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Abstract: In the process of collaborative operation, the unloading automation of the forage harvester
is of great significance to improve harvesting efficiency and reduce labor intensity. However, non-
standard transport trucks and unstructured field environments make it extremely difficult to identify
and properly position loading containers. In this paper, a global model with three coordinate
systems is established to describe a collaborative harvesting system. Then, a method based on
depth perception is proposed to dynamically identify and position the truck container, including
data preprocessing, point cloud pose transformation based on the singular value decomposition
(SVD) algorithm, segmentation and projection of the upper edge, edge lines extraction and corner
points positioning based on the Random Sample Consensus (RANSAC) algorithm, and fusion and
visualization of results on the depth image. Finally, the effectiveness of the proposed method has been
verified by field experiments with different trucks. The results demonstrated that the identification
accuracy of the container region is about 90%, and the absolute error of center point positioning
is less than 100 mm. The proposed method is robust to containers with different appearances and
provided a methodological reference for dynamic identification and positioning of containers in
forage harvesting.

Keywords: agricultural automation; forage harvester; collaborative unloading operation; identifica-
tion and positioning; visual odometry; random sample consensus

1. Introduction

Under intensive rearing systems, the diets for dairy and beef cattle are generally
offered as total mixed rations, rich in concentrated feedstuffs and roughage, to meet the
daily nutrient requirements of the animal [1]. Roughage is not only an important source
of energy for these ruminants, but also provides daily essential crude fiber. However, a
sufficient amount of coarse fibrous ingredients in the diet is necessary to maintain normal
ruminant function [2]. A lack of fiber can lead to stereotypes, nutritional disorders, and
even ruminal acidosis [3,4]. Good quality silage, which is a major source of roughage, is
produced from the green forage of corn, wheat, grass or other crops [5]. Compared to
these green crops, silage is easier to store and transport, and its nutritional quality is more
stable [6]. These advantages, together with low production costs, have greatly increased
the demand for silage in modern intensive farms [7].

Forage harvesters are some of agriculture’s most versatile machines, capable of har-
vesting a variety of forage crops under different agronomic conditions [8]. Unlike the
combine harvester that can temporarily store grains in the internal grain reservoir during
harvesting operations, the forage harvester itself does not have a material holding tank
for storing the harvested green forage. A common practice is that a pair of harvester and
truck performs on-the-go unloading: the truck with a loading container needs to travel
next to the harvester at a similar nonzero speed, continuously loading the picked-up and
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processed crop stream [9]. This kind of collaborative unloading process is cost-effective,
but the implementation is more challenging, because the two moving vehicles need to
be coordinated. In the course of this, the drivers of the forage harvester and the truck
have to continuously monitor the unloading position of the forage stream, simultaneously
adjusting the vehicle speeds and distances from each other so that the green forage does
not fall on the ground [10,11]. At the same time, there are many other operations that
require coordination by the drivers of agricultural machinery. For example, the driver
must maintain the direction of the forage harvester, observe the status of the crop, monitor
machine performance, confirm the fill level of the container, and pivot the discharge elbow
manually, etc. [12]. Especially at the turning point, there is not enough space for the forage
harvester and the truck to drive in parallel. The truck has to move behind the forage
harvester. Thus, the change of the driving status will often cause mistakes and reduce
work efficiency. Therefore, this continuous on-the-go unloading will distract the forage
harvester’s driver, causing stress and fatigue [13]. Moreover, as working hour increase, it
also could decrease harvest efficiency and affect operational safety. Due to the problems
mentioned above, it is significant to investigate the automatic unloading of the forage har-
vester. The first task of this research is to solve the problem of identification and positioning
of the moving truck container during collaborative operation. Only after the container is
accurately identified and positioned, the forage harvester unloading system can control
the unloading mechanism to make the silage fall in the ideal position, which also paves a
way for autonomous driving for the machineries in the near future.

