (7) and (8) become:

Bx(ω1, ω2) = 0, (9)

By(ω1, ω2) = Bs(ω1, ω2) (10)

It can be seen that, even in the condition of low SNR, the SNR can be improved
by bispectrum analysis, which is more conducive to the detection of non-linear signals.
Zhou et al. [38] showed that the bispectrum analysis method could obtain more effective
detection than the traditional Fourier transform method in the case of low SNR for signals
mixed with random or Gaussian noise.

2.3. Calculation of the Bispectrum

The methods of high-order spectrum estimation can be divided into two categories:
parametric and non-parametric. The advantages of non-parametric high-order spectrum
estimation include ease of implementation and availability of the Fourier transforma-
tion (FFT). Moreover, non-parametric algorithms can be divided into direct and indirect
methods [29]. For this paper, direct non-parametric bispectrum estimation is used.

Assuming that the random signal {x(n)} has N sample points, i.e., x(1), x(2), . . . ,
x(N), the implementation steps are as follows:

(1) Sample segmentation:

The N-point data is divided into K segments. Each segment contains M sample values,
i.e., N = KM. M should meet the general length requirement of FFT. The data in the jth

segment are recorded as x(j)(n), j = 1, 2, . . . , K. If needed, zeros can be added at the end
of each segment to meet the length requirement. As with power spectrum estimation, the
segments can overlap to meet the requirements of frequency resolution and estimation
variance.

(2) Calculation of discrete Fourier coefficients:

Y j(λ) =
1
M

M−1

∑
n=0

xj(n)e−j 2π
M nλ (11)

where, λ = 0, 1, . . . , M
2 − 1.
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(3) Calculation of the third order cumulant:

b̂j(λ1, λ2) =
1

∆2
0

L1

∑
k1=−L1

L2

∑
k2=−L2

Y j(λ1 + k1)Y j(λ2 + k2)Y j∗(λ1 + λ2 + k1 + k2) (12)

where, ∆0 = fs
N0

.

(4) Calculation of the bispectrum average:

Bx(λ1, λ2) =
1
K

K

∑
i=1

b̂j(λ1, λ2) (13)

A contradiction between estimation variance and frequency resolution has frequently
been encountered in traditional spectrum estimation methods. In practical applications,
the final frequency resolution, fs

N , is selected on the premise of balanced estimation variance
and frequency resolution.

3. Numerical Simulation

In this section, the finite element (FE) method was used to study the non-linear
dynamic characteristics of a beam with a breathing crack.

3.1. Finite Element (FE) Modeling of a Cantilever Beam with a Breathing Crack

As illustrated in Figure 1, a three-dimensional, rectangular section cantilever beam
was built using FE software ANSYS with solid45 elements which are defined by eight nodes
having three degrees of freedom at each node. The geometric parameters of the beam,
including the length (L), width (B), height (H), and the material parameters, including
elastic modulus (E), Poisson’s ratio (ν), and density (ρ), are shown in Table 1. The cantilever
beam contained a unilateral penetrating breathing crack, with the depth of a and the
distance from the fixed end of xc. A harmonic excitation F sin 2πωt was applied on the
upper surface near the free end of the beam, and a sensing point was arranged on the lower
surface near the free end to trace and record the dynamic responses of the beam. In the
model, there were a total of 5120 elements, and the elements near the crack are refined to
precisely capture the dynamic behaviors of the crack. The depth and position of the crack
were signified by the dimensionless parameters p = a/H and q = xc/L, respectively.
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Figure 1. Geometry sketch of a cantilever beam with a breathing crack.

Table 1. Parameters of the cantilever beam model.

L B H E ν ρ

(mm) (mm) (mm) (GPa) 1 (kg/m3)

500 20 40 70 0.3 2700

For simplicity, an open crack model is often used to ignore the non-linear character-
istics induced by cracks. However, the open crack model is not consistent with actual
cases, and studies have shown that crack closure should be taken into account for more
accurate representation of structural responses. Gudmundson et al. [7] pointed out that the
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change of structural natural frequency, due to open cracks, is much smaller than those due
to breathing cracks. Moreover, the open-crack model may underestimate the severity of
a fatigue crack, resulting in increased risks to safety. Qian et al. [8] found that the differ-
ence in the displacement responses between intact and cracked beams decreases when an
open-close crack model is used.