At present, the studies of automatic unloading of agricultural harvesting machinery
are still in the initial stage. Meanwhile, there are very few references on the identification
and positioning of the moving container during the automatic unloading of the forage
harvester, and most of them are patents. Polklas [11] invented a sensor device for the
automatic filling of containers, which consists of multiple optical and acoustic range
finders. Since the container edges are much higher than its inner and outer sides, the height
signal measured by the device will change significantly. In this way, the position of the
container walls, as well as the filling level of forage in different positions in the container,
can be identified. However, the measuring area of the range finder is limited. In order to
measure complete information, the discharge elbow has to be rotated horizontally above
the container until it covers the entire area. Alexia et al. [14] proposed a crop discharge
spout control system based on two cameras. In order to prevent the forage stream from
obstructing the field of view, two cameras were mounted on the end of the spout. They
used image processing techniques to identify the hauling vehicle, such as low pass filtering,
edge detection, thresholding, etc. In order to solve the problem of forage material loss and
uneven unloading during manual unloading, Happich et al. [10] developed a prototype
of an assistance system for overloading agricultural goods. The system used the Global
Positioning System (GPS) to locate the forage harvester and the transport unit and allowed
a closed-loop loading position control of the chute and deflector to unload the forage
stream to a specific target point.

In the field of automatic unloading of grain combine harvesters, some technologies,
including ultrasound, virtual reality and machine vision, have been initially applied to
the identification and positioning of the loading container. Gaard [13] built an ultrasonic
sensor package and developed an algorithm to model the container edges and the grain
surface using distance data obtained by the sensor package. The algorithm can extract
the features of the container and grain. However, the sensor package is sensitive to the
installation cone angle, causing the error of the experimental results to be larger than
expected. Kurita et al. [15] studied the automatic rice unloading problem and proposed
a method to find the container and position the auger of the combine harvester at an
appropriate point. This method used ARToolKit to detect a fiducial marker and calculate
transform matrices between the marker’s and the camera’s coordinates. The size of the
grain container is standard, and the positional relationship between the fiducial marker
and the grain container is fixed. Therefore, the position of the container can be indirectly
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calculated by identifying the position and posture of the marker. Cho et al. [16] proposed a
method for the autonomous positioning of the unloading auger and the grain container by
a laser sensor and global navigation satellite system (GNSS). The method was sufficient
for the successful positioning of the auger spout within the acceptable error range. Liu
et al. [17] studied the identification of the grain loading situation in the grain container and
proposed a method of parameter design of cellular neural network edge template based on
ant lion algorithm to extract the edge of the grain container. After region segmentation,
the grain loading status could be identified using color features. Finally, the effect of edge
detection and grain status identification was verified under laboratory conditions.

In the process of green forage harvesting, the agricultural environment and crop
objects are both unstructured [18–20]. A large amount of dust and forage particles will
fall on the surface of the truck, obscuring the features of the container. Moreover, the size
and shape of the container are not standard, and it is very common that the container is
heightened or modified privately. Different from static unloading of the combine harvester,
the forage harvester and the truck move independently in the three-dimensional (3D) space.
Under this circumstance, the identification and positioning of the container need to be
completed in a 3D coordinate system. These factors increase the difficulty of identifying
and positioning the container of the forage transporter, which makes it difficult to achieve
the expected results using only 2D image processing technology [13]. In order to realize
the self-adaptive, non-marker identification and positioning of different types of containers
in the unstructured agricultural environment, this paper establishes three coordinate
systems to describe the system model of the forage harvester and the truck, and proposes a
container-adaptive identification and positioning (CAIP) method based on depth vision.
The method processes include data preprocessing, pose transformation of the point cloud
based on the SVD algorithm, the upper edge segmentation of the container, the upper
edge lines extraction and corner points positioning based on the RANSAC algorithm, and
visualization of identification and positioning results on the depth image.

The remainder of this paper has been organized as follows. Section 2 establishes a
global model with three coordinate systems to describe the collaborative harvesting system.
The depth-vision-based CAIP method is then proposed, and the specific procedures of
the proposed approach are also described in detail. In Section 3, field experiments on the
identification and positioning of different containers are carried out, experimental results
are analyzed and discussed, and the performance of the proposed approach is illustrated
and verified. Finally, Section 4 gives conclusions and future work.

2. System Description and Proposed Method
2.1. System Description

The traditional forage harvesting process is shown in Figure 1a. The forage harvester
and the truck need to be closely coordinated. This is essentially a visual servocontrol
problem, that is, the driver observes the position of the container, then determines the
optimal unloading point of the forage stream, and finally, the mechanical device of the
forage harvester can be controlled to accurately unload the forage to the target point until
the container is evenly filled. The purpose of this paper is to accurately identify and
position the moving container using depth vision and calculate the 3D coordinates of
the unloading target point, which can provide feedback for the subsequent control of the
unloading device of the forage harvester.