In this work, determining the opening and closing behaviors of the breathing crack
was considered a local contact problem. There are three common contact algorithms used
by ANSYS, this time using the generating function algorithm. Taking one crack surface as
the target surface and the other as the contact surface, the contact behaviors of cracks were
studied using the surface-to-surface contact method, as illustrated in Figure 2. Specifically,
the target surface was allowed to penetrate the contact surface, but the contact surface was
not allowed to penetrate the target face. During the vibration of the cantilever beam, there
were three states of the breathing crack: (a) the crack was completely open, and no nodes
on the target and contact surfaces were in contact; (b) the crack was completely closed, and
all nodes on the target and contact crack surfaces were in contact; (c) in the transition state
featuring pressure release or pressure accumulation, the nodes on the target and contact
crack surfaces were in partial contact.
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3.2. Non-Linear Dynamic Characteristics of the Cantilever Beam Containing a Breathing Crack

The dynamic characteristics of the cracked-beam structure, including modal frequen-
cies and mode shapes, were obtained by modal analysis. Figure 3, below, shows the first
six modal frequencies and mode shapes of the beam with p = 50% and q = 30%. It shows
that the cracks in modes 1, 4, and 5 were in a closed state. In mode 4, in particular, the
target surface penetrated the contact surface. The crack in modes 2, 3, and 6 was open,
where modes 2 and 3 correspond to the transition state, and it is difficult to judge whether
mode 6 was in transition or in a fully opened state.

To diagnose damage in rotating machinery, the use of harmonics as typical signs of
non-linearity of structural responses has been common, not only in research but also in
engineering practice. However, structural non-linear characteristics such as harmonics
caused by a breathing crack are difficult to identify using a linear damage-detection method.

Hence, bispectral analysis was employed to identify the relationships between the
harmonic components in the signal, which could be used to identify the harmonic coupling
in the response and to estimate the degree of non-linearity.

A harmonic excitation of ω = 1
2 f1, F = 500 N was applied at the position shown above

in Figure 1. A dynamic time-history calculation of the structure was carried out, the step
size was 5 × 10−4 s, and the total analysis time was 2.548 s. The acceleration response at
the sensing point was extracted and bispectral analysis performed.

The result of the damaged beam is shown below in Figure 4a; Figure 4b shows the
bispectrum of the beam without damage. Figure 4b shows only the main peak A, caused
by the excitation frequency coupling at (57 Hz, 57 Hz), and peaks D1 and D2, excited by
the load without coupling at (57 Hz, 0 Hz) and (0 Hz, 57 Hz).

Compared with Figure 4b, several harmonics can be seen in Figure 4a in terms of
the coupling subpeaks of the excitation frequency and the second harmonic B1 and B2 at
(57 Hz, 114 Hz) and (114 Hz, 57 Hz), and the self-coupling subpeak of the second harmonic
C at (114 Hz, 114 Hz), along with other harmonic components.
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This shows that harmonic and frequency coupling can be used to identify non-linear
damage and to provide damage-identification indicators for the development of a structural
health diagnosis and crack identification methods. By using bispectral analysis, not only
can the harmonics of each order, caused by non-linearity, be observed, but also the coupling
relations among frequencies.

In addition to the acceleration response, the bispectrum can also analyze displacement,
velocity, and stress responses. The corresponding results are shown below in Figure 5a–c,
respectively. In the figures, the second-order harmonics can be observed, although their
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3.3. The Influence of Crack Depth on Non-Linear Dynamic Features

Because crack propagation is unavoidable during structural service life, crack-depth
identification is critical. For this reason, understanding the relationship between non-linear
dynamic characteristics and crack-depth variation is crucial.

We assumed that the crack was located at q = 0.1, but the crack depth was set to
p = 0.1, 0.2, 0.3, 0.4, and 0.5. The excitation frequency was ω = 1

2 f1. As explained in [39], a
1/2 super harmonic resonance was expected to occur at this frequency, and here, frequency
components were easily fully generated. The magnitude of the excitation was F = 500 N.