The simplified system model of the collaborative unloading operation of the forage
harvester and the truck is shown in Figure 1b. The unloading device of the forage harvester
consists of a discharge base, a discharge elbow, a discharge flap and three joints. Joint 1
is located on the discharge base, and it can control the discharge elbow to rotate around
the rotation axis of the base. Joint 2 can adjust the elevation angle of the discharge elbow
between 60◦ and 90◦. Joint 3 can control the unloading angle of the discharge flap between
10◦ and 90◦. In the harvesting process, due to the relatively large adjustable range of the
discharge flap angle, the discharge elbow generally maintains the maximum elevation an-
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gle, and the unloading direction of the forage stream is usually controlled by the discharge
flap. In order to obtain the best view, a color and depth (RGB-D) camera is fixed at a higher
position of the discharge elbow.
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To describe the system comprehensively, this paper has established three coordinate
systems: world coordinate system, camera coordinate system and base coordinate system.
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The corresponding positions of these coordinate systems in the real system are shown in
Figure 2.
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The world coordinate system is established based on the upper edge of the container.
The origin is located at the front left corner of the upper edge. The Xworld − Yworld plane
is parallel to the ground and coincides with the upper edge plane and the Zworld axis is
perpendicular to the ground.

The camera coordinate system is established based on the RGB-D camera, the RGB
lens optical center on the right side of the camera is the origin of the camera coordinate
system, the Xcamera − Ycamera plane is parallel to the imaging plane, and the Zcamera axis is
the depth direction of the camera.

The base coordinate system is a dynamic coordinate system, which can follow the
unloading device to rotate. Its coordinate origin is at the rotation center of the discharge
base. The Zbase axis is the rotation axis of the discharge base. The Xbase − Ybase plane is
parallel to the ground. The central axis of the discharge elbow is always located in the
Ybase − Zbase plane. The Ybase axis direction coincides with the projection direction of the
unloading elbow on the Xbase − Ybase plane. When the discharge base drives the discharge
elbow to rotate around the Zbase axis, the base coordinate system also rotates synchronously.

The camera coordinate system’s spatial position relative to the discharge elbow is
fixed, so there is a constant transformation relationship between the camera coordinate
system and the base coordinate system. The transformation relationship includes two
parts: the rotation matrix base

cameraR and the translation matrix base
camerat. Since the truck and

the forage harvester move independently, the transformation relationship between the
base coordinate system and the world coordinate system is complicated and unknowable.
However, the Xbase − Ybase plane and the Xworld − Yworld plane are parallel, and there is a
constant and measurable height difference in the height direction.

2.2. Proposed Method
2.2.1. Method Overview

There are two common features of the truck containers: (1) The container’s upper
edge has obvious straight-line characteristics. (2) The upper edge of the container is located
at the local highest position of the truck, that is, the z-axis values of the upper edge points
are relatively large in the world coordinate system. These features will neither be changed
due to the coverage or occlusion of the silage during unloading nor will it be affected by
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the size and type of different trucks. However, the point cloud of the truck acquired by
the camera is based on the camera coordinate system. The camera coordinate system and
the world coordinate system move independently, and there is no fixed transformation
relationship. As described in Section 2.1, the Xbase − Ybase plane and the Xworld − Yworld
plane are parallel, and both are parallel to the ground. In the base coordinate system, the
feature that the z-axis values of the upper edge points are relatively large will not change.
Therefore, a reasonable approach is to transform the point cloud of the truck to the base
coordinate system using the transformation matrix from the camera coordinate system to
the base coordinate system, and then extract and locate the upper edge of the container in
the base coordinate system according to the above-mentioned features.

Based on the above description, the depth-vision-based CAIP method is proposed
to identify and position the truck container. First, the RGB-D camera is used to obtain
point cloud images, RGB images and depth images of the truck, and then the point cloud
data is preprocessed to compress the number of points and remove noisy points, including
voxel downsampling and statistical filtering. Second, the SVD algorithm is used to solve
the pose transformation matrix from the camera coordinate system to the base coordinate
system, and the point cloud is converted to the base coordinate system. Subsequently,
the container’s upper edge points are segmented through the threshold processing of the
z-axis value and then projected into a 2D image. Finally, the upper edge lines and corner
points are identified and positioned based on the RANSAC algorithm and then visualized
on the depth image. The flow chart of the depth-vision-based CAIP algorithm is shown in
Figure 3, and the implementation process will be described in detail following the steps of
the method.
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2.2.2. Point Cloud Preprocessing

The amount of point cloud data captured by the RGB-D camera is generally very large.
In this paper, the number of points per frame is more than 200,000. The point cloud data
downsampling is necessary to reduce the density and improve the calculation efficiency
but preserving as much original information as possible. The VoxelGrid is an effective
3D point cloud downsampling technique, which can reduce the number of points while
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keeping the contour of the point cloud unchanged [21,22]. The VoxelGrid algorithm defines
a constant-size voxel grid to decompose the 3D space of the input point cloud into multiple
3D voxels. After the decomposition operation, each voxel is a small point set containing a
different number of points. For each voxel, a centroid pc is chosen as the representative of
all the points, which can be calculated by Equation (1):

pc =
1
m

m

∑
i=1

pi (1)

where pi and m are the point and the number of points in a voxel, respectively.
In order to reduce the outliers and noisy points caused by light interference and silage

splashing in the agricultural environment, we perform statistical filtering on the down-
sampled point cloud using the statistical outlier removal algorithm [23]. Statistical filtering
performs statistical analysis on adjacent points of each point and calculates its average
distance to all adjacent points. Assuming that the result obtained is a Gaussian distribution
whose shape is determined by the mean and standard deviation, the point whose average
distance is outside the standard range can be defined as outlier and removed from the
data [24]. For each point pi(xi, yi, zi) (j = 1, 2, . . . , n) in the point cloud, the algorithm
calculate its mean distance di to the k nearest neighbors pj

(
xj, yj, zj

)
(j = 1, 2, . . . , k) through

Equation (2). Assuming that the mean and standard deviation of the Gaussian distribution
are µ and σ respectively. The mean µ and the standard deviation σ can be calculated by
Equations (3) and (4):

di =
1
k

k

∑
j=1

√(
xi − xj

)2
+
(
yi − yj

)2
+
(
zi − zj

)2 (2)

µ =
1
n

n

∑
i=1

di (3)

σ =

√
1
n

n

∑
i=1

(
di − µ

)2
(4)

where k and n are the number of nearest neighbors and the number of the points in the
entire point cloud, respectively.

The points whose mean distance is outside the range of [µ− ασ, µ + ασ] are defined
as outliers and should be removed from the point cloud. The parameters α and k depend
on the density of the points and actual requirements. The experimental test in this paper
found that the filtering effect is best when α = 1.0 and k = 45.

2.2.3. Point Cloud Pose Transformation

After preprocessing, the coordinates of the point cloud data are still based on the
camera coordinate system. In order to transform the point cloud to the base coordinate
system, this paper refers to the SVD algorithm in the field of visual odometry (VO) to
solve the transformation relationship from the camera coordinate system to the base
coordinate system. The transformation relationship contains two parts: rotation and
translation. In a VO system, the basic task is to estimate the movement of the camera
through image changes [25]. This type of motion estimation needs to extract and match the
feature points between two consecutive images. Combined with the depth images, the 3D
coordinates of those feature points can be determined. Through the SVD algorithm, the
pose transformation relationship of the two sets of corresponding feature points can be
effectively calculated. However, the transformation from the camera coordinate system
to the world coordinate system in this paper is also similar to constructing a VO between
two frames of images. In this case, the two sets of corresponding feature points are the 3D
coordinates of the container’s selected reference points in the camera coordinate system
and the base coordinate system, respectively. The coordinates of the reference points in the
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camera coordinate system are extracted from the point cloud, and the coordinates in the
base coordinate system are directly measured. Supposing that P’ is the feature points set
in the camera coordinate system, and P is the corresponding feature points set in the base
coordinate system: {

P = (p1, p2, . . . , pn)
P′ = (p1, p2, . . . , pn)

(5)

where n is the number of feature points. Two feature points sets are related by the rigid
body transformation of the following form:

∀i, pi = Rp′ i + t (i = 1, 2, . . . , n) (6)

where R ∈ R3×3 is a rotation matrix, t ∈ R3×1 a translation vector, pi is a point in P, and
p′ i is a point in P’.