The acceleration responses were extracted for bispectral analysis, giving rise to three-
dimensional bispectral images, as shown in Figure 6. The amplitudes of the second
harmonic at each crack depth were extracted, with the variation trends shown below in
Figure 7. It was apparent that the amplitude of the second harmonic increased mono-
tonically in proportion to the increase in crack depth. Therefore, the amplitude of the
second harmonic in the bispectrum can be used as a damage-sensitive feature to indicate
the degree of damage of the cracked beam.
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3.4. The Influence of Crack Location on Non-Linear Dynamic Features

For the beam with a breathing crack, as studied for this paper, the local stress field in
the beam changed with the position of the damage, which in turn changed the non-linear
dynamic features of the structure. Assuming a fixed crack depth of p = 0.5, the crack
location was set to q = 0.05, 0.1, 0.3, 0.5, and 0.7, respectively. The excitation frequency
and magnitude were kept at ω = 1

2 f1 and F = 500 N, respectively. The three-dimensional
bispectral images obtained are shown above in Figures 8a–e and 9, below, shows the
variation trend of the second harmonic amplitude with the crack position.

This result indicates that the closer the crack location is to the fixed end, the more
significant is the structural non-linearity.

3.5. The Influence of Harmonic Excitation Frequency on Non-Linear Dynamic Features

To better study the non-linearity caused by the periodic movement of the breathing
crack, the excitation frequency was adjusted to be ω = 1

3 f1, 1
2 f1, f1, 2 f1, and 3 f1, to

investigate the variation features of non-linear dynamic characteristics. The crack location
and depth were kept at q = 0.3 and p = 0.5, respectively. Acceleration responses were
extracted, and bispectral analysis was then performed to obtain the three-dimensional
bispectrum images, shown below in Figure 10.

It can be seen that, when the structure was subjected to harmonic excitation, multi-
ple harmonic components in the response could be analyzed by the bispectral method,
including the coupling of excitation frequencies, n-order harmonic components, coupling
of n-order harmonic components and m-order harmonic components.

The coupling of excitation frequencies and the second harmonic was obvious in each
bispectral image. When the excitation frequency was an integer times (n = 1, 2, 3) or
one over an integer times (n = 1/3, 1/2) the first-order frequency of the structure, the
harmonic components of the cracked beam could be fully excited. Frequency coupling
at ω = 1

3 f1, 1
2 f1, f1, and 2 f1, was significant. Specifically, the coupling effect at ω = 1

3 f1
was more complex, whereas ω = f1 may have induced too much uncertainty to the
structural vibration. Therefore, ω = 1

2 f1 and ω = 2 f1 could be chosen as the optimal
excitation frequencies.
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3.6. The Influence of Harmonic Excitation Magnitude on Non-Linear Dynamic Features

Another important parameter likely to cause differences in bispectral analysis re-
sults was the magnitude of excitation. Assuming that the crack location and depth were
q = 0.3 and p = 0.5, respectively, and the excitation frequency was ω = 1

2 f1, six excitation
amplitudes, of F = 50 N, 100 N, 250 N, 400 N, 750 N and 1000 N, respectively, were studied.

The bispectrum analysis shows results similar to those above in Figure 10b, and the
variation trend of the second harmonic amplitude with the harmonic excitation magnitude
is shown below in Figure 11. In particular, in order to study the influence of harmonic exci-
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tation magnitude on non-linear dynamic features, the amplitudes of the second harmonic
were not normalized.Sensors 2020, 20, x FOR PEER REVIEW 13 of 21 
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It was evident that when the excitation magnitude was magnified by 20 times, from
50 N to 1000 N, the non-linear characteristics of the bispectrum, the amplitude of the second
harmonic also increased.

3.7. The Influence of Noise on Non-Linear Dynamic Characteristics

In actual measurement scenarios, noise from different environmental sources (such
as thermal noise, mechanical relaxation, and electrical noise from the data-acquisition
system [40]) inevitably affects the measured response data. Noise is likely to affect the
representation of non-linear features, and can even drown out the non-linear features of
the response.