We construct the following least squares problem to find the optimal R and t matrices
that minimize the sum of squared errors J of two feature points sets:

min
R,t

J =
1
2

n

∑
i=1
‖(pi −

(
Rp′ i + t

)
‖2

2 (7)

The centroids of two sets of points are calculated by:
p = 1

n

n
∑

i=1
pi

p′ = 1
n

n
∑

i=1
p′i

(8)

where p is the centroid of the points set P, and p’ is the centroid of the points set P’. The
de-centroid coordinates of each point can be calculated by:{

qi = pi − p
q′i = p′i − p′

(9)

where qi is the de-centroid coordinate of the points set P, and q′i is the de-centroid coordinate
of the points set P’. We define a matrix W ∈ SO(3) which is described in Equation (10):

W =
n

∑
i=1

qiq′i
T (10)

According to the SVD algorithm, W can be decomposed into the following form:

W = USVT (11)

where S is a 3 × 3 diagonal matrix composed of singular values, U and V are both 3 × 3
diagonal matrices. When W is full rank, the optimal solution of the rotation matrix R and
the translation matrix t in Equation (6) can be expressed as:

R = UVT (12)

t = p− Rp′ (13)

These are also the rotation matrix base
cameraR and the translation matrix base

camerat from the
camera coordinate system to the base coordinate system. Finally, we can transform the
point cloud to the base coordinate system through Equation (14):

Pb = base
cameraRPc +

base
camerat (14)
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where Pb is the point cloud in the base coordinate system, Pc is the point cloud in the
camera coordinate system.

2.2.4. Segmentation of the Upper Edge Points

In order to reduce the economic loss caused by the parking of the forage harvester,
multiple trucks undertake the task of forage transportation. The height and size of different
truck containers are different, and it is time-consuming and inefficient to manually measure
the information of each container. However, the height value is necessary to segment the
point cloud of the upper edge. Therefore, this section proposes a segmentation algorithm
for the upper edge point cloud, which automatically measures the height of the container.
The steps of the algorithm are as follows:

Step 1: Sort the point cloud Pb in descending order of z-axis value to form a sequence
of three-dimensional coordinate points.

Step 2: Set a sliding window with a length of 20 and a step length of 1. Start sliding
from the head of the sequence, and calculate the variance of the z-axis values of the points
of each window in turn. When the variance is less than the set threshold, the mean of
the z-axis values of the 20 points in the window is the height h of the container. After the
point cloud is sorted in descending order of z-axis values, the points of the upper edge are
concentrated at the head of the sequence. The purpose of using the sliding window is to
eliminate the interference of outliers and obtain more accurate height value.

Step 3: Set a reasonable z-axis value interval [h− a, h + a] and divide the entire point
cloud Pb according to this interval to obtain the upper edge point cloud Pcut which only
contains the upper edge points of the container.

Step 4: project Pcut to the Xbase − Ybase plane to obtain a 2D image of the upper edge,
which completes the dimensionality reduction process.

In this section, the segmentation of the container’s upper edge is completed, and its 2D
image is obtained. The above step 1 and step 2 are the processes of automatically obtaining
the height of the container. Since the container’s height is constant, it is only necessary to
measure the height once before the start of work or the truck is replaced. After completing
the measurement process, the height will be stored in the program as a constant. When
the algorithm is called again, only step 3 and step 4 will be executed. In step 3, the reason
for setting the z-axis threshold interval is that the truck fluctuates up and down while
moving [26]. A reasonable setting of a can ensure that the upper edge point cloud of the
container is always within the threshold interval. In particular, the point cloud input in this
algorithm is based on the base coordinate system, so the calculated height is also relative
to the base coordinate system.

2.2.5. Identification and Positioning of the Container

The purpose of identification is to determine the region of the container. The 2D
image of the upper edge is composed of a large number of discrete points, as shown in
Figure 4. Each edge has an apparently straight line feature, so four straight lines can be
fitted from the 2D image. However, for each edge, the points belonging to this edge are
inside points, while other points not belonging to this edge are outside points. Only by
excluding these outside points can an accurate straight line be fitted. The least squares
method is obviously not applicable, but the RANSAC algorithm has significant advantages
for such problems [27,28]. The specific process of identifying the upper edge lines of the
container is as follows:

Step 1: Input the 2D image and extract the four straight lines where the container’s
upper edge is located using the RANSAC algorithm.

Step 2: Calculate and screen the six intersection points of the four straight lines. Since
the straight lines are directly fitted from the data, the straight lines on the rectangle’s
opposite sides are not completely parallel. The screening is based on the distance between
the intersection of the straight lines and the origin. The intersections of the straight lines
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fitted by the two sets of opposite sides are the farthest from the origin, and they are
eliminated.

Step 3: Connect the remaining four corner points in order of coordinates according to
the characteristics of the rectangle so that the container region is identified.
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The above process has solved the sideline equations and the x-axis and y-axis values of
the upper edge’s corner points in the base coordinate system. This realizes the positioning
of the container in the Xbase − Ybase plane. Since the z-axis value of the container height
has been obtained in Section 2.2.4. So far, the spatial region of the upper edge can be
determined, and the spatial positioning of the container in the base coordinate system has
been completed.

2.2.6. Visualization of the Results

The visual feedback of the identification results is helpful for operators to monitor the
unloading status of forage in real-time. This paper uses an inverse coordinate transforma-
tion to transform the calculated corner points and edge lines into the camera coordinate
system, maps them to the pixel coordinate system through the camera internal parameter
matrix, and then marks the region of the container on the RGB image or the depth image.
Finally, the results will be displayed on the vehicle monitor.

By executing Equation (15), the coordinates of the corner points in the base coordinate
system can be inversely transformed to the camera coordinate system:

Pc =
base
cameraRT Pb − base

cameraRTbase
camerat (15)

Then the corner points are transformed into the pixel coordinate system through the
camera internal parameter matrix. According to the pinhole camera model, the transforma-
tion equation is as follows:

Puv =

 u
v
1

 =
1
z

 fx 0 cx
0 fy cy
0 0 1

 x
y
z

 =
1
z

KPc (16)

where Puv is the homogeneous coordinate of the corner point in the pixel coordinate system,
fx and fy are focal length parameters, cx and cy are principal point offset parameters, K is
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the camera internal parameter matrix which is only determined by the camera’s internal
parameters.

3. Field Experiment and Results Analysis
3.1. Field Experiment Site and Equipment

The field experiment was conducted on a commercial farm in northern Tianjin, China
during August 2019. The crop grown on the farm was corn silage, with a plant height of
about 1.6 m. The RGB-D camera was fixed on the discharge elbow of the forage harvester.
The composition of the entire system and the coordinate systems’ settings were exactly
the same as those described in Section 2.2.1. To improve transportation efficiency, several
trucks are generally used to transport forage during harvesting, and the appearance of
these truck containers may vary dramatically from machine to machine. Therefore, two
trucks with different container types were prepared. Container A is heightened by welding
steel, and the tarpaulin is covered inside to reduce the spillage of forage and facilitate
unloading, as shown in Figure 5a. The size of container A is 3.50× 2.00× 2.25 m. Container
B is modified from high-strength mesh, with small surface pores, lightweight and low
cost, as shown in Figure 5b. The size of container B is 3.75× 2.25× 2.10 m. These are two
common types of forage transport containers in agriculture.
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Figure 5. The identification and positioning experiments with different trucks. (a) Container A is heightened by welding
steel and covered by a tarpaulin. (b) Container B is modified from the high-strength mesh.

The RGB-D camera used in the experiment is FM810-5M (Percipio Co., Ltd., Shanghai,
China). The measurement distance is 0.5–6 m, and the measurement error is 0.25% of the
measurement distance. The RGB image resolution is 640 × 480 pixels, the depth image
resolution is 560 × 460 pixels, and the frame rate is 15fps. The forage harvester model is
Yongmeng 9QS-300 (Yongmeng Machinery Co., Ltd., Tianjin, China), the cutting width is
3000 mm, and the operating speed is 6km/h. All algorithms in this paper were developed
by C and C++ under CLion 2020.3 environment (Jetbrains sro, Prague, Czech Republic) in
an experimental computer equipped with Intel(R) i7-6500 CPU @3.40 GHz, 8 GB of RAM,
running on Linux Ubuntu 16.04 LTS. The libraries that the algorithm mainly relied on were
OpenCV 3.4.10, PCL 1.7 and Eigen 3.3.7.

3.2. Evaluation Metrics of the CAIP Method

The performance of the approach is evaluated from two aspects: The Intersection-
over-Union (IoU) of the identification region of the container and its positioning accuracy.
The IoU is the most popular evaluation metric for object detection and semantic segmenta-
tion [29], which is formulated as:

IoU =
|A ∩ B|
|A ∪ B| (17)
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where A denotes the total number of pixels in an image that are predicted as the con-
tainer area by the algorithm; B is the total number of pixels in the real container area
calibrated manually.