V.A. Krysko-Jr. concluded in [41] that with the increase in the external transverse load,
even a relatively small intensity of white noise has an essential influence on the character
of structural vibrations. Theoretically, the bispectrum analysis method used for this paper
was immune to Gaussian noise. This section aims to verify the immunity of bispectrum
analysis to the influence of noise.

If the crack location and depth are q = 0.3 and p = 0.5, respectively, the excitation
frequency and magnitude would be ω = 1

2 f1 and F = 500 N, respectively. Gaussian white
noise was introduced into the acceleration response to simulate the effect of environmental
noise. The noise intensity was characterized by the SNR, defined as

SNR = 10lg
Ps

Pn
(14)

where Ps represents the effective power of the signal and Pn represents the effective power
of the noise.

The acceleration responses were extracted and bispectral analysis was used to obtain
three-dimensional bispectral images, as shown below in Figure 12. It can be clearly seen
that when the SNR is greater than 30 dB, there is no significant change in the bispectrum.
However, when the SNR reaches 10 dB, disturbances caused by Gaussian white noise
begin to appear. The amplitudes of the second harmonic, under different noise levels, are
shown below in Figure 13. It is clear that although the amplitude of the second harmonic
of the bispectrum fluctuates around the noiseless signal due to the influence of noise, the
characterization of non-linear dynamic features was not seriously impaired, even under
the SNR of 10 dB. Such observation indicates that bispectral analysis has strong noise
resistance in processing non-linear signals.
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4. Experimental Validation

In this section, two experiments were carried out to investigate the effects of crack and
excitation parameters on the non-linear dynamic features of the cantilever beam with a
breathing crack.

4.1. Experiment 1

A cantilever beam with constant rectangular section, as shown below in Figure 14,
was made with a length of L = 0.6 m, cross-section dimensions H × B = 0.019 m × 0.012 m,
material density 7750 kg/m3, elastic modulus E = 1.84× 1011 Pa, and Poisson’s ratio ν = 0.3.
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Figure 14. Tested cantilever beam.

An accelerometer was mounted on the beam’s surface 90 mm from the free end, and
hammer excitation was applied 45 mm from the free end. The acceleration response was
amplified by a charge amplifier and then collected by the UTel data-acquisition system at a
sampling frequency of 12,800 Hz.

This experiment mainly investigated the influence of crack parameters on the non-linear
dynamic features of the cracked beam. The crack parameters are shown in Table 2.

Table 2. Crack parameters of the cantilever beam with a breathing crack.

Group Crack Location q
(From the Fixed End) Crack Depth p

1 133.3 mm

10%
20%
30%
40%

2

16.7 mm

40%
133.3 mm
233.3 mm
333.3 mm

The acceleration responses under different crack parameters were extracted, and the
amplitude of the second harmonic components with different crack depths and positions
were analyzed using the bispectrum.

Figure 15a,b show the variation trend of the second harmonic amplitude with the
crack depth and location, respectively. As with the numerical results, the amplitude of the
second harmonic of the bispectrum increased along with the increase in crack depth. On
the other hand, as the crack moved closer to the fixed end, the amplitude of the second
harmonic of the bispectrum increased continuously.
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4.2. Experiment 2

A steel cantilever beam with the dimensions 380 mm × 20 mm × 10 mm was made,
having the material elastic modulus of 193 GPa and Poisson’s ratio of 0.29. The dynamic
displacement response was measured in the experiment. To generate crack breathing in the
beam, a v-shaped notch 1 mm in depth was first created on one side of the beam, 308 mm
from the free end. Cyclic load was then applied to extend the crack depth to 5 mm.

Ranging from the fixed end to 4 mm from the free end, 11 measurement points were
uniformly arranged along the centerline of the beam, as shown above in Figure 16. An
excitation was applied 10 mm from the fixed end. Natural frequencies of different orders
of the structure were captured within the ranges 0–2 kHz, 2–20 kHz, and 20–50 kHz,
respectively. The first three orders of the natural frequencies measured f1 = 70.63 Hz,
f2 = 688.70 Hz, and f3 = 1787.19 Hz, respectively.
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Figure 16. Fatigued steel cantilever beam draft.