The identification result of the truck container is a spatial plane area, and it is very
difficult to directly measure the positioning accuracy of this area. However, the final
purpose of the positioning is to determine the ideal unloading point coordinates of the
forage in the container, and the ideal unloading point is generally selected at the center
point of the container area [15]. Therefore, this paper selects the absolute error between
the predicted value and the theoretical value of the center point coordinate to evaluate
the positioning accuracy [30]. Based on this criteria, the absolute positioning error e of the
center point is described as follows:

e = ‖Cp − Ct‖ =
√(

xp − xt
)2

+
(
yp − yt

)2
+
(
zp − zt

)2 (18)

where Cp =
(

xp, yp, zp
)

and Ct = (xt, yt, zt) are the coordinates of the predicted center
point and the theoretical center point of the container, respectively.

3.3. Results Analysis and Discussion

In the collaborative operation of the forage harvester and the truck, due to speed
differences or some special circumstances, such as turning, the relative position and dis-
tance between the two vehicles are not entirely constant. To comprehensively evaluate
the performance of the approach proposed in this paper, the forage harvester traveled in a
straight line at a rated working speed of 6 km/h, the following speed and direction of the
truck were adjusted appropriately to enable the camera to capture data of containers in
different positions. During the experiment, containers are always within the measuring
range of the RGB-D camera.

Figure 6 shows the identification results of the containers of two different trucks.
Table 1 selects the IoU data corresponding to 15 consecutive images to evaluate container
area identification accuracy.
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Figure 6. Identification results of two different containers. (a) RGB image of the container A; (b) Visualization of the
identification results of the container A on the depth image; (c) The IoU calculation area of the container A, where the
blue-purple area with a blue border represents the real container area. (d) RGB image of the container B; (e) Visualization of
the identification results of the container B on the depth image; (f) The IoU calculation area of the container B, where the
blue-purple area with a blue border represents the real container area.
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Table 1. The IoU data of 15 consecutive images of two containers.

Container Type Image No. Union/Pixels Intersection/Pixels IoU Average of IoU

Container A

1 69474 63180 0.9094

0.9069

2 70520 64258 0.9112
3 72525 66331 0.9146
4 71343 65643 0.9201
5 74794 67015 0.8960
6 71794 63854 0.8894
7 72794 65595 0.9011
8 75297 67105 0.8912
9 71352 66329 0.9296
10 69400 62994 0.9077
11 72093 64588 0.8959
12 72539 66337 0.9145
13 73709 67982 0.9223
14 76293 67237 0.8813
15 71228 65444 0.9188

Container B

1 147787 135003 0.9135

0.8956

2 156686 138087 0.8813
3 152595 133139 0.8725
4 156609 141512 0.9036
5 161556 147064 0.9103
6 157791 139408 0.8835
7 156961 141438 0.9011
8 166250 149475 0.8991
9 146632 133655 0.9115
10 153721 141931 0.9233
11 149072 132570 0.8893
12 160023 134659 0.8415
13 148056 134050 0.9054
14 159701 143843 0.9007
15 151321 135856 0.8978

Figures 7 and 8 show the predicted values, theoretical values and errors of the center
point coordinates of the container A and the container B at 60 different positions relative to
the forage harvester.

According to the experimental results, the depth-vision-based CAIP algorithm can
effectively identify and position two kinds of containers with different appearances.
Figure 6 and Table 1 show that the average IoU for the container A is 90.69%, and the
average IoU for the container B is 89.56%. Figures 7 and 8 show the predicted and theoreti-
cal x-axis values, y-axis values, z-axis values and errors of the center points of the container
A and the container B at 60 different positions. Furthermore, the center point’s absolute
positioning errors are shown in Figure 9, which are calculated by Equation (13). To quantify
and analyze the results of the positioning experiments, Table 2 provides quantitative statis-
tics on the absolute errors and their component errors on the x-axis, y-axis and z-axis of the
center points. For the container A, the maximum absolute error of positioning is 97.22 mm,
the mean is 58.88 mm, and root-mean-square error (RMSE) is 23.85 mm. For the container
B, the maximum absolute error is 91.36 mm, the mean is 44.62 mm, and RMSE is 26.56 mm.
The error components on the three coordinate axes appear to be smaller, the error of x-axis
values is less than 90 mm, the error of y-axis values is less than 90 mm, and the error of
z-axis values is less than 40 mm. The experimental results are stable for 6 tests in the field.
Reference 16 provided an another container positioning method based on the laser sensor
and GNSS [16], the positioning errors are: maximum error of (161 mm, 116 mm, 65 mm),
mean error of (68 mm, 60 mm, 26 mm), and RMSE of (83 mm, 67 mm, 32 mm) in x, y, and z
axes, respectively. Compared with Table 2, the method proposed in this paper has better
positioning accuracy.
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Figure 7. Positioning results of the center point of the container A at 60 different positions. (a) The predicted and theoretical
values of x axis; (b) The predicted and theoretical values of y axis; (c) The predicted and theoretical values of z axis. (d) The
error between the predicted values and the theoretical values at different positions.

Figure 8. Positioning results of the center point of the container B at 60 different positions. (a) The predicted and theoretical
values of x axis; (b) The predicted and theoretical values of y axis; (c) The predicted and theoretical values of z axis. (d) The
error between the predicted values and the theoretical values at different positions.
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Figure 9. The positioning accuracy of the center point of the two containers. (a) The absolute errors of the center point of
the container A. (b) The absolute errors of the center point of the container B.

Table 2. Quantitative statistics of positioning errors.

Container Type Error Maximum
Value/mm

Minimum
Value/mm

Average
Value/mm RMSE/mm

Container A

x 90.76 −68.66 5.77 39.53
y 90.10 −25.88 32.48 29.16
z 38.99 −34.24 4.10 21.23

Absolute error 97.22 14.04 58.88 23.85

Container B

x 85.70 −66.06 13.04 33.62
y 57.09 −31.12 13.01 21.14
z 34.91 −32.96 5.41 17.51

Absolute error 91.36 5.43 44.62 26.56

Figures 7c and 8c show that the predicted values of the z axis of the center point are
always constant, while the theoretical values are constantly fluctuating. The predicted
value of the z axis of the center point is the height value of the container. The height is
calculated before the work and remains unchanged throughout the harvesting process.
However, the theoretical value fluctuates by ±50 mm, the reason is that the unevenness of
the farmland causes the truck to bump up and down, thus changing the height of the upper
edge of the container. Therefore, it is crucial to set a reasonable variable a to extract the
upper edge the upper edge point cloud in Section 2.2.4. On the one hand, when the vehicle
turbulence is severe but the value of the variable a is too small, it may cause the upper
edge points of some frames to be outside the interval [h− a, h + a], resulting in failure to
extract the upper edge of the container. On the other hand, if the variable a is set too large,
it may introduce other interference, such as the point cloud of the truck cab, affecting the
accuracy of the algorithm.

Although the appearance of the containers has significantly changed due to artificial
modification, as shown in Figure 6a,d, there are always two common features that have
not changed: (1) The edge of the container has obvious straight-line characteristics. (2) The
container’s upper edge is on a spatial plane and is located at the local highest position
of the truck. Therefore, the method in this paper is not sensitive to the appearance of
container and has good versatility. In addition, because the two vehicles are independently
controlled during operation, the container information obtained by the camera may be
incomplete. As long as the point cloud data contains the local information of the four upper
edge lines, the container can also be identified and positioned. As shown in Figure 6b,e,
both containers A and B lack the information of one corner, under such circumstances the
containers are still effectively identified and positioned.
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4. Conclusions and Future Work

In this paper, a model with three coordinate systems is established to describe a
collaborative harvesting system, and a method is proposed to identify and position the truck
container based on depth vision. The method processes include data preprocessing, point
cloud pose transformation based on the SVD algorithm, segmentation and projection of
the upper edge, edge lines extraction and corner points positioning based on the RANSAC
algorithm, and fusion and visualization of results on the depth image. The effectiveness
of the proposed method has been verified by field experiments. The results show that
the depth-vision-based CAIP method can effectively identify and position two kinds of
containers with different appearances. The identification accuracy of the container region
is about 90%, and the absolute error of center point positioning is less than 100 mm.
In addition, the method is not sensitive to the appearance of the truck container and
noisy points in the agricultural environment, and performance is relatively stable, which
can meet the requirements of dynamic identification and positioning of containers in
forage harvesting.

The theories on the identification and positioning method of the transport vehicle
containers have laid the foundation for the automation of the unloading system of the
forage harvester. In the future, we will focus on the autonomous driving and path planning
of the unloading mechanism of the forage harvester.
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