This experiment mainly investigated the influence of excitation parameters on the
non-linear dynamic features of the cracked beam. The excitation parameters are shown
above in Table 3. The acceleration responses under different excitation parameters were
extracted, and the amplitude of the second harmonic varying with the excitation frequency
and magnitude were subjected to bispectral analysis. A laser-scanning vibrometer, Polytec
PSV-400, was used for non-contact measurement of the displacements. PZT piezoceramics
were used to excite the structure, and the magnitude of the excitation was proportional to
the output amplitude of the piezoceramics generator. Thus, changes in the magnitude of
excitation were achieved by changing the voltage.



Sensors 2021, 21, 1177 16 of 20

Table 3. Harmonic excitation parameters.

Group Excitation Frequency (Hz) Voltage (v)

1 1/2 f1

0.125
0.25
0.5
1
2
4
6

2

1/3 f1

6
1/2 f1

f1
2 f1
3 f1

Figure 17 below shows the amplitude of the second harmonic varying with voltage,
which was directly correlated with the magnitude of excitation. The experimental results
were similar to those of the numerical simulation. When the voltage was magnified by
48 times, from 0.125 V to 6 V, the amplitude of the second harmonic also increased.
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Figure 18 shows the bispectrum under different excitation frequencies. In the figure,
the second harmonic of the bispectrum under different excitation frequencies can be
observed. When the frequency is one over an integer times of the first-order frequency
of the structure (e.g., n = 1/3, 1/2), the non-linearity can be characterized well and the
coupling of other frequencies can be observed. However, when the harmonic excitation
frequency is an integer times the first-order frequency (e.g., n = 1, 2, 3), the second harmonic
is not obvious, especially under the frequency of 3 f1, where the frequency coupling is more
complex. Therefore, ω = 1/2 f1 is expected to generate both obvious and explicit frequency
coupling phenomena.
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2 f1; (c) ω = f1; (d) ω = 2 f1; (e) ω = 3 f1.

Noise immunity was studied with the excitation frequencies of 1
3 f1 and 1

2 f1 and an
excitation voltage of 6 V. As observed in the numerical results, the bispectral analysis
showed a certain immunity to Gaussian noise. As shown in Figure 19 with the noise levels
of 90, 70, 50, and 30 dB, the Gaussian noise had almost no effect on the amplitude of the
second bispectral harmonic. When the SNR reached 10 dB, the amplitude of the second
harmonic showed relatively large fluctuations, but the actual errors were only 3.73% and
0.637%, respectively. When the excitation frequency was 1

2 f1, the error was smaller, and
when the excitation frequency was 1

3 f1, the error was slightly larger.
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However, the magnitude of error did not affect the non-linear characterization of the
bispectrum. The immunity of bispectrum analysis to noise influence is demonstrated well.

5. Conclusions

For this paper, the non-linear dynamic characteristics of a cantilever beam containing
a breathing crack were studied using bispectral analysis. Numerical simulation and
experimental verification show that, compared with traditional damage identification
techniques, the bispectral analysis method demonstrates sensitivity to the non-linear
features of the cracked beam and can effectively overcome the limitations of existing
linear damage detection methods in non-linear damage detection. Several conclusions can
be drawn:

(1) The bispectral analysis method can not only characterize the non-linear features of
crack structures, but can also reveal the coupling relationships among frequencies.

(2) The non-linear feature of the bispectrum, in terms of the amplitude of the second
harmonic, is proportional to crack depth, so the amplitude of the second harmonic
of the bispectrum can be used as a damage-sensitive feature to quantify the severity
of cracks. With the crack position effect, the closer the crack is to the fixed end, the
larger is the amplitude of the bispectral second harmonic, and the more obvious are
the non-linear features.

(3) As demonstrated in the numerical simulation and experimental results, the harmonic
components in the dynamic response signal are the most abundant, and the non-linear
characteristic effect is best when the excitation frequency ω is 1

2 f1. The amplitude of
the second harmonic increases with the increase of the excitation.

(4) The bispectral analysis method has satisfactory noise robustness. Even under the SNR
of 10 dB, the non-linear dynamic characterization of the bispectrum is not affected.
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